文档库 最新最全的文档下载
当前位置:文档库 › 迈克尔逊干涉仪

迈克尔逊干涉仪

迈克尔逊干涉仪
迈克尔逊干涉仪

迈克尔逊干涉仪

迈克尔逊干涉仪是光学干涉仪中最常见的一种,1883年美国物理学家阿尔伯特·亚伯拉罕·迈克尔逊和爱德华·威廉姆斯·莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。利用分振幅法产生双光束以实现干涉。

迈克尔逊曾用它完成了三个著名的实验:

(1)否定“以太”的迈克尔逊—莫雷实验;

(2)分析光谱精细结构;

(3)利用光波波长标定长度单位。

迈克尔逊干涉仪的主体结构包括:

(1)底座(2)导轨(3)拖板部分(4)定镜部分(5)读数系统和传动部分(6)附件工作原理:一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。

干涉条纹是等光程差点的轨迹,因此,要分析某种

干涉产生的图样,必求出相干光的光程差位置分布的函

数。若干涉条纹发生移动,一定是场点对应的光程差发

生了变化,引起光程差变化的原因,可能是光线长度L

发生变化,或是光路中某段介质的折射率n发生了变化,

或是薄膜的厚度e发生了变化。

G2是一面镀上半透半反膜,M1、M2为平面反射镜,

M1是固定的,M2和G1精密丝相连,使其可以向前后移

动,最小读数为10-4mm,可估计到10-5mm,M1和M2

后各有几个小螺丝可调节其方位。当M2和M1’严格平行

时,M2会移动,表现为等倾干涉的圆环形条纹不断从中心“吐出”或向中心“吞进”。两平面镜之间的“空气间隙”距离增大时,中心就会“吐出”一个个条纹;反之则“吞进”。M2和M1’不严格平行时,则表现为等厚干涉条纹,在M2移动时,条纹不断移过视场中某一标记位置,M2平移距离d 与条纹移动数N 的关系满足。

经M2反射的光三次穿过分光板,而经M1反射的光通过分光板只一次。补偿板的设置是为了消除这种不对称。在使用单色光源时,可以利用空气光程来补偿,不一定要补偿板;但在复色光源时,由于玻璃和空气的色散不同,补偿板则是不可或缺的。

应用:

主要用于长度和折射率的测量,在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。

在当今的引力波探测中迈克耳孙干涉仪以及其他种类干涉仪都得到了相当广泛的应用。

迈克耳孙干涉仪还被应用于寻找太阳系外行星的探测中(在这种探测中马赫-曾特干涉仪的应用更加广泛)

迈克耳孙干涉仪还在延迟干涉仪,即光学差分相移键控解调器(Optical DPSK)的制造中有所应用。

技术参数:

动镜移动精度(微调)、动镜移动精度(粗调)、动镜移动距离(微调)、动镜移动距离(粗调)、分束板和补偿板平面度、激光输出功率、动镜范围、最小读数

相关产品介绍:

1.产品型号:WMG-1型(天津市拓普仪器有限公司)

产品说明:

WMG-1型迈克尔逊干涉仪采用铸铁基座为实验平台,实验更加简单、可靠。主要应用于高校普通物理实验中观察光的各种干涉现象和测量光源或滤光片的波长值。

可开实验:

1.观察点光源非定域干涉;2.观察等倾干涉条纹;

3.观察等厚干涉条纹;4.观察白光干涉现象;

5.测定光源或滤光片的波长(例:He-Ne激光、钠光);

6.测定钠黄双线波长差;7.测量透明介质薄片折射率;

8.测量透明气体折射率。

主要特点

1.该仪器借鉴传统干涉仪的经典设计,采用了全新的平台式结构,有效地提高了仪器稳定性。

2.仪器操作简单,实用,可靠性好,通过手动操作锻炼学生的动手能力。

目前,它是高等院校物理实验中观察光的各种干涉现象并验证相关基础理论的重要光学仪器,可用于高等院校或科研所验证相关物理光学实验。

参数及性能指标

动镜移动精度(微调):0.0004mm动镜移动精度(粗调):0.01mm

动镜移动距离(微调):1mm动镜移动距离(粗调):12mm

分束板和补偿板平面度:≤1/20λ激光输出功率:0.8-1mW

仪器成套性

迈克尔逊干涉仪主机、He-Ne激光器、一维可调升降底座等

可选附件

低压钠灯、白光源、法布里珀罗标准具、气室部件(气室、压力表、压气球)

2.长春市长城教学仪器有限公司一些迈克尔逊干涉仪

WSM-100/200迈克尔逊干涉仪有四种型号:WSM-100、WSM-100A、WSM-200、WSM-200A。WSM-100/200迈克尔逊干涉仪用于观察光的干涉现象,测定单色光波长、光源和滤光片的相干长度。

配F—P标准具观察多光束干涉现象,最小读数0.0001mm,测量误差<2%。

(1)产品型号:WSM-200A

产品特点:动镜、定镜二维调节,演示和观察干涉现象

动镜范围200mm

测定单色光波长,最小读数0.0001mm

大调距反光镜

包括:法布里-珀罗多光束系统

(2)产品型号:WSM-100A

产品特点:动镜、定镜二维调节,演示和观察干涉现象,

动镜范围100mm

测定单色光波长,最小读数0.0001mm

大调距反光镜

包括:法布里-珀罗多光束系统

(3)产品型号:WSM-200

产品特点:动镜定镜二维调节,演示和观察干涉现象,

动镜范围200mm

测定单色光波长,最小读数0.0001mm

大调距反光镜

(4)产品型号:WSM-100

产品特点:动镜定镜二维调节,演示和观察干涉现象,

动镜范围100mm

测定单色光波长,最小读数0.0001mm

大调距反光镜

迈克尔逊干涉仪的使用注意:

干涉仪是精密光学仪器,使用中不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。测量时还要认真做到:

1.在调整反射镜背后粗调螺钉时,不可旋得太紧,用来防止镜面的变形,先要把微调螺钉调在中间位置,以便能在两个方向上作微调,一定要轻、慢,决不允许强扳硬扭。

2.为了防止引进螺距差,每项测量时必须沿同一方向转动微动手轮,途中不能倒退,否则会引起较大的空回误差。

3.测量过程中,一定要非常细心和耐心,转动手轮时要缓慢、均匀,沿一个方向前进(或后退),否则会引起较大的空回误差。

4.在测波长时,M1镜的位置应保持在30—60毫米范围内。

5.为了使测量读数准确,使用干涉仪前必须对读数系统进行校正。将微调手轮沿测量方向旋转至零,然后以同方向转动粗调手轮对齐读数窗口中的某一刻度线,以后测量时微动手轮只能沿同一方向转动。在调整好零点后,应将微调手轮沿测量方向旋转,直至视场中的圆环“冒出”或“缩进”为止,此时空程即已消除。

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪实验报告87789

迈克耳逊干涉仪 一.实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.用迈克尔逊干涉仪测量钠光波长和精细结构。 二.实验仪器 迈克尔逊干涉仪、钠光灯、透镜等。 三.实验原理 迈克耳孙干涉仪原理如图所示。两平面反射镜M1、M2、光源 S和观察点E (或接收屏)四者北东西南各据一方。M1、M2相互垂直,M2是固定的,M1可沿导轨做精密移动。G1和G2是两块材料相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察单、复色光的干涉。可见G2作为补偿光程用,故称之为补偿板。G1、G2与平面镜M1、M2倾斜成45°角。

如上图所示一束光入射到G1上,被G1分为反射光和透射光,这两束光分别经M1和M2反射后又沿原路返回,在分化板后表面分别被透射和反射,于E处相遇后成为相干光,可以产生干涉现象。图中M′2是平面镜M2由半反膜形成的虚像。观察者从E处去看,经M2反射的光好像是从M′2来的。因此干涉仪所产生的干涉和由平面M1与M′2之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M1和M2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M1和M′2之间的距离为d,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若M1与M′2平行,则各处d相同,可得等倾干涉。系统具有轴对称不变性,故屏E上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大圆环变疏。若d增加则中心“冒出”一个条纹,反之d减小则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N与d的变化量△d之间有下列关系 根据该关系式就可测量光波波长λ或长度△d。 钠黄双线的精细结构测量原理简介: 干涉条纹可见度定义为:当,时V=1, 此时干涉条纹最清晰,可见度最大;时V=0,可见度最小。 从一视见度最低的位置开始算起,测量一次视见度最低处的位置,者其间的光程差 为,且由关系算出谱线的精细结构。 四.实验结果计与分析 次数初读数 d1(mm) 末读数 d2(mm) △ d=|d1-d2| (mm) (nm)(nm ) 137.7247937.754420.02963592.6592.6

实验7迈克尔逊干涉仪的调整和使用

实验7 迈克尔逊干涉仪的调整和使用 【实验目的】 1. 了解迈克尔逊干涉仪的原理并掌握调节方法。 2. 观察等倾干涉,等厚干涉的条纹,并能区别定域干涉和非定域干涉。 3. 测定He-Ne 激光的波长。 【实验仪器】 迈克耳逊干涉仪、多光束激光器、叉丝、毛玻璃屏 【预习要求】 1. 叙述非定域干涉和定域干涉特点及观察方法 2.制定观察和测量步骤 【研究内容与方法】 1. 观察非定域干涉条纹并测量光波波长 (1)非定域干涉条纹的调节: 为了获得肉眼直接可观察得到的干涉条纹,要求两束相干光的传播方向夹角必须很小,几乎是共线传播。为此,作如下调节:在He —Ne 激光器前设一小孔光阑,使激光束通过小孔,并经过分光板1G 中心透射到反射镜2M 中心上。然后调节2M 后面三个螺丝,使光点反射像返回到光阑上并与小孔重合。再调从1G 后表面反射到1M 的光束,调节1M 后面三个螺丝,使其反射光到达1G 后表面时恰好与2M 的反射光相遇(两光点完全重合),同时两反射光 在光阑的小孔处也完全重合。这样1M 和2M 就基本上垂直即1M 和2 M '互相平行了。 去掉光阑,该处放一短焦距的透镜,使激光束会聚成一点光源,这时在屏上就可以看到 干涉条纹了,再仔细调节2M 的两个微调拉簧螺钉,使1M 和2 M '严格平行,则在屏上就可看到非定域的圆条纹。 转动手轮使1M 在导轨上移动,观察条纹变化情况。并体会非定域的含义。 (2)测量He —Ne 激光的波长 利用非定域的干涉条纹测定波长。移动1M 以改变d ,记下“冒”出或“缩”进的条纹数N ?,可每累进50条读取一次数据,连续取10个数据,利用(2)式即可算出λ(参见阅读材料)。 表1 波长测量数据记录与处理表

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

迈克尔逊干涉仪及其应用

迈克尔逊干涉仪及其应用 迈克尔逊干涉仪的应用 迈克尔逊干涉仪是一种利用分振幅法实现干涉的精密光学仪器.自1881 年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“ 以太” 的迈克尔逊—莫雷实验;光谱精细结构和利用光波波长标定长度单位.迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性.根据迈克尔逊干涉仪的基本 原理发展的各种精密仪器已广泛应用于生产和科研领域. 【预习要求】 1. 阅读实验十六,理解光的干涉、等倾干涉与等厚干涉 . 2. 了解定域干涉与非定域干涉概念 . 3. 了解迈克尔逊干涉仪的结构和使用 . 【实验目的】 1. 研究迈克尔逊干涉仪上各种光的干涉现象 . 2. 了解迈克尔逊干涉仪的应用 . 【实验仪器】 迈克尔逊干涉仪,法布里-珀罗干涉仪,氦氖激光器,钠光灯,白炽灯, 扩束镜 【实验要求】 1. 定域干涉与非定域干涉的研究 (1)观察激光产生的定域干涉与非定域干涉; (2)粗略测定激光定域等倾干涉条纹和等厚干涉条纹的定域位置(精确到 mm ); (3)观察钠光产生的定域干涉与非定域干涉 . 2. 钠光双线波长差与相干长度的测定 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用迈克耳孙干涉仪测定钠光相干长度;

(3)用迈克耳孙干涉仪考察氦-氖激光的相干长度 . 3. 钠光双线波长差的测定与考察补偿板的作用 (1)用迈克耳孙干涉仪测定钠光双线波长差; (2)用法布里-珀罗干涉仪测定钠光双线波长差; (3)观察无补偿板的迈克耳孙干涉仪中条纹的特点 . 【实验提示】 1. 如何获得点光源和面光源?如何测定干涉条纹的定域位置? 2. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪中它的干涉条纹有什么特点? 测波长差的公式;能用测出的波长差计算相干长度吗?测定光源相干长度的方法,实际可能达到的精度 . 3. 钠光包含中心波长分别为589.0nm 和589.6nm 的两条谱线,在迈克耳逊干涉仪和法布里-珀罗干涉仪中它的干涉条纹各有什么特点? 4. 迈克耳逊干涉仪中补偿板有哪些作用? 5.考虑实际可能达到的精度,确定是否要用微动手轮,应如何安排测量次数,如何处理数据 . 【设计报告要求】 1 . 写明实验的目的和意义 2 . 阐明实验原理和设计思路 3 . 说明实验方法和测量方法的选择 4 . 列出所用仪器和材料 5 . 确定实验步骤 6 . 设计数据记录表格 7 . 确定实验数据的处理方法 【思考题】

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪实验报告

实验目的: 1)学会使用迈克尔逊干涉仪 2)观察等倾、等厚和非定域干涉现象 3)测量氦氖激光的波长和钠光双线的波长差。 实验仪器: 氦氖激光光源、钠光灯、迈克尔逊干涉仪、毛玻璃屏 实验原理: 1:迈克尔逊干涉仪的原理: 迈克尔逊干涉仪的光路图如图所示,光源S 出发的光经过称。45放置的背面镀银的半透玻璃板1P 被分成互相垂直的强度几乎相等的两束光,光 路1通过1M 镜反射并再次通过1P 照射在观察平 面E 上,光路2通过厚度、折射率与1P 相同的玻 璃板2P 后由2M 镜反射再次通过2P 并由1P 背面 的反射层反射照射在观察平面E 上。图中平行于1M 的'2M 是2M 经1P 反射所成的虚像,即1P 到2M 与1P 到'2M 的光程距离相等,故从1P 到2M 的光路可用1P 到'2M 等价替代。这样可以认为1M 与'2M 之间形成了一个空气间隙,这个空气间隙的厚度可以通过移动1M 完成,空气间隙的夹角可以通过改变1M 镜或2M 镜的角度实现。当1M 与' 2M 平行时可以在观察平面E 处观察到等倾干涉现象,当1M 与'2M 有一定的夹角时可以在观察平面E 处观察到等厚干涉现象。 2:激光器激光波长测量原理: 由等倾干涉条纹的特点,当θ =0 时的光程差δ 最大,即圆心所对应的干

涉级别最高。转动手轮移动 M1,当 d 增加时,相当 于增大了和 k 相应的θ 角 ,可以看到圆 环一个个从中心“冒出” ;若 d 减小时,圆环逐渐 缩小,最后“淹没”在中心处。 每“冒”出或“缩”进一个干涉环,相应的光程差改变了一个波长,也就是 M 与M ’之间距离 变化了半个波长。 若将 M 与 M ’之间距离改变了△d 时,观察到 N 个干涉环变化,则△d =N 由此可测单色光的波长。 3:钠光双线波长差的测定: 在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为: 实验内容与数据处理: (1)观察非定域干涉条纹 1)通过粗调手轮打开激光光源,调节激光器使其光束大致垂直于平面反光镜2M 入射,取掉投影屏E ,可以看到两排激光点 2)粗调手轮移动1M 镜的位置,使得通过分光板分开的两路光光程大致相等 3)调节1M 、2M 镜后面的两个旋钮,使两排激光点重合为一排,并使两个最亮的光点重合在一起。此时再放上投影屏E ,就可以看到干涉条纹。 4)仔细调节1M 、2M 镜后面的两个旋钮,使1M 与' 2M 平行,这时在屏上可以看到同心圆条纹,这些条纹为非定域条纹。 5)转动微调手轮,观察干涉条纹的形状、疏密及中心“吞”、“吐”条纹随光程差改变的变化情况。

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

迈克尔逊干涉实计算仿真

西南交通大学 个性化实验项目结题报告迈克尔逊干涉实验的计算仿真 班级:电气(电牵)2012级班学生姓名: 指导教师:邱春蓉 完成时间:2015年5月23日

1.在项目中的分工 在项目中我主要负责代码的撰写和实验结果的采集调试。 2.查阅资料、方案确定等准备工作 迈克尔逊干涉实验是一个基本的光学物理实验。光的干涉现象是波相干迭加的必然结果,证明了光的波动性。 根据光强分布的理论公式,通过编程得到数值曲线,这种计算机仿真方法可以不受仪器、场地的限制,实验效果形象、直观,扩展了等倾干涉,等厚干涉问题的研究途径。 应用 Matlab 仿真这两种干涉方式,并与实验结果类比。 我首先复习了大学物理实验关于迈克尔逊干涉实验中的部分,初步理解了迈克尔逊干涉实验的原理和结果。然后复习了数学实验中MATLAB 软件的应用。在做完这一切之后,我开始试图思考MATLAB 中仿真迈克尔逊实验图样的方法,即通过解析式生成函数图样。我发现我的物理知识和书本内容不足够描述干涉图样,在上网查阅专著后,我们解决了这个问题。最终编写了代码。 3.项目实施过程描述 3.1 二、实验原理 光的干涉现象是光的波动性的一种表 现。当一束光被分成两束,经过不同路径再 相遇时,果光程差小于该束光的相干长度, 将会出现干涉现象。迈克尔逊干涉仪是一种 利用分割光波振幅的方法实现干涉的精密光 学仪器。自1881年问世以来,迈克尔逊曾用 它完成了三个著名的实验:否定“以太”的 迈克尔逊—莫雷实验,光谱精细结构和利用 光波波长标定长度单位。迈克尔逊干涉仪结 构简单、光路直观、精度高,其调整和使用 具有典型性。 迈克尔逊干涉仪利用两个完全相同、斜 置的玻璃板,将两个几乎垂直的平面镜等效 为接近平行的情况,以至于只需要用螺丝进 行微调即可,同时使一束光成为两束相关光,发生干涉现象。可以认为,是平面镜与另一个平面镜等效位置之间的空气薄膜发生了干涉。 光程差推导计算式为: θcos 2d =? 其中d 为薄膜厚度,θ为入射角。 根据理论公式,迈克尔逊干涉仪成像会是一群同性圆环,其各点处光强公式为: δcos 22121I I I I I ++= 其中,δ是两列光波的相位差。由此可以构造xOy 坐标轴下的轨迹方程集合,由这个原理编写程序。 3.2 程序设计与运行

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

Zemax激光光学设计实例应用013迈克尔逊干涉仪仿真

013:迈克尔逊干涉仪仿真 在这一节的实例中,我们要采用干涉分析等工具来仿真物理光学现象。下面,我们一边建模一边讨论。 图13-1 理想成像LDE 编辑器列表 图13-2 理想成像结构及像差分析图列表 我们先建立一个简单的理想光学成像系统(4F 系统),系统设置中,物方类型选择物面数值孔径(随意设置一个合理的值);波长为默认;视场为默认0 度。在透镜数据编辑器中输入如图13-1 所示的数据。停止面(Surface 1)的类型选择“Paraxial XY”(傍轴光线),这样就可以将这个面设置为“理想薄透镜”。注意,“Paraxial”为旋转对称理想透镜,“Paraxial XY”为两轴分离理想薄透镜,可以分别设置两个轴不同的光焦度,

即单独设置一个轴就成为“理想柱面镜”。其参数“X-Power”和“Y-Power”分别为两个轴的光焦度,即理想焦距的倒数。 然后打开3D Layout 查看光路结构,同时调出各种像差分析图,例如点列图、光扇图、光程差OPD 图表等等,看看理想情况想的像差分析图表是什么样子的。如图13-2 所示,像差图分析结果像差均为0,点列图为理想点。 再来看看理想情况下的成像效果。点击Analysis→Image Simulation→Image Simulation打开成像仿真器,默认情况下的成像仿真为网格线条模式,如图13-3 所示。 图13-3 理想成像仿真分析(网格线条模式) 点击设置菜单,更改输入文件,根据自己的喜好选择物方图像。软件自带了一个BMP 格式的演示图片(高一点的版本才有),可以用来模拟拍照实际成像效果。参数设置如图13-4所示,其中视场高度(Field Height)选项与系统设置中的视场类型有关,如果系统设置中视场类型为视场角度,那么这里应该是指物面对停止面STO 的张角(全角),所以视场高度若再设为0,则表示物面尺寸为0,可能无法看到成像。将视场高度(Field Height)的值设为5(度),表示物面高度(Y 方向)尺寸设定为tan5*50=4.4mm。而X 方向(宽度)则根据图片的比例(像素比例)直接换算得到。设置完毕,得到理想成像系统的成像效

大学物理实验之迈克尔逊干涉仪的调整与应用方法及步骤详解

迈克尔逊干涉实验 实验前请认真阅读本要点: (1)听完课后,同学们结合仪器请仔细阅读教材的相关内容,特别是P189的干涉仪光路图(图5-61)、P191公式(5-123、5-124)的由来及应用、P193至P194的仪器说明与练习一。 测量固体试件的线膨胀系数还要阅读教材的P136与P138的实验内容1。 注:迈克尔逊干涉仪有仿真实验,同学们可以在实验之前用其进行预习。 仿真实验位于: 桌面\大学物理仿真实验\大学物理仿真实验(第二部分),其中 大学物理仿真实验(第二部分).exe为正式版,大学物理仿真实验示教版(第二部分).exe为示教版,同学们在使用之前可先看示教版。 (2)实验内容 1)掌握迈克尔逊干涉仪的调节方法,并记录位置改变时干涉条纹的变化,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。 2)根据逐差法的要求确定如何合理测量数据,规范记录实验数据及已知参数等。 3)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案。 4)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等。 (3)阅读F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记

环数)),了解需测量的数据要求(处理需用逐差法),确定如何进行数据测量。根据需测量的数据,在实验仪器上进行预测量与观察相应的实验现象,即先测量一小部份数据,弄清测量的重点与难点,确定测量方法,然后进行正式测量。 (4)测波长与测线膨胀系数的主要调节方法是一样的,需掌握迈克尔逊干涉光路的调节方法,并了解干涉条纹的变化情况,如条纹的“冒出”和“缩进”、条纹的疏密、条纹间距与“空气薄膜”的关系等。(一些问题详见附录4 疑难解答) 测量He-Ne激光的波长的同学还要掌握如何正确使用读数结构(包括如何读数、校零、消空程等)。 测量固体试件的线膨胀系数的同学还要掌握如何正确进行控温(详见38的实验内容1)。 (5)测波长的同学(后十位同学)需每冒出(或缩进)50环,读一次 M镜 1 的位置,至少连续测8组,将数据填入表格,并观察其实验现象。 测线膨胀系数的同学(前十位同学)可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。 注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。 (6)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件),不要关闭文件,让老师检查数据是否合格。 (7)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用 迈克尔逊干涉仪是一种典型的分振幅双光束干涉装置,可以用来研究多种干涉现象,并进行较精密的测量。其在近代物理和近代计量技术中有着重要的应用,如测量标准长度等。从迈克尔逊干涉仪发展而成的各种干涉仪(如泰曼干涉仪),在制造精密光学仪器的工作中应用得相当广泛。 【实验目的】 1.了解迈克尔逊干涉仪的构造,并学会该仪器的调节与使用。 2.用迈克尔逊干涉仪测定钠光的波长。 【实验仪器】 迈克尔逊干涉仪、钠灯及其电源、叉丝。 【实验原理】 1.仪器构造简介 实验室中最常用的迈克耳逊干涉仪,其原理图和结构图如图1和图2所示。M 1和M 2 是在相互垂直的 图1 图2 两臂上放置的两个平面反射镜,其背面各有三个调节螺旋,用来调节镜面的方位;M2是固定的,M1由精密丝杆控制,可沿臂轴前后移动,其移动距离由转盘读出。仪器前方粗动手轮分度值为10-2mm,右侧微动手轮的分度值为10-4mm,可估读至10-5mm,两个读数手轮属于蜗轮蜗杆传动系统。在两臂轴相交处,有一与两臂轴各成45o的平行平面玻璃板P 1 ,且在P1的第二平面上镀以半透(半反射)膜,以便将入射光分成振幅近乎相等的反射光1和透射 光2,故P 1板又称为分光板。P 2 也是一平行平面玻璃板,与P1平行放置,厚度和折射率均

与P 1相同。由于它补偿了1与2之间附加的光程差,故称为补偿板。 从扩展光源S 射来的光,到达分光板P 1后被分成两部分。反射光1在P 1处反射后向着M 1前进;透射光2透过P 1后向着M 2前进。这两列光波分别在M 1、M 2上反射后沿着各自的入射方向返回,最后都到达E 处。既然这两列光波来自光源上同一点O ,因而是相干光,在E 处的观察者能看到干涉图样。 由于从M 2返回的光线在分光板P 1的第二面上反射,使M 2在M 1附近形成一平行于M 1 的虚像M?2,因而光在迈克耳逊干涉仪中自M 1和M 2的反射,相当于自M 1和M?2的反射。由此可见,在迈克耳逊干涉仪中所产生的干涉与厚度为d 的空气膜所产生的干涉是等效的。 2.实验原理 当M 1和M?2严格平行时,所得的干涉为等倾干涉。所有倾角为i 的入射光束,由M 1和M?2反射光线的光程差Δ均为 2cos d i ?= (1) 式中i 为光线在M 1镜面的入射角,d 为空气薄膜的厚度,它们将处于同一级干涉条纹,并定位于无限远。这时,在图1中的E 处,放一会聚透镜,在其焦平面上(或用眼在E 处正对P 1观察),便可观察到一组明暗相间的同心圆纹。这些条纹的特点是: 干涉条纹的级次以中心为最高。在干涉纹中心,因i =0,由圆纹中心出现亮点的条件 2d k λ?== (2) 得圆心处干涉条纹的级次 2d k λ = (3) 当M 1和M ′2的间距d 逐渐增大时,对于任一级干涉条纹,例如第k 级,必定以以其 cos k i 的值来满足2cos k d i k λ=,故该干涉条纹向k i 变大(cos k i 变小)的方向移动,即向外扩展。这时,观察者将看到条纹好像从中心向外“涌出”,且每当间距d 增加/2λ时,就有一 个条纹涌出。反之,当间距由大逐渐变小时,最靠近中心的条纹将一个一个地“陷入”中心,且每陷入一个条纹,间距的改变亦为/2λ。 因此,只要数出涌出或陷入的条纹数,即可得到平面镜M 1以波长λ为单位的移动距离。显然,若有N 个条纹从中心涌出时,则表明M 1相对于M′2移远了 2d N λ ?= (4) 反之,若有N 个条纹陷入时,则表明M 1和M?2移近了同样的距离。根据(4)式,如果已知光波的波长λ,便可由条纹变动的数目,计算出M 1移动的距离和干涉条纹变动的数目,便可算出光波的波长。 2d N λ?= 本次实验每组测量N 取50个条纹的“涌出”或“陷入”,并在迈氏干涉仪上读出12 ,d d ,便 可知d ?的值,则 2 2410 50 d d λ-= ?=???mm 4 410d =???nm 【注意事项】 ①该仪器很精密,各镜面必须保持清洁,切忌用手触摸光学面,精密丝杆和导轨的精度也是很高的,操作时要轻调慢拧。 ②为了使测量结果正确,必须消除螺距差(回程误差),也就是说,在测量前,应将微动手轮按某一方向(例如顺时针方向)旋转几圈,直到干涉条纹开始移动以后,才可开始读数测量(测量时仍按原方向转动)。 ③做完实验后,要把各微动螺丝恢复到放松状态。

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

相关文档
相关文档 最新文档