文档库 最新最全的文档下载
当前位置:文档库 › 代数式的变形与代数式的求值专题训练

代数式的变形与代数式的求值专题训练

代数式的变形与代数式的求值专题训练
代数式的变形与代数式的求值专题训练

代数式的变形与代数式的求值

一、填空题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)

1.在x,1

3

2

3

xy

1

2

x+

1

2

y,xy-2,

a

π

中,单项式有()

A.2个 B.3个 C.4个 D.5个

2.x的5倍与y的差等于()

A.5x-y B.5(x-y) C.x-5y D.x5-y

3.用正方形在日历中任意框出的四个数一定能被()整除

A.3 B.4 C.5 D.6

4.现规定一种运算:a*b=ab+a-b,其中a、b为常数,则2*3+1*4等于()

A.10 B.6 C.14 D.12

5.已知一个凸四边形ABCD的四条边长依次是a、b、c、d,且a2+ab-ac-bc=?0,?b2+bc-bd-cd=0,那么四边形ABCD是()

A.平行四边形 B.矩形 C.菱形 D.梯形

6.若m2x2-2x+n2是一个完全平方式,则mn的值为()

A.1 B.2 C.±1 D.±2

7.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,?另一个亏本20%,在这次买卖中这家商店()

A.赔38元 B.赚了32元 D.不赔不赚 D.赚了8元

8.要使

2

2

9

69

m

m m

-

-+

的值为0,则m的值为()

A.m=3 B.m=-3 C.m=±3 D.不存在

9.已知

2

3

x+

+

2

3x

-

+

2

218

9

x

x

+

-

的值为正整数,则整数x的值为()

A.4 B.5 C.4或5 D.无限个

10.已知有理数a、b满足ab=1,则M=

1

1a

+

+

1

1b

+

,N=

1

a

a

+

+

1

b

b

+

的大小关系是()

A.M>N B.M=N C.M

二、填空题(本大题共8小题,每小题3分,共24分)

11.如果a、b、c为互不相等的实数,且满足关系式b2+c2=2a2+16a+14,bc=a2-4a-5,?那么a的取值范围是______.

12.若单项式-2a2m-1b2与ab n-3的和仍是单项式,则m+n________.

13.x a=4,x b=3,则x a-2b=________.

14.已知a ≠o .

15.已知x+5y=6,则x 2+5xy+30y=_________.

16.已知:

(x-1)(x+1)=x 2-1, (x-1)(x 2+x+1)=x 3-1,

(x-1)(x 3+x 2+x+1)=x 4-1, ……

根据以上规律试写出下题结果: (x-1)(x n +x n-1+x n-2+…+x+1)=________.

17.某商店原价a 元,因需求量大,经营者两次提价,每次提价10%;?后经市场物价调整,

又一次降价20%,降价后这种商品的价格是__________元.

18.观察图2-1,若第1个图形中的阴影部分的面积为1,第2?个图形中的阴影部分面积为34,第3个图形中的阴影部分面积为916,第4个图形中阴影部分的面积为2764,…,?则第n 个图形的阴影部分的面积为_________.

三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分,解答题应写在文字说明、证明过程或演算步骤)

19.利用简便方法计算:(1)20002-2001×1999. (2)9992.

20.化简:(1)

2

2x x +-+2444x x -+÷2x x -; (2

21.已知1x -x=2,求x 2+21x

的值.

22.分解因式:

(1)3(a-b )2+6(b-a ); (2)(x+1)(x+2)+14

. 23.某地电话拨号入网有两种收费方式,用户可任选其一:(A )计时制,0.05元/分;(B )包月制,50元/月(只限一部宅电上网).?此外,?每种上网方式都得加收通讯费0.02元/分.

(1)某用户平均每月上网x 小时,请你帮他计算一下应该选择哪种收费方式合算.

(2)若x=20时,则你帮他选用的收费方式应缴多少钱?

24.小刚做了一道数学题:两个多项式A、B,其中B为4x2-5x-6,试求A+B.?他误将“A+B”看作“A-B”,结果求得的答案是10x-7x2+12,由此你能求出A+B的正确答案吗?

25.扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作:第一步分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步从左边一堆拿出两张,放入中间一堆;第三步从右边一堆拿出一张,放入中间一堆;第四步左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时小明准确地说出了中间一堆牌现有的张数,请你用所学的知识确定中间牌的张数.

代数式恒等变形及答案

代数式恒等变形 A 卷 1、若3265122-+ -+=+--x b x a M x x x ,a 、b 是常数,则( ) A 、M 是一个二次多项式 B 、M 是一个一次多项式 C 、6=++b a M D 、10=-+M b a 答案:C 解答:由已知等式得:()()6522656512222+---+++-+=+--x x b M x b a M Mx x x x ∴()()b M x b a M Mx x 226522--+++-+= ∴?? ???-=--=++-=1 236051b a M b a M M ,解得:??? ??=-==831 b a M 提示:利用待定系数法解决问题。 2、(2002年重庆市初中竞赛题)若012192=+- x x ,则=+441 x x ( ) A 、411 B 、16121 C 、1689 D 、4 27 答案:C 解答:∵0≠x ∴2191= + x x ,411 122=+x x ∴16892112 2244 =-??? ? ?+=+x x x x 提示:本题的关键是利用2112 22 -??? ? ?+=+x x x x 进行化简。 3、(2001年全国初中数学竞赛)若143=-x x ,则552128234+--+x x x x 的值是( ) A 、2 B 、4 C 、6 D 、8 答案:D 解答:∵143=-x x ∴()()8523252434255212833234=+-+=+--+-=+--+x x x x x x x x x x x x 提示:本题利用添项与拆项进行分解整体代入,本题也可以利用已知逐步降次解决问题。

2020年初中数学代数式的变形与代数式的求值练习题

代数式的变形与代数式的求值 (时间:100分钟 分数:100分) 一、填空题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.在x ,13,23xy ,12x+12y ,xy -2,a π 中,单项式有( ) A .2个 B .3个 C .4个 D .5个 2.x 的5倍与y 的差等于( ) A .5x-y B .5(x-y ) C .x-5y D .x 5-y 3.用正方形在日历中任意框出的四个数一定能被( )整除 A .3 B .4 C .5 D .6 4.现规定一种运算:a*b=ab+a-b ,其中a 、b 为常数,则2*3+1*4等于( ) A .10 B .6 C .14 D .12 5.已知一个凸四边形ABCD 的四条边长依次是a 、b 、c 、d ,且a 2+ab-ac-bc=?0,?b 2+bc-bd-cd=0, 那么四边形ABCD 是( ) A .平行四边形 B .矩形 C .菱形 D .梯形 6.若m 2x 2-2x+n 2是一个完全平方式,则mn 的值为( ) A .1 B .2 C .±1 D .±2 7.某商店有两个进价不同的计算器都卖了64元,其中一个赢利60%,?另一个亏本20%,在这次买卖中这家商店( ) A .赔38元 B .赚了32元 D .不赔不赚 D .赚了8元 8.要使22969 m m m --+的值为0,则m 的值为( ) A .m=3 B .m=-3 C .m=±3 D .不存在 9.已知23x ++23x -+22189 x x +-的值为正整数,则整数x 的值为( ) A .4 B .5 C .4或5 D .无限个 10.已知有理数a 、b 满足ab=1,则M=11a ++11b +,N=1a a ++1b b +的大小关系是( ) A .M>N B .M=N C .M

列代数式、代数式求值练习题

用字母表示数(三) 一、列代数式练习题 1、设甲数为x ,用代数式表示乙数。 (1)已数比甲数大5; (2)乙数比甲数的2倍小3; (3)乙数比甲数大16%; (4)乙数比甲数的倒数小7; (5)乙数比甲数的一半小1; (6)甲数比乙数多3; (7)乙数比甲数的倒数小17%; (8)甲、乙两数的平方差; (9)甲数与乙数的倒数的和; (10)甲数除乙数与1的和的商. 2、用代数式表示 (1)比a 小3的数 ;(2)比b 的一半大5的数 ;(3)a 的3倍与b 的2倍的和 ;(4)x 的 与 的差 ;(5)a 与b 的和的60% ;(6)x 与4的平方差(即平方的差) ;(7)a 、b 两数平方和 ;(8)a 、b 两数和的平方 。 3、设甲数为a ,乙数为b ,用代数式表示 (1)甲乙两数的和的2倍 ;(2)甲数的平方与乙数的立方的差 ;(3)甲、乙两数的平方和 ;(4)甲乙两数的和与甲两数的差的积 ;(5)甲与乙的2倍的和 ;(6)甲数的与乙数差的平方 ;(7)甲、乙两数和的平方 ;(8)甲乙两数的和与甲乙两数的积的差 。 4、填空题: (1)一支圆珠笔 a 元,5 支圆珠笔共_____元。(2)“a 的 3 倍与 b 的的和”用代数式表示为______。 (3)比 a 的 2 倍小 3 的数是_____。 (4)某商品原价为 a 元,打 7 折后的价格为______元。 (5)一个圆的半径为 r ,则这个圆的面积为_______。(6)(7)代数式 x 2-y 的意义是_______________。 (8)一个两位数,个位上的数字是为 a ,十位上的数字为 b ,则这个两位数是_______。 (9)若 n 为整数,则奇数可表示为_____。(10)设某数为 a ,则比某数大 30% 的数是_____。 (11)被 3 除商为 n 余 1 的数是___。(12)校园里刚栽下一棵 1.8m 的高的小树苗,以后每年长 0.3m 。则n 年后的树高是__ m 二、代数式的求值 1.当2,3==b a 时,求下列代数式的值: (1)a b +; (2)a b -; (3)22a b -。 2. 当2,2 1 -== b a 时,求下列代数式的值: (1)2)(b a -; (2)22a b +-; (3)22b a +。 3、当2,3-==b a 时,求下列代数式的值: (1)33b a -; (2)22b a -。 4、已知:a =12,b =3,求 的值。 5、当 x =-,y =-,求 4x 2-y 的值。 6、已知:a +b =4,ab =1,求 2a +3ab +2b 的值。 7、若代数式22+-x x 的值为5,则2222+-x x 的值是多少? 7、已知2 1+2 2+23+24+…+2 n = 6 1(n+1)(2n+1) ①求2 1+22+23+24+…+250的值; ②求2 26+2 27+2 28+2 29…+2 50的值;③求2 2+2 4+26+28+…+2 50的值。 8、 已知:ab a =≠-11,,求 1111+++a b 的值。 9、当6 1 ,31==b a 时,求代数式2)(b a -的值 6、当m=2,n= –5时,求n m -22的值 10.在有理数的原有运算法则中,我们补充新运算法则 “* ”如下:当a ≥b 时,2*a b b =;当a < b 时,*a b a =.则

初中奥数恒等变形知识点及习题2019

初中奥数恒等变形知识点及习题2019 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个. 反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r 例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立

设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6 再设x=2,代入①,因为已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得出

初中奥数恒等变形知识点归纳整理.pdf

初中奥数恒等变形知识点归纳整理 恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数 值,这两个代数式的值都相等,就说这两个代数式恒等. 表示两个代数式恒等的等式叫做恒等式. 如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式. 将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换). 以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种 形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变. 如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法. 1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的. 如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项). 2.通过一系列的恒等变形,证明两个多项式是恒等的. 如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立. x2+3x+2=(x-1)2+b(x-1)+c ① 解一:∵①是恒等式,对x的任意数值,等式都成立 设x=1,代入①,得 12+3×1+2=(1-1)2+b(1-1)+c c=6

再设x=2,代入①,因为已得c=6,故有 22+3×2+2=(2-1)2+b(2-1)+6 b=5 ∴x2+3x+2=(x-1)2+5(x-1)+6 解二:将右边展开 x2+3x+2=(x-1)2+b(x-1)+c =x2-2x+1+bx-b+c =x2+(b-2)x+(1-b+c) 比较两边同次项的系数,得 由②得b=5 将b=5代入③得 1-5+c=2 c=6 ∴x2+3x+2=(x-1)2+5(x-1)+6 这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.

“代数式求值的常用方法”专题辅导

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中a =,b =. 解:由a = ,b =得,1a b ab +==. ∴原式()()22()()()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴ ()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------= ===-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的

200道代数式的恒等变形练习题

代数式的恒等变形 1.已知x 2+y 2+z 2-2x+4y-6z+14=O ,则(x-y-z)2009= 2.设x ,y 满足(x-1)3+2004y=1002,(y-1)3+2004x=3006,则x+y= . 3.分解因式:1)()(22++-+b a b a ab = 6.已知m 、n 为整数,且满足2m 2 + n 2 +3m + n - 1 = 0. 则m + n= 9.在△ABC 中,BC=a ,AC=b ,AB=c ,且满足a 4+b 4+21 c 4=a 2c 2+b 2c 2.则△ABC 的形状是 . 10.若ax+by=7,ax 2+by 2=49,ax 3+by 3=133,ax 4+by 4=406,则()()17 199562x y xy a b ++-+= . 11.已知非零实数a 、b 、c 满足a 2+b 2+c 2=1,111111 ()()()3+++++=-a b c b c a c a b , 则a+b+c= . 12.若x ,y 是实数,且m=x 2-4xy+6y 2-4x-4y ,则m 的最小值为 .

13.已知17b a -=,2124a a +=,则b a a - 14.已知a ,b ,c 都是整数,且24a b -=, 210ab c +-=,求a b c ++= 15.实数x 、y 、z 满足:2+=y x ,012222=++z xy ,求x y z ++= 16. a 、b 、c 为三角形的三条边长,满足 ac 2+b 2c-b 3 =abc .若三角形的一个内角为100°,则三角形的另两个角之差的正弦等于 17.若a 、b 、C 为实数,222,1,3a b c a b c a b c >>++=++=,则b c +的取值范围是 18.已知xyz=1,x+y+z=2,x 2+y 2+z 2=16.则111222xy z yz x zx y ++=+++ 19.已知x 、y 为正整数,且满足2x 2+3y 2=4x 2y 2+1.则x 2+y 2= 20.已知y x z z y x x z y y x z z y x x z y -+-+=-+-+=++-+=p .则p 3+p 2+p= . 21.若正数m ,n 满足 43,+=m n = . 22.已知a+b=8,ab=c 2 +16,则a+2b+3c= . 23.已知x 、y 满足22524x y x y ++=+,则代数式xy x y +的值为 . 24.若2x y -=,224x y +=,则20042004x y +的值是 。

1—1代数式的恒等变换方法与技巧

1—1 代数式的恒等变换方法与技巧 一、代数式恒等的一般概念 定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。字母的所有允许值组成的集合称为这个代数式的定义域。对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。 定义2 如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。 两个代数式恒等的概念是相对的。同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但 x =,在x≥0时成立,但在x<0时不成立。因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。 定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。 代数式的变形,可能引起定义域的变化。如lgx 2的定义域是(,0)(0,)-∞+∞U ,2lgx 的定义域是 (0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。由lgx 2变形为2lgx 时, 定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。 例1:设p x =有实根的充要条件,并求出所有实根。 由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。这样可避免增根和遣根的出现。 解: 原方程等价于222(0,0 x p x x x ?-=-??-≥≥?? 2 22222 (4)4448(2)441330440,0p x x p p x x x x p x ?-=??=+--?????≤≤?≤ ???? ≥??+-≤≥?? ? 222(4)8(2) 44,043p x p p x x ?-=??-??-?≤≤≥?? 由上式知,原方程有实根,当且仅当p 满足条件24(4)44 048(2)33 p p p p --≤≤?≤≤- 这说明原方程有实根的充要条件是4 03p ≤≤ 。这时,原方程有惟一实根x =。 二、恒等变换的方法与技巧 恒等变换的目的是使问题变得简单,便于求解。因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。 1.分类变换 当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。分类变换方法适用于式的化简与方程(组)的化简、求解。

代数式的变形竞赛题

代数式的变形(整式与分式) 在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍. 1.配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2. 例2 设x、y、z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求的值. 解将条件化简成 2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3 如果a是x2-3x+1=0的根,试求的值. 解∵a为x2-3x+1=0的根, ∴ a2-3a+1=0,,且=1. 原式 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明令p=m-a,q=m-b,r=m-c则 p+q+r=0. P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0 ∴p3+q3+r3-3pqr=0

人教版数学七年级上册第二章 整式的加减 代数式求值专项练习

代数式求值 一、选择题. 1、若a=36,b=?29,c=?116,则?a+b?c的值为(D ) A. 181 B. 123 C. 99 D. 51 2、若x是2的相反数,|y|=3,则x?y的值是(D) A. ?5 B. 1 C. ?5或1 D. 1或?5 3、已知|x|=2,|y|=3,且xy>0,则x?y的值等于(B) A. 5或?5 B. 1或?1 C. 5或1 D. ?5或?1 4、已知|x|=4,|y|=1 2,且x

代数式的恒等变形

代数式的恒等变形 一、常值代换求值法——“1”的妙用 例1 、 已知ab=1,求2 211 11b a +++的值 [解] 把ab=1代入,得 22 11 11b a +++ =22 b ab ab a ab ab +++ =b a a b a b ++ + =1 例2 、已知xyzt=1,求下面代数式的值: 分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变. 解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同. 同理 练习:1 111,1=++++++++=c ca c b b c b a ab a abc 证明:若 二、配方法 例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b + 之值。 [解] ∵a2b2+a2+b2-4ab+1 =(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴?? ?==-.1,0ab b a 解得?? ?==;1,1b a ?? ?-=-=.1,1b a 当a=1,b=1时,b a a b + =1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 例1 设a 、b 、 c 、 d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数 的平方和,其形式是______. 解mn=(a2+b2)(c2+d2) =a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2

初一代数式的变形整式与分式

[文件] sxjsck0009 .doc [科目] 数学 [关键词] 初一/代数式/整式/分式 [标题] 代数式的变形(整式与分式) [内容] 代数式的变形(整式与分式) 在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍. 1. 配方 在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题. 例1 (1986年全国初中竞赛题)设a 、b 、c 、d 都是整数,且m=a 2+b 2,n=c 2+d 2,mn 也可以表示成两个整数的 平方和,其形式是______. 解mn=(a 2+b 2)(c 2+d 2) =a 2c 2+2abcd+b 2d 2+a 2d 2+b 2c 2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2, 所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2. 例2(1984年重庆初中竞赛题)设x 、y 、z 为实数,且 (y-z)2+(x-y)2+(z-x)2 =(y+z-2x)2+(z+x-2y)2+(x+y-2z)2. 求)1)(1)(1() 1)(1)(1(222++++++z y x xy zx yz 的值. 解 将条件化简成 2x 2+2y 2+2z 2-2xy-2x 2-2yz=0 ∴(x-y)2+(x-z)2+(y-z)2=0 ∴x=y=z,∴原式=1. 2.因式分解 前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子. 例3(1987年北京初二数学竞赛题)如果a 是x 2-3x+1=0的根,试求 1825222 345+-+-a a a a a 的值. 解 ∵a 为x 2-3x+1=0的根, ∴ a 2-3a+1=0,,且132+a a =1. 原式. 1131 3)32)(13(22 232-=+-=+-+++-=a a a a a a a a a 说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算. 3.换元 换元使复杂的问题变得简洁明了. 例4 设a+b+c=3m,求证: (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0. 证明 令p=m-a,q=m-b,r=m-c 则

培优专题5 代数式的化简和求值(含答案)-

培优专题5 代数式的化简和求值 用数值代替代数式里的字母,按照代数式里指明的运算计算出的结果,就叫代数式的值,经常利用代数式的值进行比较、推断代数式所反映的规律. 在求代数式的值时,我们经常先将代数式化简,再代入数值计算,从而到达简化计算的目的.在化简代数式时常用到去括号法则、合并同类项法则、绝对值的意义及分类讨论的思想等. 例1已知x<-3,化简│3+│2-│1+x│││. 分析这是一个含有多层绝对值符号的问题,可以从里到外一层一层地去绝对值符号. 解:∵x<-3,∴1+x<0,3+x<0 原式=│3+│2+(1+x)││ =│3+│3+x││ =│3-(3+x)│ =│-x│=-x. 练习1 1.化简:3x2y-[2xy2-2(xy-3 2 x2y)+xy]+3xy2. 2.当x<-2时,化简|1|1|| 2 x x +- - . 3.化简:│3x+1│+│2x-1│.

例2 设(2x-1)5=a5x5+a4x4+a33x+a22x+a1x+a0, 求:(1)a1+a2+a3+a4+a5+a6的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值.分析可以取x的特殊值. 解:(1)当x=1时, 等式左边=(2×1-1)5=1, 等式右边=a5+a4+a3+a2+a1+a0, ∴a0+a1+a2+a3+a4+a5=1.① (2)当x=-1时, 等式左边=[2×(-1)-1]5=-243, 等式右边=-a5+a4-a3+a2-a1+a0 ∴a0-a1+a2-a3+a4-a5=-243.② (3)①+②得, 2a0+2a2+2a2=-242. ∴a0+a2+a4=-121. 练习2 1.当x=2时,代数式ax3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于_________. 2.某同学求代数式10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x+1,当x=-1时的值时,? 该生由于将式子中某一项前的“+”号误看成“-”号,算得代数式的值为7,那么这位同学看错了几次项前的符号? 3.已知y=ax7+bx5+cx3+dx+e,其中a、b、c、d、e为常数,当x=2时,y=23;当x=-2时,y=-35;那么e的值为(). A.-6 B.6 C.-12 D.12

整式恒等变形

第8讲整式恒等变形 模块一恒等变形→降幂迭代与换元 基础夯实 题型一降幂迭代法与大除法 【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________. 【练1】(1990年第一届希望杯初二第一试) 已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.

题型二 整体代入消元法 【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值. 【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值. 题型三 换元法 强化挑战 【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2. 【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()() ()()()222111111yz zx xy x y z ++++++的值. 模块二 恒等变形→因式分解与不定方程 题型一 因式分解 基础夯实 【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________. (2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________. 【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________. (2)已知15x 2-47xy +28y 2=0,求x y 的值. 强化挑战 【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c . 【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .

2代数式恒等变形

代数式的恒等变形 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫做代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,代数式的基本变形有配方、因式分解、换元、设参、拆项与逐步合并等方法。下面结合例题介绍恒等式证明中的一些常用方法与技巧. 一.设参数法 如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.如果题中的已知条件是以连比形式出现,可引入参数k ,用它表示连比的比值,以便把它们分割成几个等式. 例1.已知x y z a b b c c a == ---,求x+y+z 的值。 例2.已知 ()() 23a b b c c a a b b c c a +++==---,a ,b ,c 互不相等, 求证:8a+9b+5c=0. 二.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例3.已知x+y+z=xyz ,证明: x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz .

初中数学竞赛专项训练之代数式、恒等式、恒等变形附答案

初中数学竞赛专项训练之代数式、恒等式、恒等变形 一、选择题:下面各题的选项中,只有一项是正确的,请将正确选项的代号填在括号内。 1、某商店经销一批衬衣,进价为每件m 元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是 ( ) A. m(1+a%)(1-b%)元 B. m·a%(1-b%)元 C. m(1+a%)b%元 D. m(1+a%b%)元 2、如果a 、b 、c 是非零实数,且a+b+c=0,那么||||||||abc abc c c b b a a +++的所有可能的值为 ( ) A. 0 B. 1或-1 C. 2或-2 D. 0或-2 3、在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B =60°,则b c a b a c ++ +的值为 ( ) A. 2 1 B. 2 2 C. 1 D. 2 4、设a <b <0,a 2+b 2=4ab ,则b a b a -+的值为 ( ) A. 3 B. 6 C. 2 D. 3 5、已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) A. 0 B. 1 C. 2 D. 3 6、设a 、b 、c 为实数,2 26 23 2222 π π π + -=+ -=+-=a c z c b y b a x ,,,则x 、y 、z 中,至少有一个值 ( ) A. 大于0 B. 等于0 C. 不大于0 D. 小于0 7、已知abc ≠0,且a+b+c =0,则代数式ab c ca b bc a 2 22+ +的值是 ( ) A. 3 B. 2 C. 1 D. 0 8、若13649832 2 ++-+-=y x y xy x M (x 、y 是实数),则M 的值一定是 ( ) A. 正数 B. 负数 C. 零 D. 整数 二、填空题 1、某商品的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降价的百分数)不得超过d%,则d 可用p 表示为_____ 2、已知-1<a <0,化简4)1(4)1(22+-+-+a a a a 得_______

初中代数式求值练习题

代数式求值 合并同类项 化简求值 1、当x=2时,求代数式-3x 2+5x-0.5x 2+x-1的值 2、当p=3,q=3时,求代数式8p 2-7q+6q-7p 2-7的值。 3、当x=-5时,求代数式6x+2x 2-3x+2x+1的值 4、当x=2,y=-3时,求代数式4x 2+3xy-x 2-9的值 5、当m=6,n=2时,求代数式31m-23n-65n-61 m 的值 6、当m=5,p=31,q=-23 时,求代数 式3pq-5 4 m-4pq 的值 7、当x=-2时,求代数式 9x+6x 2-3(x-3 2 x 2)的值 8、当x=2 1 时,求代数式 41(-4x 2+2x-8)-(21 x-1)的值 9、当a=-1,b=1时,求代数式 (5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)的值 10、当a=-2,b=2时,求代数式 2(a 2b+ab 2)-2(a 2b-1)-2ab 2-2的值

11、当x=- 2 1 ,y=-1时,求代数式2x 2y+1的值 12、当x=-2时,求代数 式x+x 1 的值 13、当x=-1,y=-2时,求代数式2xy+3x 2y-6xy-4x 2y 的值 14、当m=5,p=31,q=-2 3 时,求代数式 3pq-54 m-4pq+m 的值 15、当m 2-mn=1,4mn-3n 2=-2时,求代数式m 2+3mn-3n 2的值 16、当x=-1,y=-2时,求代数式3-2xy+3yx 2+6xy-4x 2y 的值 17、当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值 18、当x=2004,y=-1时,求代数式 A=x 2-xy+y 2,B=-x 2+2xy+y 2 ,A+B 的值 19、当a=5时,求代数式(6a+2a 2+1)-(a 2-3a)的值

分式的恒等变形(一)

分式的恒等变形(一) (1)已知2202010a a -+=,则代数式2220202403911a a a -+++的值是__________。 【答案】由已知可得12020a a + =,原式()212202012120202019a a a a =-+++=-++= (2)已知2410a a ++=,则代数式42321912192a a a a a ++++的值是__________。 【答案】由已知可得14a a +=-,22114a a +=,原式22119333211219a a a a + +===++ (3)已知4x y +=-,12xy =-,则1111 y x x y +++++的值是__________。 【答案】由已知可得2240x y +=,原式()()()()()()22 11402423411412115y x x y ++++?-+===-++-+-+ (4)已知4ab x a b = +,则2222x a x b x a x b +++--的值是__________。 【答案】由已知可得()4ab a b x =+, 原式()()()()()()()()() 222222222228222224x a x b x b x a x a b x x ab x a x b x a b x ab x a b x +-++--+-====---++-+ (5)已知612ab a b bc b c ?=??-??=?-?,则ac a c -的值是_________。 【答案】取倒数后两式相加得 14a c ac -=,所以4ac a c =- (6)解方程: ()()()()()111333669218 x x x x x x x ++=++++++ 【答案】裂项相消,111339218x x x ??-= ?++??,解得2x =

代数式求值经典题型(含详细答案)

代数式求值 经典题型 【编著】黄勇权 经典题型: 1、x+x 1 =3,求代数式 x 2 -2 x 1的值。 2、已知a+b=3ab ,求代数式b 1 a 1+的值。 3、已知 x 2 -5x+1=0,求代数式x 1x +的值。 4、已知x-y=3,求代数式(x+1) 2 -2x+y (y-2x )的值。 5、已知x-y=2,xy=3,求代数式x 2 -xy 6+y 2的值。 6、已知y x =2,则x y -x 的值是多少?

7、若2y 1x 1=+,求代数式:3y xy -3x y 3xy -x ++的值。 8、已知5-x =4y-4-y 2,则代数式2x-3+4y 的值 是多少? 9、化简求值,12x x 1-x 2 ++÷)(1x 2 1+-, 其中x=13- 10、x 2-4x+1=0,求代数式:x 2 +2 x 1 的值。 【答案】 1、x+x 1 =3,求代数式:x 2 -2 x 1的值。 解:x 2 -2 x 1 =(x+x 1)(x-x 1 ) =(x+x 1 )2x 1-x )( =(x+x 1 )2 2x 12x +- =(x+x 1)4x 12x 2 2 -++ =(x+x 1)4x 1x 2 -+)( 将 x+x 1 =3 代入式中

=3×432- =35 2、已知a+b=3ab ,求代数式:b 1 a 1+的值。 解:b 1 a 1+ =ab b a + 将a+b=3ab 代入式中 =3 3、已知x 2 -5x+1=0,求代数式:x 1 x +的值。 解:因x 2 -5x+1=0, 等式两边同时除以x 则有:x 0 x 1x x 5x x 2=+- 化简得:x-5+x 1 =0 把-5移到等号的右边,得: x 1 x +=5

(完整)初中数学竞赛因式分解专题

初中数学竞赛专题——因式分解 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

相关文档
相关文档 最新文档