文档库 最新最全的文档下载
当前位置:文档库 › 漂莱特树脂去除水中盐的作用

漂莱特树脂去除水中盐的作用

漂莱特树脂去除水中盐的作用
漂莱特树脂去除水中盐的作用

漂莱特树脂去除水中盐的作用

混合床系统是通过阴离子和阳离子英国漂莱特树脂上的各种各样的阴离子和阳离子的排水量传统超纯水处理设备,阴离子和阳离子交换树脂的比例不同的搭配可以阳床离子交换系统,离子交换阴床系统和混合床离子交换系统和混合床系统通常用于反渗透水处理技术,如超纯水的一部分后,高纯水终端技术,他是目前用于超纯水的制备高纯水不能取代的手段之一。可广泛应用于电子、电器、超纯水生产设备,化工、电镀超纯水生产设备,锅炉补给水和药品与超纯水生产设备和其他工业超纯水、高纯水制备。

英国漂莱特树脂

离子交换树脂系统工作原理

采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:

1、阳离子交换树脂:R—H+Na+ R—Na+H+

2、阴离子交换树脂:R—OH+Cl- R—Cl+OH-

阳、阴离子交换树脂总的反应式即可写成:RH+ROH+NaCl——RNa+RCL+H2O

由此可看出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。

英国漂莱特树脂优点

1、出水水质优良:一般用强酸、强碱树脂装填的混合床,出水含盐量在1mg/L以下,电导率小于0.06~0.2mg/L左右,出水pH值接近中性。

2、出水水质稳定:短时间运行条件变化(如进水水质或组分、运行流速等)对混床出水水质影响不大。

3、间断运行对出水水质的影响小,恢复到停运前水质所需的时间比较短,一般只要3~5分钟。

4、交换终点明显:混床在失效前,出水电导率上升很快,这有利于失效监督。

先用清水冲洗树脂,然后用4 ~ 5%盐酸和氢氧化钠,反过来交替浸在交换柱2 ~ 4小时,用大量的水之间的酸和碱浸出与水接近中性,重复2 ~ 3次,每次2倍树脂酸和碱用量的大小。持续4 ~ 5%盐酸溶液处理应用程序,把酸与中性水浸出。这是惯例在混床树脂再生,具体设备的具体实践。

什么是软化水

什么是软化水?原理是什么? [size=4]本设备是利用钠离子交换剂进行工作的。钠离子交换剂是工业锅炉最常用的离子交换剂,当原水经过离子交换剂是,水中的钙、镁离子被钠离子所置换。 与原水中的碳酸盐硬度作用时: 2NaR + Ca(HCO3)2 === CaR2 + 2NaHCO3 2NaR + Mg(HCO3)2 === MgR2 + 2NaHCO3 与原水中的非碳酸盐硬度作用时: 2NaR + CaSO4 === CaR2 + Na2SO4 2NaR + CaCl2 === CaR2 + 2NaCl 2NaR + MgSO4 === MgR2 + Na2SO4 2NaR + MgCl2 === M gR2 + 2NaCl 经钠离子交换后,水中的钙、镁盐类都变成钠盐,因此,除去了水中的硬度。原水中的碳酸氢盐碱度(暂时硬度)均转变为钠盐硬度(NaHCO3),所以,钠离子交换只能软化水,但不能除碱,即经钠离子交换前后的水的碱度保持不变。 由于Na+的摩尔质量要比1/2Ca+、1/2Mg+的摩尔质量大,故经过钠离子交换后,在水中的含量稍有增加。经过钠离子交换的软水,还残留少量硬度一般在0.03~0.1mmol以下。 钠离子交换剂与原水经过交换作用后,其钠离子逐渐被钙、镁离子所置换而失去其软化能力。此时要进行反洗,将交换剂翻松,并将上面的泥渣污物等冲出,然后用还原液通过失效的交换剂,使其恢复软化能力。再用正洗清除残余的还原液及还原生成物后可再进行软化处理。如交换剂为磺化煤,则要用浓度为百分之5—8的食盐(NaCl)溶液进行还原(或称再生),即再用Na把交换剂中的Ca、Mg置换出来。其反应式为: 2NaCl + CaR2 ==== 2NaR + CaCl2 2NaCl + MgR2 ==== 2NaR + MgCl2 本设备采用的离子交换剂是钠型离子交换树脂。当将水由上部通入交换剂时,水中钙离子首先遇到处于表面层的交换剂,与钠离子进行交换。所以这层交换剂通水后总是很快就失效了。此后水再通过时就不与表面层交换剂进行交换,交换作用就渗透到处于下一层的交换剂。交换器的运行,实质上是其中交换剂工作层自上而下不断移动的过程。 设备的常用单位换算:(1) CaCO3的克当量为50,即1克当量CaCO3的质量为50g; 1毫克当量/升 = 50毫克/升 (2)总交换容量(克当量)= 树脂体积X 1000; (3)总制水量= 总交换容量(克当量)÷ 原水硬度(毫克当量/升); (4)周期盐耗(公斤)= 总交换容量(克当量)X (0.08—0.1)公斤/(克当量); (5)盐阀盐液高度设定: 盐液浓度为28—23℅ 周期再生所需盐液量= (周期盐耗÷0.32)÷ 1000 盐阀高度(米)= 盐液量÷ (3.14 X 盐箱半径的2次方) 周期再生所需盐液量(L)= 周期盐耗÷0.32 盐阀高度(cm)= 10 X 盐液量(L)÷ (3.14 X 盐箱半径的2次方) 漂莱特阳树脂(阳床、软化专用)C100E 0.8万/吨 漂莱特阴树脂(阴床专用) A600 2.2万/吨 漂莱特阳树脂(混床专用) C100MB 0.97万/吨 漂莱特阴树脂(混床专用) A600MB 2.5万/吨

盐胁迫下水稻种子发芽特性及耐盐性评价

盐胁迫下水稻种子发芽特性及耐盐性评价 摘要在0g/L、6g/L、9g/L、12g/L、15g/L等5个NaCl单盐浓度下,对北方滨海稻区11个推广水稻品种进行了发芽率处理试验,结果表明:发芽率、芽长、根长、根数均随盐浓度升高而呈下降趋势。垦稻95-4芽期耐盐能力最高,为强耐盐品种,辽农21芽期耐盐能力最低。 关键词盐;水稻;发芽;耐盐性 盐碱土壤是制约农业生产的重要因素,目前我国盐碱土地面积约0.37亿公顷,面积相当于现有耕地的1/4。水稻属于不耐盐的甜土作物,而北方滨海盐碱地区土壤含盐量高,近几年由于淡水资源的严重短缺,极大地限制了水稻生产。培育耐盐品种,加快该区水稻发展,是当前盐碱地种稻面临的主要问题之一。如何从现有的优良水稻种质资源中筛选出耐盐强的品种,为耐盐育种提供亲本材料或直接应用于生产,对盐碱地的开发利用是最经济而行之有效的手段。该试验用不同浓度的NaCl单盐溶液处理不同粳稻品种,对供试品种的发芽特性进行了综合评价,为耐盐种质筛选及水稻生产提供了理论依据。 1试验材料与方法 1.1试验材料 目前供试品种为北方盐碱稻区推广的11个水稻品种,分别为津原45、津原47(天津市原种场),辽农21、辽粳28(辽宁省农科院水稻所),盐丰47-8、辽盐98、盐粳68(辽宁省盐碱地所),冀粳14、垦育16、垦优2000、垦稻95-4(河北省农科院滨海所)。 1.2试验方法 采用NaCl单盐溶液进行种子处理,NaCl浓度分别为0g/L(CK)、6g/L、9g/L、12g/L、15g/L 5个处理。将种子置于50℃恒温箱中高温处理48h,随机挑选饱满种子50粒,均匀置于铺有2层滤纸的直径9cm培养皿中,分别加入不同浓度的NaCl溶液10mL,2次重复,放入30℃恒温箱中发芽,至第10天记录种子发芽数。

耐盐性高吸水性树脂的研究进展

2003 -62? 现代化工 ModemCheII.icalIndustw 第23卷增刊 2003年 利盐牲高吸水牲榭脂硇研夯进展 曹丽琴徐世美封顺王吉德 (新疆大学化学与化I学院,新疆鸟鲁木齐830046) 摘要:评莲了改善高吸水性树脂耐盐性所采用的多种方法,包括耐盐非离子型亲水基和耐盐交联荆以及耐盐离子基团的引入.高吸术性树脂与无机水凝眭、离子变欹树脂的共混等。指出今后应改进台成方法与工艺,蜘采用固相合成、模板合成方法及盘式合成工艺,选择新的引发体系,利用物理方法如。co及微波进行照射引发。此外,还应重视耐盐机理的研究。 关键词:高暖水性树脂;耐盐性;接枝共聚 中圈分类号:田317立献标识码:^文章缩号:02”一4320(2003)sl一0062—03 Pr(曙嘲sofsalt-tole啪tsIIp盯absorbent耻slns cA0厶一却,盖u鼽i-榭i,删髓“n,册uvC^-出 (couegeofchemig时肌dcheⅢic丑lEn画needng,Xinji肌gunive乃畸.U珊q;830046,C|Iilla)AbstHct:ManymetllodBt0i。叩IDveⅡ”8Bhtole瑚tabdity“叫p盯止舯rbent聪8i珊a忙review耐,jncl讪Ilg llle舢Tlg0flI-e删?saltIIon.ioI血hydm出licg。oup,枷一sahcro鸫Hnked89衄b且工ld州一BaIIionio缈up,肌dⅡ忙m试雌oftlle8uP盱ab一∞rbentresinwi血in讲g矗Ⅱi。gdaIldjon_exch叫ge瑚inItisindicaledtll砒the如tllm咖dyBlloIlldbeconcenhtedonimPmvi“gtheprepa枷o“process姻andtechllol0盯iⅡchlding吐le础dpha8e岬Ⅱ仲sis,Ⅱ砖tcmphte8y。l血衄i8,舳weⅡ聃山edbk竹petecI-nok科;砌ecdIlgnewre丑cdoninitiator8ys把ms,珊iI-gpbyBicalme血0d8鲫ch酗∞ComdiB60Ⅱ且T-d山eⅡlicrowaveimdia60nme山od.Funh唧。陀,Ⅱle柏ll幻1emntInechallism幽oIddk画veⅡmo陀眦州on K卵肿rds:sup盯丑b帅由ent陀Bin;g‘anpolymed洲on;“ttnlerant 高吸水性树脂是一种新型功能高分子材料,已广泛用于医疗卫生、建筑、农林园艺、土壤改良以及石油化工和环境保护等众多领域Llj。尤其是目前在我国西部地区,发展滴水灌溉技术,配套应用高吸水性树脂,可减少灌溉水的消耗,降低植物死亡率,提高土壤肥力,提高植物生长速度。尽管高吸水性树脂可吸收自身质量几百倍甚至几千倍的水,但当水中含盐时,其吸水率降到原来的2%一10%【2J,而高吸水性树脂的使用环境一般都有盐类存在,如土壤、尿、血等动物和人体体液,因此提高其耐盐性对其作用的发挥有着极其重要的意义。 一般认为高吸水性树脂吸水机理是因其吸水后形成水凝胶而产生的多孔网状结构,以及亲水基的张网作用而导致的渗透功能L3“J,盐的存在使聚合物链同性斥力减弱,也使离子浓度梯度减少,造成吸水率显著下降。然而,目前对于高吸水性树脂的耐盐性研究并不多,且集中在丙烯酸类接枝耐盐性非离子型亲水基,其他方法报道相对较少。 1引入非离子型亲水基 传统的羧基亲水基吸水量高,吸水速度快,但耐盐性差.相比而言,非离子型亲水基,如羟基、酰胺基等虽在吸水量上较为逊色,但可降低聚合物分子对盐的敏感性,从而达到耐盐目的。 1.1共聚与接枝共聚法 将丙烯酸与2种非离子型单体即丙烯酰胺(AM)和丙烯酸羟乙酯(HEMA)用水溶液共聚法制成交联型P(AM—NaAA—lⅢMA)三元共聚高吸水性树脂l。“,吸盐水(0.9%Nacl溶液,下同)88g/g,吸去离子水达1000g/g。 考虑到生物降解性能,顾凯等”1以淀粉、部分中和的丙烯酸(钠)和丙烯酰胺为主要原料,采用分步法聚台制得高吸水性树脂,该法只需反应1~2h,产品吸水率为3000倍,吸盐水率为140倍。 收稿日期:2003一01一町;修回日期:2003—05一08 作者筒介:曹丽琴(1975一),女,硕士生;王吉德(1958一).男,博士,教授,从事应用化学研究.通讯联系人,∞91—85828∞,aw蛐刚@巧ued…n。

漂莱特软水树脂产水周期及再生效果说明

漂莱特软水树脂产水周期及再生效果说明 软水树脂的使用寿命一般在5年左右,关键是看进水水质。实际运行当中,影响软化树脂寿命的主要因素有以下几点:化学、生物、有机物污染,如进水含油,过高的金属氧化物等。 软水树脂 树脂受原水影响的主要原因为: A、原水管路一般为碳钢管道,水与管路发生氧化反应,生成铁离子,进入树脂后,随运行时间的延长,树脂的功能交换基团下降,其表现为耗盐量高,再生水质差。 B、树脂反复再生:由于树脂的长时间频繁再生,每次再生时,树脂间都做相互擦洗运动,受水压及树脂间的机械磨损,树脂的交联值(机械强度)逐渐下降,骨架变形,运行中其表现为出水有时为黄褐色,产水周期明显缩短,再生效果不理想。 软化树脂再生耗盐量情况分析 理论上说,树脂再生耗盐量跟进水硬度是没有关系的,只跟树脂的工作交换容量有关。以001*7阳树脂为例,001*7阳树脂的工作交换容量一般为 800moI/立方。经过交换失效后,每立方树脂再生需要的盐量为:800*1.5*58.5/850=82.5公斤(1.5为比盐耗,850为食盐纯度乘1000,58.5为氯化钠分子量)。

比盐耗跟设备及再生工艺有关,流动床的比盐耗一般为15.-2.0,固定床一般为1.2-1.5.因此用固定床相对来说用盐少一些用盐量是否经济应该按处理一吨水需要的盐量来衡量,处理一吨水的合理耗盐量是这样计算的:原水硬度(mmoI/L)*比盐耗*58.5/850。 如果用盐量超过上式的计算值,则可能是以下原因: 1、设备设计或再生工艺不合理 2、树脂中毒 3、操作不当 软水器一般用钠型阳离子交换树脂,树脂交换饱和后用食盐再生。如果是全自动软化水设备,软化水设备会自动启动吸盐再生,这时要保证再生箱中盐分的含量,要及时添加盐,以免再生时树脂失效,影响软化水设备的效果。使用几年后树脂破碎程度越来越严重,逐渐失去软化能力。

作物耐盐性研究

作物耐盐性状研究进展 ?l耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗 透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增 高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作 用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。 作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土, 把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多 的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧 清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表 示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2耐盐性的鉴定技术和指标

耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌 发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的 对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目 前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓 度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程 中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以 克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的 盐分稀释,保持低水平。 拒盐植物的抗盐机理

软化水树脂工作交换容量的比值说明

软化水树脂工作交换容量的比值说明 树脂再生在水处理中起着至关重要的作用。有几方面影响因素,比如说再生剂纯度、用量等。所以我们要确定最优的再生剂纯度和用量。 再生剂纯度 一般认为盐酸的再生效果优于硫酸,硫酸再生成本低于盐酸。再生剂的纯度高,杂质含量少,树脂的再生程度就高,特别是对漂莱特软化树脂影响更大。 再生剂用量 再生剂用量是影响再生的重要因素,其概念是单位体积树脂所用的再生剂的量,单位为kg/m3(树脂)或g/L(树脂)。另外常用的一个指标是再生剂比耗,它是指投入的再生剂的量与所获得树脂的工作交换容量的比值。还有一种表示法即再生剂耗量,是预计取得单位工作交换容量所需纯再生剂量,单位g/mol。 提高再生剂的用量,可以提高PUROLITE树脂的再生程度,但再生剂比耗增加到一定程度之后,再生程度的提高则不明显。再生剂用量与离子交换树脂的性质有关,一般强型树脂所需再生剂用量高于弱型树脂。不同的再生方式,再生剂用量也有所不同,一般顺流再生的再生剂用量要高于逆流再生的。软化树脂再生方式采用顺流时,由于再生液首先接触到的是上部完全失效的树脂,所以这一部分树脂得到了很好的再生。当再生液再往下流与交换器底部树脂接触时,再生液中已经积累了大量被置换出来的离子,严重影响了交换树脂的再生程度,使这部分树脂没有得到充分的再生,影响了出水水质。如果要提高这部分树脂的再生程度,就要增加再生剂的用量。 软化漂莱特A600树脂再生方式采用逆流时,由于交换器底部树脂总是和新鲜的再生剂相接触,所以可以达到很高的再生程度,运行时水最后和这部分再生程度高的树脂接触,保证了出水水质。采用逆流再生时,哈尔滨水处理设备交换器上部树脂再生程度差,虽然它首先与进水接触,但由于水中从树脂交换下来离子含量少,所以还是可以进行离子交换的,这部分树脂的交换容量仍可以得到充分的发挥。 因此像这样提高漂莱特软化水再生剂纯度和用量是我们必须好好控制的一项重要内容。把握好这几项,才能让软化水树脂的作用得到充分发挥。

水稻耐盐

中科院专家成功克隆水稻耐盐相关数 量性状基因 SKC1定位克隆图 中国科学院上海生科院植物生理生态所植物分子遗传国家重点实验室林鸿宣研究员及其博士生任仲海、高继平等,与美国加州大学伯克利分校栾升教授及其助手李乐攻博士进行合作,在水稻重要农艺性状功能基因研究上取得突破性进展,成功克隆了与水稻耐盐相关的数量性状基因SKC1,并阐明了该基因的生物学功能和作用机理。相关论文已发表于国际顶级遗传学杂志《自然-遗传学》(Nature Genetics)。 林鸿宣研究员领导的研究组,多年来潜心于水稻耐盐数量性状基因的克隆研究,并取得了突破,成功克隆了盐胁迫下控制水稻地上部钾/钠离子含量的数量性状基因SKC1。该基因编码离子转运蛋白,耐盐品种与感盐品种之间存在四个氨基酸替换的自然变异,这是引起SKC1基因功能变化的分子基础。功能分析结果表明,该基因与离子长距离运输有关,控制盐胁迫下水稻地上部的钾/钠离子平衡,即维持高钾/低钠的离子平衡,从而增加水稻的耐盐性。为了更深入探明该基因的功能,林鸿宣研究员与栾升教授领导的两个研究组合作开展了SKC1的电生理功能分析研究,发现SKC1编码的蛋白是钠离子的特异性转运蛋白而不直接运输钾离子,钾离子含量的变化是由于钠离子竞争引起的;该蛋白定位于细胞膜上,在耐盐水稻品种中其功能活性明显强于感盐品种。 该研究得到国家科技部“十五”重大专项、国家自然科学基金委、上海市科学技术委员会和沪港安信分子生物科

学研究基金等的资助。“水稻高产等重要农艺性状相关功能基因研究”重大专项主要负责人之一、中国科学院国家基因研究中心主任韩斌研究员指出,由于我国近几年来对水稻功能基因组研究的大力支持,以及科学家们的不懈努力,我国在该领域取得了世界瞩目的成果。林鸿宣研究员及其合作者对水稻耐盐相关数量性状基因的克隆和功能研究是我国水稻重要功能基因研究所取得的突出成果之一,具有重要的学术意义和广泛的应用前景。

高吸水树脂及其耐盐性研究

高吸水树脂及其耐盐性研究 摘要高吸水性树脂是一种新型高分子材料,在各行各业中都有广泛的应用,在实际应用中,高吸水树脂所吸的都是含盐的水,而盐对高吸水树脂的吸水率又有很大的影响,因此研究高吸水树脂的耐盐性有很大的实际意义,文章介绍了高吸水树脂的吸水机理,盐对高吸水树脂的影响及影响高吸水树脂耐盐性的因素,重点研究了耐盐性改进的几种方法,并对高吸水树脂的未来发展趋势做出展望。 关键词高吸水树脂;耐盐性;吸水率;吸水机理 高吸水性树脂又称为超强吸水剂,是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。与传统的吸水材料(如纸、棉、海绵等)相比,高吸水性树脂具有吸水容量大、吸水速度快、保水能力强等优越性能,广泛应用于农业、园林、建筑、涂料、石油化工医、疗卫生及环境保护等领域。 1高吸水树脂的吸水机理 高吸水性树脂由于是一个交联的三维网络结构,所以其吸水过程是高聚物的溶胀过程,一个比较复杂的过程。目前,较为通用的离子网络理论认为,高吸水树脂在水中,水分子氢键与高吸水树脂的亲水基团作用,离子型的亲水基团遇水开始离解,阴离子固定于高分子链上,阳离子为可移动离子,随着亲水基团的进一步离解,阴离子数目增多,离子间的静电斥力增大使树脂网络扩张,同时为了维护电中性,阳离子不能向外部溶剂扩散,导致可移动阳离子在树脂网络内的浓度增大,网络内外的渗透压随之增加,水分子进一步渗入。随着吸水量的增大网络内外的离子浓度差逐渐减少,渗透压差趋于零,同时随着网络扩张其弹性收缩力也在增加,逐渐抵消阴离子的静电斥力,最终达到吸水平衡。 2盐对高吸水树脂吸水倍率的影响 高吸水树脂吸水倍率受盐的影响很大,如吸收纯水可达400倍~600倍的聚丙烯酸盐系吸水树脂,吸自来水为250倍~350倍,生理盐水40倍~60倍,人工海水7倍~l0倍。盐浓度越高其吸水倍率越低。耐盐性可分为两个方面,即对钠盐,钾盐等碱金属盐的耐盐性(称作耐碱金属盐性)和对钙盐、镁盐,铝盐等多价金属盐的耐盐性(称为耐多价金属盐性)。一般的耐盐性多指前者。两者给吸水性树脂造成的影响不同,而多价金属盐对吸水性树脂的破坏性较大。 3高吸水树脂耐盐性改进方法 由吸水原理可知,影响树脂吸水能力的因素很多,主要有交联密度、结构组成、溶液性质、表面形态、制备方法等。改善吸水树脂耐盐性能的主要方法有以下几种。

作物耐盐性状研究综述

作物耐盐性状研究进展 I耐盐性含义和耐盐机制种类 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。有活性氧清除系统的植物通过SOD超氧化物歧化酶)、POD 过氧化物酶)、CAT(过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~ 0.5%时就已对植物生长不利,而盐土表层 含盐量往往可达0.6%?10% 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCI浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 2耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。 3对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的

泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体外。 稀盐:形态学上的适应:茎或叶的肉质化.碱蓬(黄须菜)茎或叶的薄壁细胞组织大量增生,细胞数目增多,体积增大,可以吸收和储存大量水分,既可以克服植物在盐渍条件下由于吸水困难造成的水分不足,又可将吸收到体内的盐分稀释,保持低水平。 拒盐植物的抗盐机理 拒盐:不让外界盐分进入植物体(大麦)或允许土壤中的盐分进入 根部,但进入根部后大部分储存在根部,不再向地上部分运输,使地上部分盐分浓度保持较低水平,从而避免盐分的伤害作用。如芦苇 脯氨酸是最重要和有效的有机渗透调节物质。 几乎所有的逆境,如干旱、低温、高温、冰冻、盐渍、低pH 营养不良、病害、大气污染等都会造成植物体内脯氨酸的累积,尤其干旱胁迫时脯氨酸累积最多,可比处理开始时含量高几十倍甚至几百倍。 脯氨酸在抗逆中有两个作用: 是作为渗透调节物质,用来保持原生质与环境的渗透平衡。它可与胞内一些化合物形成聚合物,类似亲水胶体,以防止水分散失。 二是保持膜结构的完整性。脯氨酸与蛋白质相互作用能增加蛋白质的可溶性和减少可溶性蛋白的沉淀,增强蛋白质的水合作用。

植物耐盐性研究进展3

第5卷第3期北华大学学报(自然科学版)Vol.5No.3 2004年6月JOURNAL OF BEIHUA UN IV ERSIT Y(Natural Science)J un.2004 文章编号:100924822(2004)0320257207 植物耐盐性研究进展 于海武1,李 莹2 (1.北京林业大学生物科学与技术学院,北京 100083;2.北华大学林学院,吉林吉林 132013) 摘要:综述了植物的耐盐机理和植物耐盐育种的研究情况,讨论了耐盐基因工程研究中存在的一些问题,并重点对现有植物的耐盐性筛选和抗渗透胁迫基因工程中的诱导渗透调节剂合成做了论述. 关键词:耐盐性;耐盐机理;基因工程;渗透调节剂 中图分类号:S332.6 文献标识码:A  盐碱土是陆地上分布广泛的一种土壤类型,约占陆地总面积的25%.在我国,从滨海到内陆,从低地到高原都分布着不同类型的盐碱土壤[1],我国盐碱土的总面积约有3000多万hm2,其中已开垦的有600多万hm2,还有2000多万hm2盐荒地等待开垦利用[1].此外,全国约有600多万hm2,约占耕地总面积10%的次生盐渍化土壤.盐碱土主要分布在平原地区,地形平坦,土层深厚,一般都有较丰富的地下水源,对发展农业生产,尤其对于实现农业机械化、水利化极为有利,是一类潜力很大的土壤资源.目前,人们主要通过2种方式来利用盐碱地:1是通过合理的排灌、淡水洗涤、施用化学改良药剂来改造土壤[2],为植物创造有利的生长环境.实践证明,这种方法成本高,效果也不理想;2是选育和培育耐盐植物品种来适应盐渍环境并最终达到改善环境的目的,此方法更加具有应用前景. 1 植物的耐盐机理 植物耐盐性差别很大.根据植物耐盐能力的不同,可将植物分成非盐生和盐生植物2类.赵可夫等又将盐生植物分为3类:真盐生植物、泌盐盐生植物和假盐生植物[1].目前大部分的耐盐性研究工作都是以真盐生植物为基础开展的,所以对它的耐盐机理也就研究得比较多.近年来,在筛选和培育耐盐细胞系、转移渗透调节剂合成基因、合理利用盐诱导基因等方面都开展了许多研究工作,并取得了一些成果.许多研究表明:植物要适应盐渍化的生境,必须具备克服盐离子毒害(离子胁迫)和抵抗低水势(渗透胁迫)的能力,否则就无法生存[3,4].马建华等认为:植物在高盐土壤中主要先受到水分胁迫,而后就是离子胁迫[5].所以在耐盐机理中人们对离子区隔化和渗透调节做了相对较多的研究. 1.1 离子区隔化 许多真盐生植物通过调节离子的吸收和区隔化来抵抗或减轻盐胁迫.在植物体内积累过多的盐离子就会给细胞内的酶类造成伤害,干扰细胞的正常代谢.研究表明,盐胁迫条件下,植物细胞中积累的大部分无机离子被运输并贮藏在液泡中,使得植物因为渗透势降低而吸收水分,同时,避免了过量的无机离子对代谢造成的伤害,这就是离子的区隔化.在耐盐植物和非耐盐植物中都存在离子区隔化,这说明离子区隔化可能是植物所普遍具有的能力[6].盐的区隔化作用主要是依赖位于膜上的“泵”实现离子跨膜运输完成的[7,8].这种运输系统需要A TP酶,A TP水解产生能量将H+“泵”到液泡膜外,造成质子电化学梯度,驱动钠离子的跨膜运输,从而实现盐离子的区隔化.Na+积累于液泡维持了细胞质中较低的Na+/K+比例也是植物耐盐的特点之一[9]. 收稿日期:2003212204 基金项目:国家“973”计划项目(G1999016005) 作者简介:于海武(1977-),男,在读硕士,主要从事杨树抗逆性育种研究.

作物耐盐性研究

作物耐盐性研究 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在%~%时就已对植物生长不利,而盐土表层含盐量往往可达%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼

苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。 。 2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。 群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究

影响软水树脂再生方式及再生剂纯度说明

影响软水树脂再生方式及再生剂纯度说明 树脂再生在水处理中起着至关重要的作用。有几方面影响因素,比如说再生剂纯度、用量等。所以我们要确定最优的再生剂纯度和用量。 再生剂纯度 一般认为盐酸的再生效果优于硫酸,硫酸再生成本低于盐酸。再生剂的纯度高,杂质含量少,树脂的再生程度就高,特别是对漂莱特软化树脂影响更大。 再生剂用量 再生剂用量是影响再生的重要因素,其概念是单位体积树脂所用的再生剂的量,单位为kg/m3(树脂)或g/L(树脂)。另外常用的一个指标是再生剂比耗,它是指投入的再生剂的量与所获得树脂的工作交换容量的比值。还有一种表示法即再生剂耗量,是预计取得单位工作交换容量所需纯再生剂量,单位g/mol。 提高再生剂的用量,可以提高PUROLITE树脂的再生程度,但再生剂比耗增加到一定程度之后,再生程度的提高则不明显。再生剂用量与离子交换树脂的性质有关,一般强型树脂所需再生剂用量高于弱型树脂。不同的再生方式,再生剂用量也有所不同,一般顺流再生的再生剂用量要高于逆流再生的。软化树脂再生方式采用顺流时,由于再生液首先接触到的是上部完全失效的树脂,所以这一部分树脂得到了很好的再生。当再生液再往下流与交换器底部树脂接触时,再生液中已经积累了大量被置换出来的离子,严重影响了交换树脂的再生程度,使这部分树脂没有得到充分的再生,影响了出水水质。如果要提高这部分树脂的再生程度,就要增加再生剂的用量。 软化漂莱特A600树脂再生方式采用逆流时,由于交换器底部树脂总是和新鲜的再生剂相接触,所以可以达到很高的再生程度,运行时水最后和这部分再生程度高的树脂接触,保证了出水水质。采用逆流再生时,哈尔滨水处理设备交换器上部树脂再生程度差,虽然它首先与进水接触,但由于水中从树脂交换下来离子含量少,所以还是可以进行离子交换的,这部分树脂的交换容量仍可以得到充分的发挥。 因此像这样提高漂莱特软化水再生剂纯度和用量是我们必须好好控制的一项重要内容。把握好这几项,才能让软化水树脂的作用得到充分发挥。

作物耐盐性研究

作物耐盐性状研究进展 l 耐盐性含义和耐盐机制种类 由于土壤中可溶性盐类过量对作物造成的盐害,称为盐害或盐胁迫,包括渗透胁迫和离子效应两种类型。前者由于土壤中可溶性盐过多,土壤渗透势增高而水势降低,造成作物的吸水困难,即生理干旱;后者由于离子的拮抗作用,吸收盐类过多而排斥了对另一些营养元素的吸收,影响正常的代谢作用。作物对盐害的耐性称为耐盐性,把碳酸钠与碳酸氢钠为主的土壤称为碱土,把氯化钠与硫酸钠为主的土壤称为盐土,实际上难以绝对划分,把盐分过多的土壤称为盐碱土,简称盐土,相应的对耐盐碱性称为耐盐性[1]。 耐盐机制可分为6种:拒盐型、聚盐型、泌盐型、稀盐型、避盐型、活性氧清除等[2]。⑥有活性氧清除系统的植物通过SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT (过氧化氢酶)将活性氧清除出去,免受盐胁迫 一般盐土含盐量在0.2%~0.5%时就已对植物生长不利,而盐土表层含盐量往往可达0.6%~10%。 丙二醛时植物器官在逆境条件下发生膜脂过氧化作用的产物,可用于表示植物对逆境条件反应的强弱,从实验中也可证明小麦幼苗叶片中MDA含量随NaCl浓度的增加而增加,说明高浓度盐对植物生长产生了严重的伤害。

2 耐盐性的鉴定技术和指标 耐盐鉴定技术有直接鉴定法,如发芽鉴定(发芽率、发芽势)、形态鉴定(出苗率、盐害级别、苗期死叶率、相对生长量)和产量鉴定等;间接法有脯氨酸、甜菜碱、糖醇、多胺物质、钠钾离子含量的测定和酶活性的测定以及花粉萌发试验等。按照耐盐试验的地点分为水培、盐池、重盐碱大田。耐盐实验的对象又可分为群体、个体和单株和细胞。品种耐盐指标:耐盐系数、耐盐力(生物耐盐力、农业耐盐力)[4]。群体耐盐指标:发芽率、发芽势、盐害指数、成活苗率、相对成活苗率。目前,国内学术界一般把土壤基质含盐量达0.4%作为棉花耐盐鉴定的通用浓度[5]。叶武威等[6]采用盐池鉴定法,统计各材料在施盐10 d后(3叶期)的相对成活苗率(以生长点活为标准)来判断棉花的耐盐性,将棉花的耐盐性分为4级,即不耐(0-49.9%)、耐(50.0%一74.9%)、抗(75.0%一89.9%)、高抗(>90%)。 3 对耐盐机制的研究 泌盐是盐生植物适应盐渍环境的一条重要途径----滨藜、柽柳.盐腺的泌盐机理,是一个主动的生理过程。此类植物的叶片和茎部的表皮细胞在发育过程中分化成盐腺,通过盐腺把吸收到体内的盐分排出体

盐碱土现状及植物耐盐性研究的意义

1 盐碱土现状及植物耐盐性研究的意义 盐碱土是民间对盐土和碱土的统称。土壤含盐量在0.1%-0.2%以上,或者土壤胶体吸附一定数量的交换性钠,碱化度在15%-20%以上,对作物的正常生长产生严重影响,这样的土属于盐碱土,盐碱土又称盐渍土。在亚洲、非洲和北美西部地区有不同程度的分布,是一种重要的土地资源。按照形成原因,盐碱土包括原生盐渍化土地和次生盐渍土。据不完全统计,全世界大约有9.5亿公顷盐碱地[1-2]。由于世界范围内环境问题日益加剧,未经处理的工业废水乱排,工业垃圾废料不规范的堆积,世界范围内乱砍滥伐普遍存在,原始森林和原始湿地破坏严重,全球气候日趋异常;在农业生产中,节水农业尚未普及,大水漫灌等浇灌方式依然流行,在许多发展中国家,为了增加片面增加土地的单位面积产量,不合理的使用化肥,诸多自然或人为因素,导致世界范围内的次生盐渍土地日益增多,农业的可持续发展受到严重抑制[3-6]。中国的盐碱地主要分布在华北、东北和西北的内陆干旱、半干旱地区,东部沿海的滨海地区也有分布。世界人口逐年增多,可供耕地则因人为的不合理利用以及自然灾害频发而日渐减少,人均可耕地面积更是呈直线下降。然而,与此同时,世界范围内大面积的盐碱地仍未得到有效的利用。对盐碱地的综合开发利用日益走入人们的视野,人们试图从农业、化学、生物等方向对盐碱土地进行开发利用。依据改良措施的不同,对于盐碱地的开发利用可以取得不同的效果。改良盐土可以通过排水、洗盐等措施,或用种植绿肥、施有机肥或种水稻等农作物对其盐进行改良。这些方法对盐碱土的改良虽然有一定的效果,但是效果不稳定,并且在实践应用中,大量的人力、物力以及财力的投入无形中极大增加了该项措施的成本[7]。这种方法治标却不能治本。通过引种盐土植物,培育新的耐盐品种,利用盐生植物对盐碱土壤的改良作用,这种方式称为生物措施。生物措施可以将盐碱土中的盐分、离子富集在植物体中,从而从根本上解决盐碱土上植物无法正常生长的现状,选择适当的经济作物,既可以获得可观的经济效益,还能绿化环境,获得生态效益。 由于盐渍化会降低作物的发芽率,普通作物在盐碱条件下难以生长存活,因此耐盐碱作物的引进及品种的培育,成为当前研究的热点[8]。种植植物可以增加盐碱地的植被覆盖面积,减少土壤水分蒸发,降低土壤盐分;另外利用某些植物

阳离子交换树脂长期使用情况及活化处理

阳离子交换树脂长期使用情况及活化处理 阳离子交换树脂在长期使用中易受悬浮物质、胶体物质、有机物、细菌、藻类和铁、锰等的污染,使离子交换能力降低甚至失去。因此,漂莱特树脂再生需根据情况对树脂进行不定期的活化处理。如需长时间保存阳离子交换树脂,就要注意以下十点: 阳离子交换树脂长期使用易受悬浮物、胶体、有机物、细菌、藻类、和铁、锰和其它污染,减少离子交换容量甚至丢失。因此,应根据树脂不规则的活化处理的情况。如果你需要长时间保存阳离子交换树脂,必须注意以下十个: 1)阳离子交换树脂的贮存温度应该在5-40℃之间。阳离子交换树脂应贮存在密封容器内,避免受冷或曝晒。若冬季没有防冻设施时,可将树脂贮于食盐水中,食盐水的浓度可根据气温而定。树脂一旦受冻,不要突然转到高温环境,要放到5-10℃低温环境中,让其缓慢解冻。 2)阳离子交换树脂内含有一定量地水份,在储运及应用过程中应保持这部分水份。如不慎树脂失水,应先用浓食盐水(约10%)浸泡,再逐渐稀释,不得直接加水,以免树脂急剧膨胀而破碎。 3)树脂在长期贮存中,强型树脂应转成盐型,弱型树脂应转成氢型或游离碱型,然后浸泡在清净的水中。 4)树脂贮存期为2年,超过2年复检合格方可使用。 5)在使用和贮运过程中,严防树脂被有机油类污染。 6)阳树脂预处理:将树脂用水洗至流出清水后,用2-4%NaOH浸泡4-8 小时再用水洗至中性,再用5%盐酸浸泡4-8小时,用水洗至pH6,待用。 7)阴树脂的预处理:树脂用水洗流出水,用5%盐酸浸泡4到8小时,pH6用水洗,用2-4%氢氧化钠浸泡4到8小时,用水洗pH7-9,备用。 8)D301Ⅲ、D301树脂预处理的弱碱性:树脂用温水浸泡4到8小时,pH6用水洗,用2-4%氢氧化钠浸泡4到8小时,用水洗中立,可能的二次加工,备用。 9)树脂用于制药工业、食品工业、请根据特殊要求进行处理。 10)根据不同的使用过程中,用户可以设计所需的树脂的离子。

软水机的几种树脂

软水机树脂 美国陶氏化学公司是世界上唯一一家同时拥有膜和离子交换树脂两大类分离技术和产品的公司。 陶氏树脂产品及技术DOWEX 离子交换树脂提供了树脂性能的更高标准,八十年代陶氏化学在世界上首先开发出凝胶型均粒树脂,是目前唯一能同时生产凝胶和大孔均粒树脂的供应商,品种有200多种。 陶氏树脂产品的特点: 陶氏化学离子交换树脂具有更好的动力学性能,有更高的交换容量和运行流速,使再生时的废水量大幅下降,树脂颗粒更均匀,更易再生,冲洗速度快,离子泄漏率低,强度更高不易破损,树脂年补充量极低,使最终用户制水成本大幅降低。 陶氏树脂产品的应用: 凝结水精处理工业给水处理( 软化水及高纯水制备) 核电厂水处理 超纯水制备甜味剂除灰、脱色及色谱分离其他特种分离和化学反应 陶氏MONOSPHERE* UPW 超纯水级均粒树脂,是专门为半导体、高性能显示器和微电子行业对超纯水的严格要求而设计生产的,陶氏超纯水级均粒树脂具有如下显著的特点: ? 极高的再生转型率; ? 超纯水出水最低的离子和金属残留特性; ? 最低的TOC 溶出物; ? 超纯水混床树脂仅需4 倍床层体积的冲洗便能使出水达到18.3M??cm ; ? 树脂颗粒无裂纹率>95% ; ? 高度耐磨性,防止使用过程中出现破碎; ? 卓越的机械完整性。 这类树脂适用于超纯水或其它相当要求应用领域中的初级除盐和精制抛光除盐,适用于复床和混床。陶氏化学的这种高性能超纯水级树脂在超纯水系统中的使用量比其它所有品牌的总和还要多,几十年来,在国内外众多的著名微电子公司和晶元制造商一直成功地使用着陶氏的这类高性能超纯水级树脂,其出水水质更高更稳定,冲洗更快,压降更低,使用寿命特别长,补充量特别少,运行成本最低。 产品 树脂比例 骨架 官能团 DOWEX MONOSPHERE* MR-450 UPW 见注苯乙烯-DVB 凝胶型 磺酸+季胺 保证的参数

一吨一级RO+混床

1T/hr一级RO+混床 方 案 书

一、项目说明 1.1 前言 提供一套1m3/h反渗透+混床工艺制取高纯水系统设计方案。 1.2 要求及系统设计依据 原水水质:暂缺 反渗透脱盐率:>98% 反渗透出力:1m3/h(25℃) 出水水质要求:电导率≤0.1us/cm ,电阻率≥10MΩ.CM。 出水验收界面:混床产水口 设备交接界面:原水水箱进口侧至去离子水送水泵后终端滤器出水口 1.3 系统具体情况介绍 系统产水用途: 系统总出水量:反渗透用水水量平均值为1吨/小时,供水压力2-3巴 反渗透(R.O)系统回收率:≥70%;混床产水量为生产500吨去离子水以上为一混床再生周期(即电阻率大于10MΩ.CM)。 系统运行班次:连续运行。 供水方式:连续供水,供水量为1.5m3/h。 操作方式:系统采用PLC可编程自动控制、手动/自动切换进行控制 系统采用模拟屏显示系统运行停止状态。

二、系统工艺说明 2.1系统设计如下工艺流程: 原水→原水箱→原水增压泵→机械过滤器→活性碳过滤器→精密过滤器→保安过 ↑ 阻垢剂加药装置 滤器→高压泵→反渗透装置→中间水箱→中间增压水泵→混床系统→树脂捕捉器→ ↓↑ 再生装置 去离子水箱→送水泵→终端滤器→用水点 2.2 工艺说明 本系统分为预处理、反渗透+双混床及后处理三部分。 2.2.1 预处理部分 预处理装置主要解决如下问题。 (1)防止膜面结垢(包括CaCO3、CaSO4、SrSO4、CaF2、SiO2、铁铝氧化物等); (2)防止胶体物质及悬浮物固体微粒污堵; (3)防止有机物质的污染; (4)防止微生物污堵; (5)防止氧化性物质对膜的氧化 (6)保持反渗透装置产水稳定。 2.2.1.1原水箱 水箱采用PE材质,设1台。作为运行及预处理反洗时的缓冲,以保证系统运 行的平衡和连续 2.2.1.2原水泵

水的软化及技术

水的软化及技术 一、概述 1、概念 硬度:钙和镁以化合物的形式存在的部分称为硬度。硬度分为暂时硬度和永久硬度。 暂时硬度:通过加热去除的硬度,碳酸盐硬度。 永久硬度:非碳酸盐硬度。 软化:去除水中部分或全部硬度的过程称为水的软化 2、硬度单位 硬度常用单位有mg/L, mmol/L, 度(我国用德国度), meq/L(毫克当量浓度)各单位之间的换算关系为1meq/L=2.8度=50mgCaCO3/L=0.5 mmolCa2+/L=1 mmol (1/2Ca2+)/L 二、软化技术 1、软化基本方法 (1)加热法 通过加热去除暂时硬度,其去除硬度的原理可用方程式Ca(H CO3)→加热→CaCO3+H2O+CO2表示 (2)药剂软化 ①石灰软化法 其基本原理表示如下: CaO + H2O = Ca(OH)2 CO2 + Ca(OH)2 ---CaCO3↓+ H2O Ca(HCO3)2 + Ca(OH)2 --- 2CaCO3↓ + 2H2O Mg(HCO3)2 + 2Ca(OH)2 --- 2CaCO3↓+ Mg(OH)2↓+2H2O 若碱度>硬度,还应去除多余的HCO3-,若水中存在Fe离子,也要消耗Ca(OH)2 。 ②石灰-纯碱法

可以去除碳酸盐和非碳酸盐硬度 ③石灰石膏法 当原水的碱度大于硬度,即负硬度(有碱度存在时)出现时采用,基本原理表示如下: 2NaHCO3 + CaSO4 + Ca(OH)2----- 2CaCO3↓ + Na2SO4 + 2H2O (3)离子交换法 离子交换法去除硬度比较彻底,离子交换法软化水的工艺如下图所示: (4)膜法 膜法去除硬度通常采用反渗透、超滤等。 三、离子交换法 离子交换法是水处理中软化和除盐的主要方法之一。在水处理中主要用于去除水中的金属离子。离子交换的实质是不溶性离子化合物(离子交换剂)上的金属离子与溶液中的其他同性离子的交换反应,是一种特殊的吸附过程,通常是可逆性化学吸附。 1.离子交换剂 水处理中用的离子交换剂主要有磺化煤和离子交换树脂。磺化煤利用天然煤为原料,经浓硫酸磺化后制成,但交换容量低,机械强度差,化学稳定性较差,已逐渐为离子交换树脂所取代。 离子交换树脂是人工合成的高分子聚合物,由树脂本体(又称母体或骨架)和活

相关文档