文档库 最新最全的文档下载
当前位置:文档库 › 可靠性基本概念

可靠性基本概念

可靠性基本概念
可靠性基本概念

可靠性设计主要符号表

可靠性的概念

可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。

规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。

规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。

规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。

能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。

按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。

可靠度

可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。它是时间的函数,故也记为R(t),称为可靠度函数。

图1 图2

如果用随机变量T表示产品从开始工作到发生失效或故障的时间,其概率密度为f(t)如上图所示,若用t表示某一指定时刻,则该产品在该时刻的可靠度

图1

对于不可修复的产品,可靠度的观测值是指直到规定的时间区间终了为止,能完成规定功能的产品数与在该区间开始时投入工作产品数之比,即

图2

式中:N——开始投入工作产品数

(t)——到t时刻完成规定功能产品数,即残存数

N

a

(t)——到t时刻未完成规定功能产品数,即失效数。

N

f

可靠寿命

可靠寿命:可靠寿命和中位寿命

可靠寿命是给定的可靠度所对应的时间,一般记为t(R)。

如图13·1-5所示,一般可靠度随着工作时间t的增大而下降,对给定的不同R,则有不同的t(R),即

t(R)=R-1(R)

式中R-1——R的反函数,即由R(t)=R反求t

可靠寿命的观测值是能完成规定功能的产品的比例恰好等于给定可靠度时所对

应的时间。

累积失效概率

累积失效概率:累积失效概率是产品在规定条件下和规定时间内未完成规定功能(即发生失效)的概率,也称为不可靠度。一般记为F或F(t)。

因为完成规定功能与未完成规定功能是对立事件,按概率互补定理可得F(t)=1-R(t)

对于不可修复产品和可修复产品累积失效概率的观测值都可按概率互补定理,取

平均寿命

平均寿命:平均寿命是寿命的平均值,对不可修复产品常用失效前平均时间,一般记为MTTP,对可修复产品则常用平均无故障工作时间,一般记为MTBF。它们都表示无故障工作时间T的期望E(T)或简记为t。

如已知T的概率密度函数f(t),则

经分部积分后也可求得

失效率和失效率曲线

失效率:失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生失效的概率。一般记为λ,它也是时间t的函数,故也记为λ(t),称为失效率函数,有时也称为故障率函数或风险函数.

按上述定义,失效率是在时刻t尚未失效产品在t+△t的单位时间内发生失效的条件概率.即

它反映t时刻失效的速率,也称为瞬时失效率.

失效率的观测值是在某时刻后单位时间内失效的产品数与工作到该时刻尚未失效的产品数之比,即

失效率曲线:典型的失效率曲线失效率(或故障率)曲线反映产品总体个寿命期失效率的情况。图示13.1-8为失效率曲线的典型情况,有时形象地称为浴盆曲线。失效率随时间变化可分为三段时期:

(1)早期失效期,失效率曲线为递减型。产品投稿使用的早期,失效率较高而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运转也逐渐

正常,则失效率就趋于稳定,到t

0时失效率曲线已开始变平。t

以前称为早期失

效期。针对早期失效期的失效原因,应该尽量设法避免,争取失效率低且t

短。

(2)偶然失效期,失效率曲线为恒定型,即t

0到t

i

间的失效率近似为常

数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件截面尺寸可使抗非预期过戴的能力增大,从而使失效率显著下降,然而过份地加大,将使产品笨重,不以济,往往也不允许。

(3)耗损失效期,失效率是递增型。在t

1

以后失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升,如图13.1-8中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多,则不如报废更为经济。

失效率λ的概略值

可靠性特征量间的关系

可靠性特征量中可靠度R(t),累积失效率(也叫不可靠度)F(t)、概率密度f(t)和失效率λ(t)是四个基本函数,只要知道其中一个,则所有变量均可求得.基本函数间的关系见下表。

可靠性特征

R(t)F(t)f(t)λ(t)

R(t)(可靠度)-1-F(t)

F(t)(累积失

效率)

1-R(t)-

f(t)(概率密

度)

-

λ(t)(失效率)-

各类产品常用的可靠性指标

使用条件连续使用一次使用

可否修复可修复不可修复可修复不可修复

维修种类预防维修事后维修用到耗损期一定时间后

报废

预防维修

产品示例电子系统、计算

机、通信机、雷

达、飞机、生产

设备

家用电

器、机械

装置

电子元器

件、机械零

件、一般消

费品

实行预防维

修的零部

件、广播设

备用电子管

武器、过载荷

继电器、救生

器具

保险丝、闪光

灯雷管

常用指示可靠度、有效

度、平均无故障

工作时间、平均

修复时间

平均无故

障工作时

间、有效

寿命、有

效度

失效率、平

均寿命

失效率、更

换寿命

成功率成功率

可靠性的技术

可靠性的技术基础范围是相当广泛的,大致分为定性和定量的两大类方法。

定量化的方法要从故障(失效)的概率分布讲起,如何能定量地设计、试验、控制和管理产品的可靠性。定性方法则是经验为主,也就是要把过去积累处理失效的经验设计到产品中,使它具有免故障的能力。定性和定量方法是相辅相成的。可靠性设计和试验分析技术,其目的是在设计阶段预测和预防所有可能发生的故障和隐患,消除于未然,把可靠性设计到产品中去。事中分析指产品在运行中的故障诊断、检测,和寿命预测技术,以保持运行的可靠性。事后分析指产品发生故障或失效后的分析,找出产品故障模式的原因,研究预防故障的技术。尤其是事前分析,这便是可靠性研究重点的重点,美国工业中90%的可靠性成本用于设计上,而且在提高可靠性方面已积累了不少经验和技术,以下作简单介绍。

一、可靠性设计经验

(1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。

(2)结构简化,零件数削减。如日本横河记录仪表10年中无件数削减30%,大大提高了可靠性。

(3)考虑功能零件的可接近性,采用模块结构等以利于可维修性。

(4)设置故障监测和诊断装置。

(5)保证零件部设计裕度(安全系数/降额)。

(6)必要时采用功能并联、冗余技术。如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。

(7)考虑零件的互换性。

(8)失效安全设计(Failure Safe),系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。

(9)安全寿命设计(Safe Life),保证使用中不发生破坏而充分安全的设计。例如对一些重要的安全性零件如汽车刹车,转向机构等要保证在极限条件下不能发生变形、破坏。

(10)防误操作设计(Fool proof)

(11)加强连接部分的设计分析,例如选定合理的连接、止推方式。考虑防振,防冲击,对连接条件的确认。

(12)可靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。尤其机械零部件的可靠性预测精度还很低。主要通过试验确认。

二、可靠性设计辅助措施

为了使设计时能充分地预测和预防故障,把更多的失效经验设计到产品中,因而必须邦助设计人员掌握充分的故障情报资料和设计依据。采取以下措施:(1)可靠性检查表,从可靠性观点出发,列出设计中应考虑的重点。设计时逐项检查。考虑预防的对策。

(2)推行FMEA,FTA方法。FMEA(失效模式影响分析)和FTA(故障树分析)是可靠性分析中的重要手段。FMEA是从零部故障模式入手分析,评定它对整机或系统发生故障的影响程度,以此确定关键的零件和故障模式。FTA则是从整机或系统故障开始,逐步分析到基本零件的失效原因。这两种方法在国外被看作是设计图纸一样重要,作为设计的技术标准资料,它收集总结了该种产品所有可能预料到的故障模式和原因。设计者可以较直观地看到设计中存在的问题。

(3)故障事例集。把过去技术上的失败和改进的事例作成手册,供设计者随进

参考。通常用简图表示,将故障和改进作对比。对故障的原因、情况附有简单说明。这手册是各公司积累的技术财富,视同设计规范同等重要。

(4)数据库。广泛有效地收集设计、制造中的失败和改进经验,试验和实际用的数据形成检索系统和数据库,使设计者能超越本单位充分利用别人实践过的经验。如电子产品已形成世界性可靠性信息交换网。

(5)设计、试验规范的不断充实、改善。从使用实际得来的故障教训要反馈到设计、试验方法的改进中,要将这些改进效果作为产品设计规范(包括材料选定,结构形式,许用应力,安全系数值)和试验标准的改进依据,使它们成为设计技术的一部分。随着可靠性工作开展。必须加强设计、试验规范的研究,命名如试验规范的制定要以实地使用条件分析为基础,要调查出场的回收品和试验室加速试验件作对比,计算强化系数。通过失效分析反推,验证试验条件是否合适,从而不断改进试验方法和标准。因而这些规范都是公司的财富,对外不轻易泄密。如日本小松10年中试验标准增加三倍,丰田的试验标准有1500项之多。也可见各公司对试验的重视程度。

三、加强失效物理技术研究

失效物理是研究故障的原因,材料劣化的机制,缺陷的检测和消除,寿命预测和强化寿命机理,以及应力分析等技术。对于机械来说,主要研究它的常见失效模式,如蠕变,冲击振动,疲劳、断裂、磨损、润滑、腐蚀等。近年来,失效物理技术日举国受到各国重视。例如,由美国政府财政授助的机械故障研究小组(MFWG)的影响及大,它有四个技术咨询委员会:(1)诊断、检测;(2)故障;(3)设计;(4)现有技术的应用推广。研究的对象有系统为燃气轮机,叶片、轴、轴承、齿轮、接头、键槽、转动件、活塞等。该小组自60年成立之后,每年召开1~2次的技术讨论会,至今已有三十余届,许多失效预防和检测技术已投入实用。另外,国外企业都十分重视产品的失效分析工作,千方百计回收失效的零件和残骸加以分析。目的是找出失效原因,作出合更换改进决策,避免内类事故再发生。因而除各大企业配备有完善的失效分析设施外,还设有公共的失效分析中心。公司和保险机构的技术部门都承担分析的任务。

总之,为确保产品可靠,少出故障,必须加强故障的事前(设计),事中(运行的故障诊断)和事后(失效分析)的分析研究工作。

1 维修度

维修度是在规定条件下使用的产品,在规定时间内按照规定的程序和方法进行维修时,保持或恢复到能完成规定功能状态的概率。它是维修时间的函数,记为M(τ),称为函数。

如果用随机变量T表示产品从开始维修到修复的时间,其概率密度为m (τ),则

2 修复率

修复率是修理时间已达到某个时刻尚未修复的产品,在该时刻后的单位时间内完成修理的概率,记为μ(τ)

3 平均修复时间

平均修复时间为修复时间的均值,记为τ,或MTTR

维修性和可靠性特征量对应关系

可靠性是研究产品由正常状态转到故障状态之间时间t的分布及其平均时间(MTTF,MTBF)。维修性是研究产品由故障状态恢复到正常状态之间时间τ的分布及其平均时间(MTTR)的。掌握维修性和可靠性特征量的对应关系,则研究可靠性的统计分析方法就可同样用于研究维修性。

维修性和可靠性特征量的对应关系如下图和下表所示。图中F(t)与M (τ)相对应,F(t)越高表示失效概率越高,M(τ)越高表示修复概率越高。失效与修复,共效果是对立的,就广义可靠性而言,F(t)越低,M(τ)越高,则可靠性越佳。平均修复时间、平均修复率等观测值与对应的平均寿命、平均失效率等观测值计算法均类似。

可靠性与维修性对应关系

项目可靠性维修性累积分布函数

概率密度

失效率和修复率

指数分布累积分布平均时间

可靠性试验

进行可靠性设计时,为明确所涉及产品可靠性的要求,指定可靠性的目标、预计和验证可靠性有关特征量等,必须掌握可靠性数据。可靠性实验是获得可靠性数据的重要手段。可靠性实验是为了提高或证实产品(包括系统、身背、零部件及材料)可靠性而进行试验的总称。寿命试验是可靠性试验的一个很重要的部分,是评价分析产品寿命特征量所进行的试验。

寿命试验的几种分类

1 根据试验场所分类:根据试验截止情况分类根据试验中失效后是否用新事件替换后继续试验分类

(1)现场寿命试验这是产品在实际使用条件下观测到的实际寿命数据,最能说明产品可靠性的特征,可以说是最终的客观标准。因此,收集现场中产品的寿命数据很重要。然而,收集现场数据也会遇到各种困难,需要时间长,工作情况也难以一致,而且必须要有相应的组织管理工作。

(2)实验室寿命试验实验室试验是模拟现场情况的试验,它将现场重要的应力条件搬到实验室,并加以人工的控制,也可进行影响寿命的单项或少数几项应力组合的试验,也可设法缩短试验时间加速取得试验的结果。

2 根据试验截止情况分类

(1)全数寿命试验样本全部失效才停止试验。这种试验可以获得较完整的数据,统计分析结果也较为可信。但是所需试验时间较长,甚至难以实现。

(2)实时截尾寿命试验试验到规定的时间,不管样本已失效多少,试验就截止。(3)定数截尾寿命试验试验到规定的失效数时试验就截止。若规定失效数为全部试样n,即为全数寿命试验。

3 根据试验中失效后是否用新事件替换后继续试验分类

(1)有替换定时截尾试验;

(2)有替换定数截尾试验;

(3)无替换定时截尾试验;

(4)无替换定数截尾试验(包括全数寿命试验)。

此外尚有分组最小值寿命试验,中止寿命试验等。分组最小值寿命试验是将n个试件分为m个组,各组试件同时试验到1个失效就截止试验,以节省试验时间。中止寿命试验在试验开始时,样本大小为n,随着试验的进行,有些试件中余逐渐截止,这在收集现场数据时,就常发生这种情况。

可靠性中常用的概率分布

np npq

二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。在可靠性工程中,二项分布可用来计算部件相同并行工作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。

可靠性中常用的概率分布

名称记号概率分布及其定义域、参

数条件

均值

E(X)

方差

D(X)

图形

泊松

分布

P(λ)

λλ

泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一随机变量,当这随机变量有如下特点时,X服从泊松分布。特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开始算起无关;特点3:各段时间出现失效与否,是相互独立的。例如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从泊松分布。

可靠性中常用的概率分布

名称记号概率分布及其定义域、参数条件均值

E(X)

方差D(X)图形

超几何分

H(n,M,N)

可靠性中常用的概率分布

名称记号概率分布及其定义

域、参数条件

均值

E(X)

方差

D(X)

图形

正态分布

(高斯分

布)N(μ,σ)

μσ2

正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。它对于因腐蚀、磨损、疲劳而引起的失效分布特别有用。

可靠性中常用的概率分布

名称记号概率分布及其定义

域、参数条件

均值

E(X)

方差

D(X)

图形

均匀分

布u(a.b)

可靠性中常用的概率分布

称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形

威布尔分布:在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以利用概率纸很容易地推断出它的分布参数,

被广泛应用与各种寿命试验的数据处理。

精品文档,欢迎下载使用!

可靠性基本概念

可靠性理论是以产品寿命特征为主要研究对象的一门综合性和边缘性科学,它涉及到基础科学、技术科学和管理科学的许多领域。对于结构可靠性这一学科,从其诞生到现在已经有了长足的发展:从基于概率论的随机可靠性到基于模糊理论的模糊可靠性以及近年来提出的非概率可靠性,使得这一理论日臻丰富和完善,并深入渗透到各个学科和领域。它的应用完善了传统的设计理论,极大地提升了结构和产品的质量,因此一直受到国内外学者的关注。可靠性理论在其发展过程中主要经历了五个时期: (1)萌芽期 可靠性理论早在十九世纪30~40年代已发展起来了。十七世纪初期由伽利略、高斯、泊淞、拉普拉斯等人逐步建立了概率论,奠定了可靠性工程的主要理论基础。十九世纪初布尔尼可夫斯基主编出版了一本概率论教程,同时他的学生马尔可夫建立了随机过程理论和大数定律,成为了维修性的理论基础。1939年瑞典专家威布尔提出了描述材料疲劳强度的威布尔分布。可靠性研究萌芽于飞机失事事件,1939年美国航空委员会出版的《适航性统计学注释》中,提出飞机事故率不应超过105 /h。这里讲的事故率只是未能沿用可靠度的定义而已。 (2)摇篮期 50年代的电子管事件揭开了可靠性研究的序幕。50年代电子真空管的故障率增长迅速。使电子技术进步与失效间的矛盾十分突出。例如1941~1945年第二次世界大战期间,美国空军运往远东的机载电子设备在到达时就有60%已经失效,轰炸机的MTBF(无故障时间)不超过20小时。另外,1945年12月美国制成的第一台电子管计算机,整个计算机共有18000只电子管。但是,平均每33分钟就有一只失效。与此同时,1943年德国火箭专家R.Lusser第一次用概率乘法法则定量算出了V-2火箭诱导装置的可靠度R的值为0.75。第二次世界大战结束以后,美国国防部总结战争教训,提出了一个全新的问题——可靠性,并下令军队有关部门在今后的采购中只选择有可靠性指标的军需品。 (3)奠基期 60年代,美国成为可靠性发展最早的国家。1952年美国国防部成立AGREE 电子设备可靠性顾问团。同年,可靠性顾问团第一次提出了科学的可靠性定义。AGREE组织于1957年写出了一份较为系统的《电子设备可靠性报告》,较完整地

可靠性工程每章基本概念及复习要点知识讲解

复习要点: ?可靠性 ?广义可靠性 ?失效率 ?MTTF(平均寿命) ?MTBF(平均事故间隔) ?维修性 ?有效性 ?修复度 ?最小路集及求解 ?最小割集及求解 ?可靠寿命 ?中位寿命 ?特征寿命 ?研究可靠性的意义 ?可靠性定义中各要素的实际含义 ?浴盆曲线 ?可靠性中常见的分布 ?简述串联系统特性 ?简述并联系统特性 ?简述旁联系统特性 ?简述r/n系统的优势 ?并-串联系统与串-并联系统的可靠性关系 ?马尔可夫过程 ?可靠性设计的重要性 ?建立可靠性模型的一般步骤 ?降额设计的基本原理 ?冗余(余度)设计的基本原理 ?故障树分析优缺点 广义可靠性:包括可靠性、维修性、耐久性、安全性。可靠性:产品在规定时期内规定条件规定的时间完成规定功能能力。耐久性:产品在规定的使用和维修条件下,达到某种技术或经济指标极限时,完成规定功能能力。安全性:产品在一定的功能、时间、成本等制约条件下,使人员和设备蒙受伤害和损失最小的能力 可靠度R(t):产品在规定条件下和规定时间内完成规定功能的概率 累积失效概率F(t):也称不可靠度,产品在规定条件下和规定时间内失效的概率 失效概率密度f(t):产品在包含t的单位时间内发生失效的概率 失效率λ(t):工作到t时刻尚未失效的产品,在该时刻t后的单位时间内发生失效的概率。基本:实验室条件下。应用:考虑到环境,利用,降额和其它因素的实际使用环境条件下。任务:元器件在执行任务期间,即工作条件下的基本 不可修产品平均寿命MTTF:指产品失效前的平均工作时间可修MTBF:指相邻两次故障间的平均工作时间,称为平均无故障工作时间或平均故障间隔时间维修性:在规定的条件下使用的可维修产品,在规定的时间内,按规定的程序和法进行维修时,保持或恢复到能完成规定功能的能力 维修度M(t):是指在规定的条件下使用的产品发生故障后,在规定的时间(0,t)内完成修复的概率。修复率μ(t):修理时间已达到某一时刻但尚未修复的产品在该时刻后的单位时间内完成修理的概率。平均修复时间MTTR:可修复的产品的平均修理时间,其估计值为修复

西工大可靠性设计大作业

机械可靠性设计大作业 题目:扭杆 姓名:刘昀 班号: 05021104 学号: 59 日期:机械可靠性设计大作业 一、题目: 扭杆:圆截面直径D为(μ,σ)=(20,)mm,受扭矩T为(μ,σ)=(677400,),工作循环次数N≥4000,材料疲劳极限S为(μ,σ)=(,)MPa。 二、思路: 给定强度分布与应力有关的随机参数分布条件,确定应力计算公式,计算相应的分布参数,假定各随机变量都服从正态分布。然后根据应力--强度干涉理论计算可靠度,主要考虑载荷的均值与方差两项变化可靠度如何变化,以上要求编程实现。 三、输入的数据:扭矩T的均值与标准差T(μ),T(σ) 四、输出的结果:可靠度R 五、计算的模型:

(1)几何参数(扭杆圆截面直径)D、扭矩T和工作循环次数大于等于4000时的材料疲劳极限,亦即此时的疲劳强度S,均为随机变量且服从正态分布; (2)应力--强度干涉模型: 大多数机电产品的应力和强度都是服从一定统计分布规律的随机变量,我们用L表示应力,S表示强度。它们的概率密度函数f(S)和f(L)两曲线出现部分交叉和重叠,亦即出现干涉时,有可能出现强度小于应力的情况,但可把这种引起失效的概率限制在允许的范围内。在干涉的情况下,我们研究的是如何在保证一定可靠度的前提下,使零件结构简单、重量较轻,价格较低。 对于强度和应力均为正态分布时,我们采用联结方程来计算可靠度,公式如下: SM称为可靠性系数,在已知、、、的条件下,利用上式可直接计算出SM,根据SM从标准正态分布表中查出可靠度R的值。也即: 六、程序流程图

Y 七、算例分析结果说明及结论 (1)程序运行结果 T(μ)↑,T(σ)不变时,可靠度R的变化情况:T(μ) T(σ) R 120677 180677 240677 300677 360677 420677 480677

结构可靠度读书笔记

结构可靠度结课论文 摘要:本文主要从两个方面介绍自己对结构可靠度课程的学习。第一,介绍自己对于结构可靠度基本理论,结构可靠度分析方法(包括一次二阶矩法、二次二阶矩法和结构可靠度数值模拟方法)的理解;第二,论述了结构可靠性理论的发展历史,最后简单阐述了可靠性理论的研究和应用现状,并展望了未来的发展趋势。 一引言 工程结构在设计中需要遵循安全可靠、适用、美观、耐久等方面原则,在其使用期内需要安全可靠的承受各种作用,它们的安全可靠与否不但影响结构正常使用,通常还关系到人身安危。 在工程结构的设计中,当结构总体布置、结构方案和型式已经确定,接下来要进行的就是结构计算,在结构计算中我们对于截面及构件的设计应使所设计结构在设计基准期内经济合理地满足下列要求:1能承受正常施工和正常使用期间可能出现的各种作用(包括荷载及外加变形或约束变形);2在正常使用时具有良好的工作性能;3在正常维修和养护下,具有足够的耐久性;4在偶然事件(如地震、爆炸、龙卷风等)发生时及发生后,能够保持必要的整体稳定性。 结构的安全性、适用性、和耐久性三折总称为结构的可靠性[1]。用来度量可靠性的指标称为可靠度。上述要求的第1、4项,关系到人身财产安全,属于结构的安全性;第2项关系到结构的适用性,第3项关系到结构的耐久性。 二结构可靠度课程学习笔记 2.1影响工程结构可靠性的三种不确定性[2] 2.1.1事物的随机性 事物是随机性是指,事件发生的条件不充分,使得在条件与事件之间不能出现必然的因果关系,从而事件的出现与否表现出不确定性,这种不确定性成为随机性。研究事物随机性问题的数学方法主要有概率论、数理统计和随机过程。

抗原、抗体基本概念

一、抗原、抗体的概念及抗原抗体的关系 (一)抗原(Antigen) 凡能刺激机体产生抗体,并能与抗体发生特异性结合的物质称为抗原。物质所具有的这种特性称为抗原性(Antigenicity)。 (二)抗体 是机体受抗原刺激后,在体液中出现的一种能与相应抗原发生反应的球蛋白,称免疫球蛋白(Immunoglobulin, Ig)。含有免疫球蛋白的血清称免疫血清。 (三)抗原与抗体的关系 抗原是引起机体产生免疫反应的主要外因,决定免疫反应的特异性,机体与抗原物质的斗争过程中为加速循环和排除抗原而产生的抗体、致敏淋巴细胞等物质,是机体排除异体物质的保护性反应。没有抗原的刺激,机体不能产生抗体;没有抗原物质,也无法检测抗体的存在;利用抗体可以检测抗原物质。 二、抗原的性质及种类 (一)抗原的性质 1.异种异体物质机体能对进入体内的异种、异体的大分子物质产生抗体,该物质与机体的种类关系愈远,其抗原性就愈强,机体的免疫反应也更强。例如鸭血清蛋白对鸡的免疫原性较弱,而对家兔则能引起较强的免疫反应。 同种异体物质也可具有抗原性,同种不同个体之间,同一类型的细胞和组织,其抗原性也有差异,例如人的红细胞有ABO血型抗原及Rh型抗原。人类白细胞和其它组织的细胞膜上也具有组织相容性复合物的抗原物质(Man Histocompatibility complex, MHC)。 自身抗原:机体对本身所具有的物质不产生免疫反应。但在某些条件下,使机体某种物质、细胞或组织成分具有抗原性时,也可导致机体产生免疫反应。此具有抗原性的自身物质称自身抗原(Autoantigen),所产生的抗体称为自身抗体(Autoantibody)。如自身组织变性,机体组织或细胞在各种理化因素作用下,引起化学组成的分子排列和构型改变,形成新的抗原决定簇,例如服用安替比林、匹拉米洞等药所致白细胞减少,就是由于所服用药物改变了白细胞的一部分表面化学结构,形成新的抗原决定簇,激活免疫活性细胞产生白细胞抗体(自身抗体),导致白细胞减少症。在外伤、感染和炎症时,可能使隐蔽性抗原如精子、甲状腺球蛋白等释放,引起机体产生免疫反应。 并非异物都是抗原,例如砂尘和一些非生物性高分子聚合物,仅能激发细胞吞噬反应而不能使机体产生抗体或致敏淋巴细胞。 2.大分子胶体凡具有抗原性的物质,分子愈大,抗原性愈强(如细菌、蛋白质)。一般认为抗原分子量愈大,其表面积相应较大,接触免疫细胞机会增多,在体内停留时间较长,不易排除,因而对机体刺激作用也强。一般具有免疫原性的物质,其分子量常在10000以上。对于蛋白质组成的抗原,其分子量小于5000~10000免疫原性很弱或完全没有。但某些低分子量多肽、如胰岛素(分子量5734),升血糖激素(分子量3800),血管紧张素(分子量1031),对某些实验动物还是具有一定的免疫原性。分子量小的物质团聚成的多聚体或吸附于其它胶体(载体)表面,形成大分子表面结构时,如和蛋白质结合,即具有大分子胶体特性,可使小分子物质获得或增强抗原性,如细菌的多糖成分、青霉素等化学药物。 3.抗原的特异性各种抗原物质的化学组成虽然很复杂,但能刺激机体产生抗体并与抗体反应相结合的化学组成,仅仅是抗原物质表面的一些具有活性的化学基因-化学结构及空间构型,称为抗原物质决定簇(基)(Antigenic determinant)。各种抗原物质各有其特异的抗原决定簇,但不同的抗原物质常含有共同的抗原成分,称为类属抗原。在分类上相近的种类之间的同一类蛋白质抗原,可表现出类属抗原关系。多种物质结构的相似性,决定这些物质抗原上的类属关系,而分子结构的差异性,决定各种物质的抗原特异性。 抗原的特异性是临床诊断、预防、治疗的基础。各种特异诊断抗体的制备依靠特异性抗原物质的获得;在不易获得特异性抗原的条件下,可利用类属抗原代替。但在鉴别抗原时,应注意区分类属抗原,以免误诊。 一般认为,环状构型要比直线排列的分子免疫原性强,聚合状态的比单体强。具有大分子量的异物,无论具有何种构型,基本上具有免疫原性。但明胶和核酸免疫原性很弱或无。 免疫原的抗原决定簇是否暴露,抗原决定簇之间的距离是否适当,对于免疫原性强弱亦有很大影响。凡暴露的抗原决定簇的数目多,间距大,免疫原性也就较强。能与抗体分子结合的抗原决定簇的总数,称为抗原的结合价。简单的半抗原一般只能与一个抗体分子结合,是单价抗原。根据抗原分子大小推算,有100个氨基酸的多肽,约有14~20个不重叠的抗原决定簇,即有14~20个抗原结合价。 (二)抗原的种类

可靠性基本概念

可靠性基本概念 Ting Bao was revised on January 6, 20021

可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。

相与组织的相关概念

材料学中的相和组织 铁渗碳体相图中所有的物质都是由渗碳体和铁素体构成;相:是指合金中具有同一聚集状态、同一晶体结构和性;相(phase)体系内部物理和化学性质完全均匀的;(1)相与相之间有界面,各相可以用物理或机械方法;(2)一个相可以是均匀的,但不一定只含一种物质;体系的相数P∶;气体:一般是一个相,如空气组分复杂;液体:视其混溶程度而定,可有1、2、3…个相;固体:有几种物 铁渗碳体相图中所有的物质都是由渗碳体和铁素体构成的,这两个是相,但由于结晶方式的不同,它们两个的形态,相对数量会有所不同,造成宏观上形貌的不同,即构成不同的组织了。如珠光体和莱氏体,它们本质都是由两种相构成,但是比例不同,当然形貌不同,它们就是不同的组织。 相:是指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分;组织:是指合金中有若干相以一定的数量、形状、尺寸组合而成的并且具有独特形态的部分。 相(phase)体系内部物理和化学性质完全均匀的部分称为相。相与相之间在指定条件下有明显的界面,在界面上宏观性质的改变是飞跃式的。体系中相的总数称为相数,用P表示。(1)相与相之间有界面,各相可以用物理或机械方法加以分离,越过界面时性质会发生突变。 (2)一个相可以是均匀的,但不一定只含一种物质。体系的相数P∶ 气体:一般是一个相,如空气组分复杂。液体:视其混溶程度而定,可有1、2、3…个相。固体:有几种物质就有几个相,如水泥生料。但如果是固溶体时为一个相。 固溶体:固态合金中,在一种元素的晶格结构中包含有其它元素的合金相称为固溶体。在固溶体晶格上各组分的化学质点随机分布均匀,其物理性质和化学性质符合相均匀性的要求,因而几个物质间形成的固溶体是一个相。 系统中物理状态、物理性质和化学性质完全均匀的部分称为一个相(phase)。系统里的气体,无论是纯气体还是混合气体,总是一个相。若系统里只有一种液体,无论这种液体是纯物质还是(真)溶液,也总是一个相。若系统中有两种液体,如乙醚与水,中间以液-液界面隔开,为两相系统,考虑到乙醚里溶有少量水,水里也溶有少量乙醚,同样只有两相。同样,不相溶的油和水在一起是两相系统,激烈振荡后油和水形成乳浊液,也仍然是两相(一相叫连续相,另一相叫分散相)。不同固体的混合物,是多相系统,如花岗石(由石英、云母、长石等矿物组成),又如无色透明的金刚石中有少量的黑色的 金刚石,都是多相系统。相和组分不是一个概念,例如,同时存在水蒸气、液态的水和冰的系统是三相系统,尽管这个系统里只有一个组分——水。一般而言,相与相之间存在着光学界面,光由一相进入另一相会发生反射和折射,光在不同的相里行进的速度不同。混合气体或溶液是分子水平的混合物,分子(离子也一样)之间是不存在光学界面的,因而是单相的。不同相的界面不一定都一目了然。更确切地说,相是系统里物理性质完全均匀的部分。 铁碳合金相图中的相有:铁素体、奥氏体、渗碳体三种。铁碳合金相图中的组织有:铁素体、奥氏体、渗碳体、珠光体、莱氏 体、索氏体、托氏体、贝氏体、马氏体、回火马氏体、魏氏组织。其中铁素体、奥氏体、渗碳体三种既是相也是组织,具有双重身份,其他的都是混合物。 如何区分? 1、根据含碳量:铁素体含碳0~0.0218%,奥氏体0~2.11%,渗碳体6.69%, 2、根据冷却速度:珠光体、索氏体、托氏体、贝氏体、马氏体一个比一个冷速快。 3、根据相变反应:珠光体是共析转变产物、莱氏体是共晶转变产物。

《医学免疫学》基本知识汇总及案例分析(完美版)

《医学免疫学》基本知识汇总及案例分析 一、基本概念 1、免疫:免除疾病,对某种疾病具有抵抗力,能识别清除 抗原性物质,维持机体内环境稳态。 2、免疫系统:机体执行免疫应答与免疫功能的一个重要系 统。 3、Cytokine (CK):细胞因子。是由免疫细胞及组织细胞分 泌的在细胞间发挥相互调控作用的一类小分子可溶性多肽 蛋白,通过结合相应受体调节细胞生长分化和效应,调控免 疫应答。 4、免疫球蛋白 (Ig):是血清中一类主要的蛋白,由α1,α2,β和r球蛋白等组成。将具有抗体活性或化学结构与抗 体相似的球蛋白统一命名为免疫球蛋白。 5、黏附分子 (CAM):是介导细胞间或细胞与细胞外基质间相 互结合的分子。 6、抗体:是免疫系统在抗原刺激下,由b淋巴细胞或记忆b 细胞增值分化成的浆细胞所产生的、可与相应抗原发生特异 性结合的免疫球蛋白,主要分布在血清中,也分布于组织液、外分泌液及某些细胞膜表面。 7、抗原:指所有能激活和诱导免疫应答的物质,通常指能被 t,b淋巴细胞表面特异性抗原受体(tcr或bcr)识别及结合,激活t,b细胞增殖分化,产生免疫应答效应产物(特

异性淋巴细胞或抗体),并与效应产物结合,进而发挥适应 性免疫应答效应的物质。 8、Incomplete antigen:不完全抗原,某些小分子物质,其 单独不能诱导免疫应答,即不具备免疫原性,但当其与大分 子蛋白质或非抗原性的多聚赖氨酸等载体交联或结合后可 获得免疫原性,诱导免疫应答。这些小分子物质可与应答效 应产物结合,具备抗原性,称半抗原又称不完全抗原。 9、抗原决定基 (抗原表位):是存在于抗原分子中决定抗原 特异性的特殊化学基团。 10、内源性抗原:指在抗原提呈细胞内新合成的抗原。(如病毒感染细胞合成的病毒蛋白、肿瘤细胞内合成的肿瘤抗原 等,)在胞质内被加工处理为抗原肽,与mhci类分子结合成复合物,提呈于apc表面,被cd8+t细胞的tcr所识别。 11、外源性抗原:指细菌蛋白等外来抗原,其通过胞吞胞饮 和受体介导内吞等作用进入apc,在体内溶酶体中被降解为抗原肽并与mhc二类分子结合为复合物,提呈于apc表面,被cd4+t细胞的tcr所识别。 12、Complement:即补体。是存在于人和脊椎动物血清、组 织液的一组经活化后具有酶活性的蛋白质。 13、异嗜性抗原:指存在于人、动物及微生物等不同种属之 间的共同抗原。 14、调理作用:抗体和补体等调理素能够覆盖于细菌等颗粒

可靠性概念1

第一部分产品可靠性基本概念 编讲杨志飞 1 质量定义 为了某个目的而进行的单项具体工作叫“活动”。活动需要“资源”,资源包括人员、设施、设备、技术、资金和时间。 将输入转化为输出的一组关联的资源和活动称“过程”。 产品:ISO 9000定义为“活动或过程的结果”。产品可包括:硬件、流程性材料、软件、服务或它们的组合;产品可以是有形的(如组件或流程性材料),也可以是无形的(如知识或概念)或是它们的组合;产品可以是预期的(如提供给客户的)或非预期的(如污染物或不愿有的后果)。(国内曾经把产品定义为:是指任何元器件、零部件、组件、设备、分系统或系统,可以指硬件、软件或者两者的结合。) 硬件,是有形的、不连续的、具有特定形状的产品,通常由制造的、建造的和装配的零件、部件或(和)组件组成。 流程性材料,是由固体、气体、液体或由它们的组合所组成,经转换形成的产品(最终产品或中间产品),通常由管道、桶、袋、罐或以卷的形式交付。 软件,是通过支持媒体表达的信息所构成的一种智力创作。 服务,是为满足顾客的需要,供方和顾客之间接触的活动以及供方内部活动产生的结果。 整机:是指产品的部分内涵,即产品中设备以上的部分。 系统:能够完成某项工作任务的设备、人员及技术的组合。一个完整的系统应包括在规定的工作环境下,使系统的工作和保障可以达到自给所需的一切设备、有关的设施、器材、软件、服务和人员。 分系统:在系统中执行一种使用功能的组成部分。如数据处理分系统、制导分系统等。 请注意:组件多数可以看作整机,有时也当作元器件,在高度集成的器件中,往往包含了整机的模块,现代的部件往往也做成组件。因此很难划清它们的界线。 实体,是可以单独描述和考虑的事物,可以是某项活动和过程、某个产品、某个组织、体系或人或他们的任何组合。 特性,是帮助识别和区分各类实体的一种属性。属性包括物理、化学、外观功能或其它可识别的性质。其描述的量叫“特性参数”。 反映实体满足规定和潜在需要能力的特性之和叫“质量”。潜在需要是用户未在合同或定单中明确提出但实质上有的需要。质量是实体的一项最重要的特性,包括:性能、适用性、可信性、安全性、环境、经济性、美学。 可信性,是描述可用性和它的影响因素包括可靠性、维修性、维修保障性的集合性术语。 2故障定义 产品终止最终完成规定功能的能力的事件称“失效”。产品不能执行规定功能的状态叫“故障”。丧失功能的准则叫故障判据。 相对于给定的规定功能,有故障的产品的一种状态叫“故障模式”。形成故障的物理、化学(可能还有生物)变化等内在原因称为“故障机理”。 产品在规定的条件下使用,由于其本身固有的弱点而引起的失效,称为“本质故障”,不按规定条件使用产品而引起的失效称为“误用故障”。产品设计应包括减少误用故障的设计过程。 产品由于制造上的缺陷等原因而发生的故障称为“早期故障”;而由于偶然因素发生的故障称为“偶然故障”,一般在事前不能测试或监控,属于“突然故障”。产品由于老化、磨损、损耗或疲劳等原因引起的故障称为“耗损故障”。通过事前的测试或监控可以预测到的故障称为“渐变故障”。使产品不能完成规定任务或可能导致人或物重大损失的

免疫的概念

免疫的概念 “免疫”一词源于拉丁文,表示“免除瘟疫”的意思,而当时的瘟疫即指各种传染病。 随着现代医学的发展,科学家逐渐发现了许多与免疫反应关系密切的疾病或现象,例如:过敏反应、器官移植排斥、肿瘤的发生发展、自身免疫性疾病等等,它们不能用传统的“抗感染”来解释,甚至根本与感染无关。 随着研究的不断深入,人们对“免疫”有了更全面的认识。 现代免疫的定义是指身体识别“自己”与“非己”物质,并对“非己”物质加以排斥和清除,以维持机体内环境平衡稳定的一种生理性防御反应。 免疫是机体一种保护性的生理功能。 所谓的“非己”物质,可以是从身体外部侵入体内的微生物,也可以是移植到体内的器官、突变的肿瘤细胞等内部所有非正常成分。这就好比一个国家的军队,既要防卫、消灭国外的侵略者,也要监视、抓捕国内的分裂分子,才能维护整个国家的安全。

所以,人体的“免疫”如同国家的“国防”一样重要,是我们赖以生存的基本条件,而掌管和执行这些重要功能的部门就是我们的免疫系统。 免疫防线的构成 第一道防线 是由皮肤和黏膜构成的,它们不仅能够阻挡病原体侵入人体,而且它们的分泌物(如乳酸、脂肪酸、胃酸和酶等)还有杀菌的作用。呼吸道黏膜上有纤毛,可以清除异物。 第二道防线 是体液中的杀菌物质和吞噬细胞,这两道防线是人类在进化过程中逐渐建立起来的天然防御功能,特点是人人生来就有,不针对某一种特定的病原体,对多种病原体都有防御作用,因此叫做非特异性免疫(又称先天性免疫)。多数情况下,这两道防线可以防止病原体对机体的侵袭。 第三道防线

免疫的第三道防线:特异性免疫。主要由免疫器官(胸腺、淋巴结和脾脏等)和免疫细胞(淋巴细胞)组成。其中,淋巴B细胞“负责”体液免疫;淋巴T细胞“负责”细胞免疫(细胞免疫最后往往也须要体液免疫来善后)。第三道防线是人体在出生以后逐渐建立起来的后天防御功能,特点是出生后才产生的,只针对某一特定的病原体或异物起作用,因而叫做特异性免疫(又称后天性免疫)。 后天性的特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。而对变异或其他抗原毫无作用。 第一、二道防线,就好比杀毒软件本身;第三道防线就好比专门的病毒、木马专杀软件。只有三道防线同时、完整、完好发挥免疫作用,我们的身体健康才能更充分的得到保证。

可靠性基本概念(doc 14页)

可靠性基本概念(doc 14页) 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑 可靠性设计主要符号表

可靠性的概念 可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力 产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。在具体使用“产品”这一词时,其确切含义应加以说明。例如汽车板簧、汽车发动机、汽车整车等。 规定条件:一般指的是使用条件,环境条件。包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。 规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。因此以数学形式表示的可靠性各特征量都是时间的函数。这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。例如应力循环次数、汽车行驶里程。 规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。产品丧失规定功能称为失效,对可修复产品通常也称为故障。怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。 能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。 按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。固有可靠性是通过设计、制造赋予产品的可靠性;使用可靠性既受设计、制造的影响,又受使用条件的影响。一般使用可靠性总低于固有可靠性。 可靠度 可靠度是产品在规定条件下和规定时间内,完成规定功能的概率,一般记为R。它是时间的函数,故也记为R(t),称为可靠度函数。

基本组织

基本组织 上皮组织 1、上皮的概念:由许多排列紧密的细胞和少量的细胞间质组成,覆盖于人体的外表面或衬在体内各种管、腔、囊的内表面。 2、上皮组织的特点:细胞排列紧密、细胞间质少。细胞有极性,分游离面和基底面。一般没有血管和淋巴管。有丰富的神经末梢。 3、被覆上皮的分类:单层扁平上皮,单层立方上皮,单层柱状上皮,假复层纤毛柱状上皮,变移上皮,复层扁平上皮 结缔组织 1、结缔组织的特点:1)细胞排列较疏松、细胞间质多。2)细胞间质中有纤维。3)血管丰富、有神经末梢和淋巴管。 2、猪身上的结缔组织? 猪蹄筋坚韧致密的软组织 猪气泡肉疏松如蜂窝 软骨半固体 猪骨坚硬的固体 猪血流动的液体 3、疏松结缔组织的成分及其形态特征: 细胞:1)成纤维细胞:在光镜下,细胞成梭形或扁的星形,有尖细的突起;依附在纤维旁;核为长卵圆形,有1~2个明显的核仁。2)巨噬细胞:在光镜下,固定巨噬细胞多呈星形或梭形,不易与成纤维细胞区分;胞质中常有其吞噬的大小不等、分布不均的异物颗粒,游离巨噬细胞形状多样,细胞界限清楚,细胞边缘有钝圆形突起;胞核常偏于细胞的一端。3)浆细胞:细胞较小;细胞呈圆形或卵圆形,胞质嗜碱性;胞核呈车轮状,常偏于细胞的一侧。4)肥大细胞:细胞较大,呈卵圆形;核小,染色浅;胞质内充满了粗大、均匀的嗜碱性颗粒;肥大细胞常沿小血管和淋巴管分布。 功能:1)成纤维细胞:胞体较大,细胞器丰富。功能活跃,具有合成和分泌胶原纤维、弹性纤维、网状纤维以及基质的功能。2)纤维细胞:胞体较小;胞核小,着色深;细胞器较少。功能处于静止状态。机体创伤时,纤维细胞可转化为成纤维细胞,与大量新生的毛细血管一起构成肉芽组织。成纤维细胞分裂增殖,并大量分泌基质,从而填平伤口。3)巨噬细胞:活跃的吞噬功能。担负机体非特异性的防御功能。吞噬、处理抗原,并将此信息传递给免疫淋巴细胞;受淋巴因子的作用,可有效杀伤细胞内病原体和肿瘤细胞,从而间接或直接参与免疫反应。4)浆细胞:合成分泌蛋白质——免疫球蛋白,即抗体。故浆细胞是体液免疫的效应细胞。5)肥大细胞:肥大细胞受到某些刺激后,可将其颗粒排放至细胞外,即出现脱颗粒现象(引起组织水肿)。可能主要是参与过敏反应。 纤维种类:1)胶原纤维:肉眼观:新鲜时呈白色,发亮,又称白纤维。物理特性:抗拉性极强,韧性大,但无弹性;化学特性:易被蛋白酶消化;亦可水解。形态特点:纤维束较粗,直径1~20微米,着色很浅。2)弹性纤维:肉眼观:呈黄色,又称黄纤维。物理特性:折光性强,富于弹性,韧性小。化学特性:难溶于水;但易被胰液消化。形态特点:纤维较细,直径0.2~1.0微米,分支交错;染色较深暗。3)网状纤维:形态特点:一般染色法不能使之着色,需用镀银法染色。网状纤维细而短,分支多,交织成网。又称嗜银纤维。由于构成它的胶原原纤维超微结构与胶原纤维的完全一致,其化学成分也为胶原蛋白,故认为网状纤维是胶原纤维的前身。 4、血液的组成及其生理功能1)组成:(1) 血浆:把血细胞从血液中分离出来,剩下的黄色液体即为血浆。血浆相当于细胞间质。(2) 有形成分:包括血细胞和血小板。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

工程结构荷载与可靠度设计原理-复习资料

工程结构荷载与可靠度设计原理-复习资料

荷载与结构设计原理总复习题 一、判断题 1.严格地讲,狭义的荷载与直接作用等价,广义的荷载与间接作用等价。(N) 2.狭义的荷载与直接作用等价,广义的荷载与作用等价。(Y) 3.广义的荷载包括直接作用和间接作用。(Y) 4.按照间接作用的定义,温度变化、基础不均匀沉降、风压力、地震等均是间接作用。(N) 5.由于地震、温度变化、基础不均匀沉降、焊接等引起的结构内力变形等效应的因素称为间接作用。(Y) 6.土压力、风压力、水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(N) 7.由于雪荷载是房屋屋面的主要荷载之一,所以基本雪压是针对屋面上积雪荷载定义的。(N) 8.雪重度是一个常量,不随时间和空间的变化而变化。(N) 9.雪重度并非一个常量,它随时间和空间的变化而变化。(N) 10.虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定同时出现。(Y) 11.汽车重力标准是车列荷载和车道荷载,车列荷载是一集中力加一均布荷载的汽车 重力形式。(N) 12.烈度是指某一地区遭受一次地震影响的强弱程度,与震级和震源深度有关,一次地震有多个烈度。(Y) 13.考虑到荷载不可能同时达到最大,所以在实际工程设计时,当出现两个或两个以上荷载时,应采用荷载组合值。(N) 14.当楼面活荷载的影响面积超过一定数值需要对均布活荷载的取值进行折减。(Y) 15.土的侧压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的土压力。(Y) 16.波浪荷载一般根据结构型式不同,分别采用不同的计算方法。(Y) 17.先张法是有粘结的预加力方法,后张法是无粘结的预加力方法。(Y) 18.在同一大气环境中,各类地貌梯度风速不同,地貌越粗糙,梯度风速越小。(N) 19.结构构件抗力R是多个随机变量的函数,且近似服从正态分布。(N) 20.温度作用和变形作用在静定结构中不产生内力,而在超静定结构中产生内力。(Y) 21.结构可靠指标越大,结构失效概率越小,结构越可靠。(Y) 22.朗肯土压力理论中假设挡土墙的墙背竖直、光滑、填土面水平无超载。(Y) 23.在朗肯土压力理论的假设中,墙背与填土之间既无摩擦力也无剪力存在。(Y) 24.在朗肯土压力理论的假设中,墙背与填土之间虽然无摩擦力,但仍有剪力存在。(N) 25.土的自重应力为土自身有效重力在土体中引起的应力。(Y) 26.不但风的作用会引起结构物的共振,水的作用也会引起结构物的共振。(Y) 27.平均风速越大,脉动风的幅值越大,频率越高。(N) 28.风压是指风以一定的速度向前运动受到阻塞时对阻塞物产生的压力。(Y) 29.地震作用中的体波可以分为横波和纵波,两者均可在液体和固体中传播。(N) 30.如果波浪发生破碎的位置距离直墙在半个波长以内,这种破碎波就称为近区破碎

可靠性的基本概念知识

可靠性的基本概念知识 一、可靠性 产品在规定的条件下和规定的时间内,完成规定功能的能力称为可靠性。可靠性的概率度量称为可靠度。这里的产品指的是新版ISO)9000中定义的硬件和流程性材料等有形产品以及软件等无形产品。它可以大到一个系统或设备,也可以小至一个零件。产品终止规定功能就称为失效,也称为故障。产品按从发生失效后是否可以通过维修恢复到规定功能状态,可分为可修复产品和不可修复产品。如汽车属于可修复产品,日光灯管属不可修复产品。习惯上,终止规定功能,对可修复产品称为故障,对不可修复产品称为失效。可靠性定义中的“三个规定”是理解可靠性概念的核心。“规定条件”包括使用时的环境条件和工作条件。产品的可靠性和它所处的条件关系极为密切,同一产品在不同条件下工作表现出不同的可靠性水平。一辆汽车在水泥路面上行驶和在砂石路上行驶同样里程,显然后者故障会多于前者,也就是说使用环境条件越恶劣,产品可靠性越低。“规定时间”和产品可靠性关系也极为密切。可靠性定义中的时间是广义的,除时间外,还可以是里程、次数等。同一辆汽车行驶1万公里时发生故障的可能性肯定比行驶1千公里时发生故障的可能性大。也就是说,工作时间越长,可靠性越低,产品的可靠性和时间的关系呈递减函数关系。“规定的功能”指的是产品规格书中给出的正常工作的性能指标。衡量一个产品可靠性水平时一定要给出故障(失效)判据,比如电视机图像的清晰度低于多少线就判为故障要明确定义,否则会引起争议。因此,在规定产品可靠性指标要求时一定要对规定条件、规定时间和规定功能给予详细具体的说明。如果这些规定不明确,仅给出产品可靠度要求是无法验证的。 产品的可靠性可分为固有可靠性和使用可靠性。固有可靠性是产品在设计、制造中赋予的,是产品的一种固有特性,也是产品的开发者可以控制的。而使用可靠性则是产品在实际使用过程中表现出的一种性能的保持能力的特性,它除了考虑固有可靠性的影响因素之外,还要考虑产品安装、操作使用和维修保障等方面因素的影响。 产品可靠性还可分为基本可靠性和任务可靠性。基本可靠性是产品在规定条件下无故障的持续时间或概率,它反映产品对维修人力的要求。因此在评定产品基本可靠性时应统计产品的所有寿命单位和所有故障,而不局限于发生在任务期间的故障,也不局限于是否危及任务成功的故障。任务可靠性是产品在

组织行为学的基本概念

气质的差异与应用 (一)什么是气质 心理学中所说的气质与日常人们所说的气质不太一样,而近似于人们常说的脾气。气质是人心理活动的动力特点。 它在人参与的不同活动中有近似的表现,而不依赖于活动的内容、动机和目的 气质是个人与神经过程特征相联系的行为特征,主要指一个人在情绪体验和行为反应的强度和速度等方面的特点。 神经过程可以分为兴奋和抑制,不同的个体的这个过程有三方面的特征:1.神经过程的强度,2.神经过程的均衡性;3.神经过程的灵活性。这些特征在不同的人身上有不同的组合表现,形成不同的气质类型。 (二)气质差异——气质类型 根据人高级神经活动的这三个特点将人的气质分为四种类型:胆汁质、多血质、粘液质和抑郁质。 (三)气质差异的应用 1.应用范围 (1)职业要求 某些职业或岗位对人员的气质要求非常高,必须具备某些气质特征。如航天员,外交官等。 教师职业也对气质有一定的要求,如胆汁质或抑郁质显然是不适合做教师的。 (2)人际关系 人际关系也是影响工作效率的,因此,管理人员应了解每一个人的气质,在人事安排上应该考虑不同气质人员的互补,以及在与他们交往时应该注意的人际技巧。 (3)思想教育 在对工作人员进行批评教育时,要考虑因气质差异而运用不同的批评方式。同时鼓励不同气质类型人的努力克服自己的弱点,提高心理素质。 2.应用原则 (1)气质绝对原则 气质是人最稳定的心理特征,是很难改变的,因此一些专业工作要求人员具备某些气质特征。教师是专业人员,其任务是教书育人。目前虽然对教师的气质没有明确的要求,但是教师确实应具有足够的耐心和细心。 (2)气质互补原则 不同气质类型的人组成团体,可以产生互补作用。气质学家研究了气质对群体协同活动的影响,发现两个不同气质或相反气质类型的人的合作,往往会取得更好的成就。这种例子在现实生活中很多,我们的管理者要做有心人,在分配工作时要注意人的气质的协调与互补。 (3)气质发展原则 气质虽然稳定,但并不是不可以改变和控制。气质在实践活动中是可以缓慢地发生变化。例如,加强学习,提高人的修养和自控能力,使气质消极的一面得到制约。同样管理者自己也要认识自己的气质特征,“扬长制短”,使管理水平不断提高。

结构可靠度基本理论

结构可靠度基本理论 摘要:目前,在结构工程领域,人们越来越认识到,只有用概率和统计的方法,才能正确地处理结构设计和分析中存在的大量不确定因素,从而对结构的安全性做出科学的评估。近三十年来,结构可靠性理论得到了迅速的发展。它以概率论和统计学为数学工具,形成了一个相当完整的理论体系,它还发展了许多便于在工程实际中应用的计算方法,为结构安全性评估提供了强有力的手段。 关键词:疲劳失效、可靠度、可靠性指标 长期以来,在船舶与海洋工程领域,对结构的疲劳现象已进行了大量的研究,并在此基础上建立了可供实际应用的疲劳设计与分析方法。通常,结构的疲劳损伤和疲劳寿命采用Miner 线性累计损伤理论和S—N 曲线来计算。近年来,更为先进的断裂力学方法也越来越受到重视,并逐步得到了应用。目前,这两种方法已成为船舶与海洋工程结构疲劳设计与分析的两种相互补充的基本方法。但是,这两种方法以往都是在确定性的意义上使用的,在分析过程中,有关的参数都认为有确定的数值。而事实上,船舶与海洋工程结构的疲劳是一个受到大量因素影响的极其复杂的现象,大多数的影响因素从本质上说是随机的。例如,海洋中的波浪无规则地运动,由此引起结构内的交变应力就是一个随机过程。一艘船或海洋平台,用确定性方法进行疲劳分析时,若有关参数都取均值,那么计算所得的疲劳寿命可能是规定的设计寿命的数倍甚至数十倍。从表面上看,可以认为是充分安全 的。但是,若考虑到各参赛的不确定性,在同样的条件下,疲劳寿命大于 设计寿命的概率却可能很低,实际上并不能满足安全性的要求。

在结构可靠性理论中,各种影响结构安全的不确定因素都用随机变量或随机过程来描述;在充分考虑这些不确定因素的基础上,一个结构安全与否,用该结构在规定服务期内不发生破坏的概率来度量,这一概率称为结构的可靠度。很显然,对于受到大量不确定因素影响的船舶与海洋工程结构的疲劳问题,用结构可靠度理论来加以研究是非常适当的,可以对结构在疲劳方面的安全性做出比用确定性方法更加合理的评估。下面我将从以下几个方面来介绍我学到的结构可靠度基本理论: 极限状态 在工程实际中,结构受载后的响应必须满足一定的要求,例如安全性的要求、适应性的要求,或其他一些衡准。结构的极限状态定义为若超过此状态,结构就不能满足某一特定的要求。结构的极限状态主要有两类:一类是承载能力极限状态,它与结构的安全性要求有关,如屈服、失稳、疲劳、断裂等引起的结构破坏的状态;另一类是正常使用极限状态,它与结构的适应性要求有关,如过度的变形、过度的振动等导致结构不能正常使用的状态。结构超过极限状态称为“失效”,因此极限状态又称为“失效模式” 失效概率和可靠度 结构可靠性分析的任务就是要计算在规定时间内结构超过极限状态的概率,这一概率成为“失效概率”。可把在规定时间内结构不达到极限状态的概率定义为结构的“可靠度”。若用

相关文档
相关文档 最新文档