文档库 最新最全的文档下载
当前位置:文档库 › 兰墅大桥施工监控

兰墅大桥施工监控

兰墅大桥施工监控
兰墅大桥施工监控

https://www.wendangku.net/doc/788778992.html,

兰墅大桥施工监控

谭也平 余海风 彭敏

深圳大学建筑与土木工程学院,广东,深圳,518060 内容提要:兰墅大桥为国内首座独弯塔斜拉桥,塔向背跨弯曲,结构独特,受力复杂。此桥采

用修正的闭环控制法进行监控。通过对兰墅大桥的应力、位移、索力的监测,和施工过程中对误

差的分析和处理,在该桥的施工安全和质量控制方面起到了重要的作用,也为同类型的斜拉桥的

施工控制提供了参考。

关键字:斜拉桥、施工控制、修正的闭环控制法

1、概述

斜拉桥成形要经过多个施工阶段,尽管严格控制各阶段的结构尺寸、容重、砼质量、预应力和索力等因素,但是实际结构状态与理想结构状态还会出现偏差。这可能来自施工误差,也可能源于环境差异,还可能是测量偏差。这种误差会影响结构的几何线形、改变结构内力状态、甚至威胁结构施工安全。如何消除或修正这些误差,确保施工过程中的结构安全稳定,力求最终成桥受力状态和线形基本接近理想状态,已经成为目前斜拉桥结构中的关键问题。由于施工措施和施工监控方法不当而导致的各类事故国内外时有发生[1]。

斜拉桥的施工监控有开环控制、闭环控制和自适应控制三种方法[2]。兰墅大桥为弯塔斜拉桥,因为施工过程应力转换极为复杂,导致其主梁支架的拆除步骤繁多,斜拉索张拉的次序也极为重要,对结构的状态有很大影响。为了保证拉索张拉与支架拆除过程中的主梁安全,采用修正的闭环控制理论对此桥进行施工监控。

由于存在结构状态误差和测量系统误差,随着施工进展误差会积累起来,必须进行及时的纠正。但可以按优化原则(如最小二乘法),使结构状态接近结构最优状态。因为这种纠正的措施和控制量的大小是由结构实际状态(计入误差)经反馈计算所确定,这就形成一个闭环反馈系统,就称闭环控制,由于误差的引入也称随机性控制。适合受力体系复杂的桥梁结构。如加拿大的安纳西斯桥、日本的横滨海湾大桥、东神户大桥、上海的南浦大桥和杨浦大桥、广东的崖门大桥均采用了闭环控制的思路[1],[3]。

2、兰墅大桥施工监控的方法

兰墅大桥采用的施工控制方法结合了上述控制方法的优点,并提出了改进。其施工监控框图如图1所示,主要由四大系统构成:①结构阶段施工分析系统,用以确定结构的理想状态;②结构状态测量系统,至少要包括位移、应力和温度的测量;③结构状态判定系统,即向前分析至成桥,观察其内力和位移是否被设计认同和接受;④施工措施决策系统,对误差进行分析,包括误差识别和参数识别,提出消除和降低误差的措施;除测量系统为以计算机为主要控制单元的电子硬件系统外,其他三部分均为以计算机软件为主要依据,结合专家建议的软件系统。

施工监控的整个过程是借助于测量仪器、计算机,将人和信息联系起来的信息控制系统。对现场数据进行1分析,在现有的内力和位移下到成桥的预测分析,用于观察结构在将来成桥以后的结构状态,评估成桥结构的接受程度,它对于结构偏差的及早发现和调整以及是否需要对原设计的合理成桥状态进行修正具有重要的指导意义。误差处理系统就是根据已知的误差判定需要进行何种处理。就兰墅大桥而言,根据其施工的方式,在既有误差情况下

基金项目:建设部2004年科学技术项目计划-科技攻关项目(04-02-083),深圳市科技计划项目200315

作者简介:谭也平(1969-),男,副教授,1996年毕业于同济大学,工学博士。Etanyp@https://www.wendangku.net/doc/788778992.html,

https://www.wendangku.net/doc/788778992.html,

(砼容重、结构尺寸、砼收缩徐变及支架刚度等引起的),当内力、位移误差小于容许值,不进行调整;当内力、位移误差大于容许值,通过调节索力来达到成桥的内力状态。

图1 施工监控流程框架图

3、兰墅大桥中施工监控的实施

浙江省余姚市兰墅大桥两跨独塔双索面预应力混凝土斜拉桥,跨径布置为75m+45m,全长120m。里面布置如图3所示。主跨主梁截面为开口单面,次跨为闭口断面如图2。主塔横桥向为H字型,顺桥向为船形。主桥采用塔墩梁固结的结构体系。斜拉索采用双索面扇形布置,主跨9对,边跨4对。

图2 桥梁典型断面图

1)施工测量的实施

a)应力监测

各应力测试截面是根据计算施工阶段及成桥阶段的控制截面确定。原则是在施工阶段正、负弯矩最大的截面,成桥状态正、负弯矩最大截面,主塔的控制截面。为了满足施工控制的要求,在梁体选择5个应力监测截面,主塔选择4个应力测试截面,具体位置见图3。b)主梁挠度控制

图3 立面及应变计布点与主梁高程测点布置图

主梁挠度(高程)观测点埋设在主梁梁顶斜拉索锚管上,在同一截面有二个测点,用DS1级的精密水准仪测量。以桥墩处的控制点作为不动点,张拉斜拉索前主梁各控制点的标高作为初始标高,然后测出每一阶段主梁各控制点相对于桥墩处的控制点的高程并与初始标高比较,得出索张拉前后各阶段主梁控制点的挠度。同一截面的二个测点的挠度值的平均值作为同一截面的挠度值。

c)塔顶位移控制

主塔塔顶水平变位观测设于容易观测,不被遮挡的位置,使用全站仪根据投影法(或称测小角法)进行测量[4]。

d)索力测量

测量索力采用振动频率测量法,这种方法是利用索力与索的振动频率之间存在对应关系的特点,在已知索的长度、两端的约束情况、分布质量等参数,通过测量索的振动频率,进而计算出索的拉力,其计算原理如下[5]:

明确了弦的材料和长度之后,测量弦的振动频率,就可以确定弦的张力。对于两端固定,匀质受力的斜拉索可以近似当做理想弦,从而斜拉索所受拉力T和基频f有如下关系:

22

2 4

n f

ml

T n

=

n 为振动的阶数

fn为拉索的n阶自振频率,

l 为拉索的长度

m 为拉索的单位长度的质量

因此通过测索的振动频率确定斜拉索索力T。

2)施工分析的实施

施工过程的倒拆分析、预测系统分析、跟踪分析系统是采用深圳大学自主开发的桥梁结构分析软件BSA[6]和ANSYS两套程序分别计算,互相校核。在分析中记入结构的几何刚度、索元的垂度效应的影响。参数的识别是在较多的测量数据之上,将结构标准化之后进行分析,从而得到砼容重、弹模、面积等数据对于结构的影响。

https://www.wendangku.net/doc/788778992.html,

3)误差处理的实施

误差处理采用最小二乘法进行[7]。最小二乘法的适用于控制项目多于调整项目的情况,其算法实质是使结构的残余误差平方和最小,物理意义表现在调整索力之后的结构能将设计者所关心的每项目均匀降低。

4、兰墅大桥施工控制的成果

整个施工监控的过程中,兰墅大桥的应力和位移均在施工容许范围。其成桥状态的内力与位移如下表所示,限于篇幅只列举了最终的应力、位移值。

1)应力监测

a)主梁应变

表1 主梁测试截面的应力主梁应力观测结果表(Mpa)-表示压应力

截面截面一截面二截面三截面四截面五

位置上缘下缘上缘下缘上缘下缘上缘下缘上缘下缘测量应力-5.110 -9.275-3.4300.980-4.0600.595-4.2000.070 -2.870 -3.360张拉C4'

理论应力-5.240 -11.900-5.320 1.710-3.9500.318-4.4700.072 -4.920 -4.920

测量应力-4.200 -9.660-4.095-0.315-3.920-0.980-4.025-0.210 -3.955 -3.990完成栏杆

理论应力-6.080 -10.100-4.6400.699-3.190-1.010-3.970-0.668 -4.930 -4.960主梁截面最大压应力-9.660Mpa小于设计容许值23.625Mpa,没有现拉应力,主梁控制截面应力状态总体情况比较好。

b)主塔应变

表2主塔测试截面的应力主塔应力观测结果表(Mpa)-表示压应力

截面截面六截面七截面八截面九

位置主跨缘背跨缘主跨缘背跨缘主跨缘背跨缘主跨缘背跨缘

测量应力 -1.930 -6.475-1.785-4.9950.021-7.893 -7.565 -5.569张拉C4'

理论应力 -1.580 -5.490-1.945-5.695-0.384-7.530 -7.180 -6.570

测量应力 -2.210 -6.090-1.995-4.750-1.029-7.018 -8.440 -5.044完成栏杆

理论应力 -2.100 -5.260-2.500-5.470-0.880-7.300 -7.910 -6.030主塔应力表可知,主塔控制截面测量应力状态最大-7.893MPa,最小-1.580Mpa,符合设计要求,结构处于良好的应力状态。

2)位移监测

a)主梁位移

当斜拉索张拉过程中主梁挠度与理论挠度之差在2cm内时,认为满足容许误差不需要进行调整。栏杆安装完之后对整体结构进行了索力微调,调索后,主梁整体被拉起,主跨主梁挠度比理论值多抬高平均10mm,最大抬高13mm,背跨多拉起约10mm。具体见图4,总体满足要求。

b)主塔位移

考虑主塔是弯塔,控制目标为主塔的实际水平位移与理论水平位移之差控制在1.5cm左

以内,东西主塔的最上面三点(即斜拉索的锚固区)位移比理论值大约10mm,锚固区以下的位移和理论位移基本吻合;而锚固区(42.5m)以上的位移稍大。

图5 主梁挠度对比图

3)索力监测

斜拉索索力与设计误差在3%以内,满足要求。见表3。

表3索力表

东侧西侧

索号测量值理论值设计值误差测量值理论值设计值误差

C9 3658 3717 3721.49 -1.71% 3653 3717 3721.49 -1.84% C8 3719 3712 3723.74 -0.13% 3670 3712 3723.74 -1.44% C7 3542 3553 3576.68 -0.97% 3552 3553 3576.68 -0.69% C6 3475 3531 3556.64 -2.30% 3585 3531 3556.64 0.80% C5 3446 3513 3549.23 -2.91% 3546 3513 3549.23 -0.09% C4 2308 2311 2341.33 -1.42% 2289 2311 2341.33 -2.24% C3 1972 1984 2014.03 -2.09% 1966 1984 2014.03 -2.38% C2 2070 2053 2080.57 -0.51% 2038 2053 2080.57 -2.05% C1 2165 2154 2175.77 -0.49% 2143 2154 2175.77 -1.51% C1'内4267 4328 4317.97 -1.18% 4283 4328 4317.97 -0.81% C2'内4391 4509 4496.25 -2.34% 4539 4509 4496.25 0.95% C3'内4370 4438 4417.28 -1.07% 4395 4438 4417.28 -0.50% C4'内4795 4834 4810.45 -0.32% 4688 4834 4810.45 -2.55% C1'外4338 4328 4317.97 0.46% 4312 4328 4317.97 -0.14% C2'外4535 4509 4496.25 0.86% 4539 4509 4496.25 0.95% C3'外4398 4438 4417.28 -0.44% 4438 4438 4417.28 0.47% C4'外4764 4834 4810.45 -0.97% 4810 4834 4810.45 -0.01% 说明:

1.理论值是监测单位计算的扣除沥青混凝土后产生的效应所产生的索力。

2.设计值是设计单位计算的扣除沥青混凝土后产生的效应所产生的索力。

3.误差是测量值相对与设计值的误差

5、结论

通过对兰墅大桥的应力、位移、索力的监测,施工过程中对误差的分析和处理,在该桥的施工安全和质量控制起到了重要的作用,也为同类型的斜拉桥的施工控制提供了参考。

https://www.wendangku.net/doc/788778992.html,

参考文献

[1] 葛耀君分段施工桥梁分析与控制[M] 北京人民交通出版社 2003年 P23~P33

[2] 石雪飞、项海帆斜拉桥施工控制方法的分类分析[J] 同济大学学报 2001年1月

[3] 方世乐斜拉桥设计与监控[J] 广东公路交通-2000年C00期

[4] 彭伟平烟囱倾斜变形观测的新方法及其应用[J] 测绘通报 2004年10期

[5] 林元培斜拉桥[M] 北京人民交通出版社 2004年5月

[6] 谭也平工程结构电算与OOP编程[M] 北京中国建材工业出版社 1999年7月

[7] 林智敏桥梁施工控制中的参数识别方法研究[J] 四川建筑 2004年12期

Construction Control of Lanshu Bridge

Yeping Tan,Haifeng Yu,Min Peng

College of Architecture and Civil Engineering, Shenzhen University, 518060

Abstract Lanshu Bridge is the first curved single tower cable-stayed bridge in China. The tower bend toward the short span, the structural style is unique and the stress status is complicated. The bridge is controlled by updated close-loop control method. By monitoring the stresses, displacements, cable forces and analyzing the errors, the control method makes the construction safety and quality to a desired degree. The method also provides a reference for the similar cable stayed bridges.

Keywords: Cable-stayed bridge, Construction Control, Updated Close-loop Control Method

大桥施工组织设计.doc

陈家沟大桥施工组织设计 一、工程概况 陈家沟大桥位于青曲镇陈家沟,全桥分左右幅,桥梁左幅0#台、1号墩,右幅0#台、1号、2号墩位于JD38(R=620m)缓和曲线上,其他墩台位于直线上。除左幅12#台,右幅14#台为扩大基础外,其他为桩基,其中φ1.8m桩48根,872m; φ1.5m桩2根,40m;φ1.2m桩4根,64m;桥的上部构造30mT梁,共130片,具体桥梁结构见下表: 陈家沟大桥结构表 中心桩号桥长(m)孔径下部构造上部构造基础 左幅K36+095 366.08 12-30mT梁柱式墩桩柱式台预应力砼T梁桩基1.8m,1.5m 右幅K36+075 427.78 14-30mT梁柱式墩, U台预应力砼T梁桩基1.8m,1.2m 二、临时设施 1.施工道路 陈家沟大桥在郧漫公路左侧30m左右,新修便道供桥梁使用。 2.施工用电 从桥梁附近高压线搭火引入,陈家沟大桥备一台200KW变压器,在桥梁工程施工现场合理布设低压线路用于施工生产和生活用电,同时备一台160KW可移动式发电机作为备用电源。 3.生产、生活用水 在桥下小河中拦截抽水,桥旁修建一座100m3的蓄水池以满足桥梁工程施工及生活需要。 4.生产、生活用房 采用自建的方式解决生产用房,在现场修建钢筋棚、水泥库、其它材料机具库、值班室等房屋。生活用房就近租用民房。 三、施工组织及工期安排 陈家沟大桥计划安排3个专业桥梁工程队,1个队负责预制厂施工,1个队负责架梁施工,其余1个队负责桥梁桩基、墩台、桥面系施工。该工程计划于2004年12月15日开工,2005年11月30日全部完成。 劳动力组织见附表3.1 桥梁施工进度计划见附表3.2 四、主要施工机具设备 主要施工机具设备见附表4.1 五、施工方案及施工方法 1、总体施工方案 (1)桩基根据地质情况和桩基深度,保留采用小型松动爆破配合人工挖孔方案。 (2)明挖扩大基础土质基坑采用挖掘机配合人工开挖,石质基坑采用小型松动爆破配合挖掘机开挖,排水整平基底后,安装钢筋,支立侧模,浇筑砼。 (3)中低墩柱采用定型钢模一次浇筑成型,墩身系梁和墩帽采用抱箍承重支架现浇施工;桥台采用大平面钢模现浇施工。 (4)T梁在桥头预制场预制,采用自行拼装双导梁架桥机架设,结构连续T梁,在连续接头施工完毕后,拆除临时支座实现体系转换。 (5)桥梁砼集中拌和,砼罐车运到工地后,用输送泵输送。 2、施工方法 (一)基础施工 (1)扩大基础施工 土质基坑用挖掘机配合人工开挖,坑壁坡度根据地质情况确定,开挖过程中,须加强排水,

特大桥施工监控方案

精品文档 G351线LJ2标段灵关河2号大桥施工监控实施方案 二O一五年七月 . 精品文档

监控实施方案 四川省雅安市公路管理局 委托单位: 351线乐英至夹金山垭口段灾后恢复重建工程国道项目名称:号大桥施工监控LJ2标段灵关河2 项目负责: 方案编制: 方案复核: 方案审核: . 精品文档 目录............................................................................................................... 1.一、桥梁概况及施工监控编制依据................................................................................................................................................... 1.1.1桥梁概况.................................................................................................................................... 2施工监控编制依据 1.2................................................................................................................... 3二、施工监控的目的内容与原则............................................................................................................................... 3.施工监控工作的目的 2.1 ............................................................................................................................... 4.施工监控工作的内容2.2 ....................................................................................................................................... 5施工监控的原则2.3 建立施工控制体系................................................................................................................................52.4施

摄像头基础知识培训

深圳市银之杰科技股份有限公司 摄像头基础知识培训 一.摄像头种类 (3) 二.USB摄像头工作原理 (3) 三.摄像头零件解构 (4) 1、图像传感器SENSOR (4) 2、数字信号处理芯片DSP (5) 3、镜头(LENS) (5) 4、USB线 (7) 四.摄像头驱动 (9) 五.摄像头的一些名词分辩率 (9) 1、分辨率 (9) 2、感光面积 (10) 3、灯光条纹(属于软件问题) (10) 4、景深 (12) 5、清晰度 (13) 6、坏点(属于硬件问题) (13) 7、色彩还原 (14)

8、FOV (14) 9、帧率 (15) 10、视频格式 (16) 11、失真(畸变) (17) 12、白平衡 (18) 13、曝光 (19) 14、带宽 (20) 15、DPI (21) 16、拍照方式 (22) 17、错误码 (23)

一.摄像头种类 摄像头是一种光电转换设备,种类主要包括USB 摄像头(USB 接口),手机摄像头(DVP&MIPI 接口),模拟摄像头(AV 接口,主要用于监控,车载等),网络摄像头(RJ45&无线接口,主要用于监控)等。 USB 摄像头手机摄像头模拟摄像头网络摄像头 二.USB 摄像头工作原理 摄像头的工作原理大致为: 景物通过镜头(LENS)生成的光学图像投射到图像传感器(SENSOR)表面上,然后转为电信号,经过A/D(模数转换)转换后变为数字图像信号,再送到数字信号处理芯片(DSP)中加工处理,再通过USB 接口传输到电脑中处理,通过显示器就可以看到图像了。

三.摄像头零件解构 1、图像传感器SENSOR 在摄像头的三大结构组件中,我认为最重要的就是图像传感器了,因为感光器对成像质量起着决定性的作用,如果图像传感器效果不怎么好,无论后端的DSP和电脑端应用软件再强大,也不可能让图像效果有大的提升,而一个效果好的图像传感器采集到的图像甚至可以不需要后端处理。 感光芯片可以分为两类: CCD(charge couple device):电荷耦合器件 CMOS(complementary metal oxide semiconductor):互补金属氧化物半导体 CCD的价格比较高,多用在网络摄像头,车载摄像头等监控设备上,还有就是数码相机,而CMOS摄像头则是非常主流(性能,包括价格)的大众级产品,从理论上说,CCD 传感器在灵敏度、分辨率、噪声控制等方面都优于CMOS传感器,而CMOS传感器则具有低成本、低功耗、以及高整合度的特点。 简单地讲,就是CCD摄像头成像质量会更好,图像明锐通透、细节丰富,色彩还原度好,曝光准确。 之前的CMOS都是属于前照式,但随着科技的发展,现在的CMOS也发展出了背照式CMOS,背照式CMOS的制作工艺和前照式不同,能增大感光量,提高拍摄灵敏度,显著提高低光照条件下的拍摄效果,像现在我们的手机和数码相机800万及以上的摄像头,都已经采用了背照式。

小型桥梁施工方案

印江县农业公园桶溪桥专项施工方案 一、工程概况 1、工程描述 本桥为一座2-16M钢筋混凝土空心板共两跨,单跨为16米,加上桥墩两端各3米,桥全长为38米,宽为10. 50米,其中行车道宽为6.50米,两侧人行道宽为2×1.75米,栏杆宽为2×0.25米。两端设桥台,中间设两根孔桩基础桥墩,基础及桩身直径均为1.4米,、桥墩上部设宽×高=1.6×1.3米盖梁。空心板为两块,从桥墩处断开,空心板厚为85㎝,内设D=60㎝顺桥长方向的圆柱空心预留孔洞,共11排。桥面铺装层为C40混凝土,厚度为10~16.50㎝。纵坡为3%,坡向东西环路平交口,两面排水,横坡2%。栏杆为1.1×2.0雕花式星子花岗岩。桥梁混凝土工程量约为1039.00 m3,钢筋用量为71847.90Kg。栏杆76.00米。 2、水文、气象、地质描述 (1)、水文 本桥跨越位跨越桶溪河,平时只在汛期涨过河水,其余基本上是保持正常水量。 (2)、气象 桥位区地处低纬度,属南亚热带向中亚热带过度带,受季风环流影响较明显。该地区雨量充沛,年均降雨量约1500毫米,且集中在4——8月。日照充足,年平均日照量约1600小时,无霜期长达320天以上,每年从9月至来年3月为旱季,是桥梁施工的好季节,一般情

况下,可全年安排施工。年平均气温25℃左右,夏季最高气温35℃,冬季最低气温0℃。 (3)、地质情况 桥址处及附近未发现滑坡、塌陷、地裂等不良地质灾害,河床现覆盖着河沙。桥位处基岩为强风化岩,根据设计要求,桥台置于基岩50厘米,桥墩嵌岩中风化以下4.0米。 3、主要材料 (1)、混凝土(商品混凝土): C40防水砼:桥面铺装。 C35砼:空心板。 C30砼:盖梁、支座垫石、现浇枕梁。 C25 砼:桩基础、墩柱、桥台 C20砼:孔桩护壁。 (2)、主要钢材: (1)普通钢筋:普通钢筋采用R235和HRB335钢筋,钢筋符合《钢筋混凝土用热轧光圆钢筋》(GB13013-1991)和《钢筋混凝土用热轧带肋钢筋》(GB1499-1998)的规定。 (2)钢材:采用《碳素结构钢》(GB700-1988)规定的Q235C钢板。 二施工总布置及施工准备 1、场内外交通道路 本工程施工交通较为便利,利用现有的乡镇道路,可以满足施工需要,可以保证施工机械设备、材料、物资等运输进、退场等。场内

湘潭三桥施工控制总结报告1

湘潭三大桥斜拉桥施工控制研究总结报告 长沙交通学院 湘潭工学院 2001年4月

参加施工控制研究主要人员名单

湘潭三大桥施工控制研究依据 1.由湖南省公路桥梁建设总公司湘潭三大桥工作组(甲方)与长沙交通学院(乙方)签订的湘潭三大桥斜拉桥施工控制研究项目协议书。2.湘潭三大桥斜拉桥施工控制研究项目实施大纲。 3.湘潭三大桥三阶段施工图设计文件及变更设计图纸和文件。4.《公路桥涵设计规范》(JTJ021-89) 5.《公路斜拉桥设计规范》(现行)(JTJ027-96) 6.《公路桥梁施工技术规范》(JTJ025-89) 7.《公路工程质量验收评定标准》(JTJ076-94)

目录 一、报告正文 (1) 二、结构计算离散图和计算工况信息 (15) 三、湘潭三大桥主桥施工控制工作提纲 (17) 四、湘潭三大桥主桥施工控制工作提纲补充说明 (21) 五、湘潭三大桥主桥施工控制指令表 (23) 六、湘潭三大桥主桥施工控制现场会议备忘录………………

湘潭三大桥施工控制研究总结报告 1项目概述 湘潭市湘江三大桥主桥为双塔双索面预应力混凝土斜拉桥,采用塔墩固结、塔梁分离的半漂浮体系,跨径组合为:133米+270米+133米,全长536米。由于通航要求,本桥边跨没有设置辅助墩,故边中跨比例达,比较大,对受力较为不利。 主梁采用有悬臂的实心双主梁断面,梁高米,双主梁(索)中距米,标准段实心主梁单肢宽米,桥塔处加厚段米。边跨靠近梁端部约50米范围内,主梁内侧加下翼缘,以增加截面下缘抗弯模量,适应边中跨比例较大的结构特点。主梁桥面板宽24米,标准节段长8米,标准横梁间距4米,厚米,主梁端部横梁厚米,桥塔处横梁厚米。 斜拉索呈扇形布置,每个塔扇形索面16对索,标准梁底部索锚固点间距为8米,塔上索距为~米。斜拉索为PES7型规格,φ7平行镀锌钢丝。桥塔采用双柱花瓶形塔,塔高米,箱形断面,斜拉索直接锚固于塔壁中心处。 ##

监控数字摄像头基础知识

行业内的资深人士讲话总是听不明白,现在我们来补一补基础的知识。 CCD CCD(Charge Coupled Device),即“电荷耦合器件”,以百万像素为单位。数码相机规格中的多少百万像素,指的就是CCD的分辨率。CCD是一种感光半导体芯片,用于捕捉图形,广泛运用于扫描仪、复印机以及无胶片相机等设备。与胶卷的原理相似,光线穿过一个镜头,将图形信息投射到CCD上。但与胶卷不同的是,CCD既没有能力记录图形数据,也没有能力永久保存下来,甚至不具备“曝光”能力。所有图形数据都会不停留地送入一个“模-数”转换器,一个信号处理器以及一个存储设备(比如内存芯片或内存卡)。CCD有各式各样的尺寸和形状,最大的有2×2平方英寸。 CMOS CMOS(Complementary Metal Oxide Semiconductor),即“互补金属氧化物半导体”。它是计算机系统内一种重要的芯片,保存了系统引导所需的大量资料。CMOS传感器便于大规模生产,且速度快,成本较低,是数码相机关键器件的发展方向之一。 白平衡(White Balance) 在不同光源下,因色温不同,拍摄出来的相片会偏色。如色温低时光线中的红,黄色光含量较多,所拍的照片色调会偏红,黄色调,色文高时光线中的蓝、绿色较多,照片会偏蓝、绿色调。此时便需要利用白平衡功能来作修正,其原理是控制光线中红,绿及蓝三元色的明亮度,使影像中最大光位达到纯白,便能令其它色彩准确。 插值(Interpolation) 在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。有些相机使用插值,人为地增加图像的分辨系。 Bit(位) 这是计算机图像中的术语,用来描述生成的图像所能包含的颜色数。“深度是8位”意味着图像只含有256种颜色。现在的数码相机,每一种颜色的颜色深度都是8位。由于每一个像素的颜色都是是由红

大桥挂篮施工测量监控方案

大桥挂篮施工测量监控方案 箱梁在悬浇施工中,由于受自重、温度、外荷载等因素影响会产生挠度,同时,混凝土自身的收缩、徐变等因素也会产生标高变化,并随着悬臂长度的加大而增加。为了使成桥后的线形达到或接近设计要求,因此必须在悬浇过程中对已浇筑或准备浇筑的梁段的各工况的沉降、位移进行监控测量,并以此随时调整悬浇的立模标高、浇筑后各块段的标高,使最终合拢后标高与设计标高差小于L/5000(10mm)。 1、监控原理 监控的主要内容有:主梁挠度、中轴线偏差、裂纹观察等。施工控制阶段分为挂篮前移立模完毕、试压前后、浇注完成和预应力张拉后,均应对各测点进行量测。施工监测控制基本原理如图3所示。施工监控流程为:梁体各测点布设→控制阶段量测各测点的标高、墩柱水平位移、应力等观测变量→计算分析→预报下一节段施工参数→确定梁体端面竖向位移、→理想的梁体线形、应力变化→施工输出→进入下一节段施工监控。 图1:施工监测控制基本原理 2、监测方案 ⑴、施工测量网的建立

根据现有的测量控制网导线点ST01、ST02、ST03、9IIB237组成大地四边形作为控制网,对主桥上部结构进行测量控制和复核,箱梁顶面布置施工控制点。 监控测量控制网ST01 ST02 ST03QIIB237右幅2#墩 右幅3#墩右幅4#墩右幅5#墩左幅2#墩 左幅3#墩左幅4#墩左幅5#墩 图2:控制网示意图 ⑵、测点的布置 ①0号块高程测点布置在0号块上布置高程观测点用以控制顶板的设计标高,同时也作为以后各现浇节段高程观测的基准点。每个0号块的顶板各布置9个观测点, 观测点位置如图3所示。观测点用专门制作的钢筋或普通螺栓直接焊接在顶板钢筋上。 ②各现浇节段的高程观测点布置每个节段各设2个测点,对称布置在翼板与腹板外交点,离待浇块件前端15cm 。两座跨线桥的左、右幅桥梁均按上述要求进行结构位移监测。通过控制网来精确测定局部控制点的平面位置和高程。局部控制点用来控制各个梁段挠度观测点和

特大桥施工方案

XXXX桥施工方案 1、工程概况及特点 1.1工程概况: XXXX桥位于西果园以南约2公里的XX,中心里程为K12+112.5,为跨深沟而设。 XX大桥采用64+115+64m的连续刚构桥,下部为双薄壁墩,钻孔桩基础;兰州岸引桥上部为5孔30m连续箱梁,临洮岸为3孔30m连续箱梁,下部为柱式墩台,钻孔桩基础。主引桥之间设空心薄壁过渡墩。 1.2工程特点: XXXX桥两岸为山坡,桥下山沟狭窄,桥面距沟心最低处约78m。 XXXX桥主跨为连续刚构桥,而且位于曲线上。桥上纵坡为2.8%,是本段最复杂的桥梁工程之一。 2、主要工程数量 该桥主要工程数量见表(见下页) 3、工程进度计划安排 XXXX桥施工计划安排22个月,自2001年9月开工,2003年6月完工,详细的进度安排见XXXX桥施工进度横道图。各部分具体的进度计划分述如下: 3.1下部工程 3.1.1施工准备安排30天 3.1.2钻孔桩工程60天 3.1.3主墩承台20天

3.1.4主墩 3.1.5过渡墩30天 3.1.6柱墩120天 3.1.7桥台30天 XXXX桥主要工程数量表

3.2主桥上部工程(悬壁梁部分)3.2.1施工准备40天

3.2.20#块及1#块现浇30天 3.2.3挂蓝首次安装及调试安排20天(含预压) 3.2.42#至12#段安装80天(按平均每七天一个施工周期) 3.2.5直线段现浇工期25天,可与悬灌段平行作业,不占用总工期。 3.2.6次边跨合拢、主跨合拢共20天(含拆挂蓝) 3.2.7桥面铺装等附原工程安排90天 3.3引桥上部工程 3.3.1施工准备30天 3.3.2箱梁预制80天 3.3.3箱梁架设35天 3.3.4顶横梁30天 3.3.5箱梁湿接缝30天 3.3.6拆除临时支座,完成体等转换5天 3.3.7桥面铺装等附属工程安排90天 4、施工队伍安排及机械配置 4.1施工队伍安排 4.1.1桥梁一队,共60人。承担全桥46根桩的施工任务,进场4台钻机。 4.1.2桥梁二队,共150人。承担主桥桥墩、过渡墩、连续箱梁悬灌工程和桥面等附属工程的施工。 4.1.3桥梁三队,共180人

特大桥施工监控方案

G351线L J2标段灵关河2号大桥施工监控实施案 ..

二O一五年七月 监控实施案委托单位: 省市公路管理局 项目名称:国道351线乐英至夹金山垭口段灾后恢复重建工程LJ2标段灵关河2号大桥施工监控 项目负责:案编制:案复核:案审核: ..

目录 一、桥梁概况及施工监控编制依据 (1) 1.1桥梁概况 (1) 1.2施工监控编制依据 (2) 二、施工监控的目的容与原则 (3) 2.1 施工监控工作的目的 (3) 2.2 施工监控工作的容 (4) 2.3 施工监控的原则 (5) 2.4建立施工控制体系 (5) 2.5施工控制中的现场测试 (7) 2.6施工控制中的实时测量 (8) 2.7施工控制其它工作 (11) 三、施工控制的组织管理系统 (12) 3.1施工控制领导小组 (12) 3.2施工控制工作小组 (12) 3.3数据传递路线 (13) 3.4对施工单位的协作事项要求 (13) 3.4.1提供实际的施工步骤安排计划 (13) 3.4.2对施工现场的要求 (13) 3.5确保施工监控量测质量和工期的措施及体系 (13) 3.6服务承诺 (16) 3.7项目人员安排 (16)

附表 (1)

一、桥梁概况及施工监控编制依据 1.1桥梁概况 灵关河2号桥位于市芦山县西约5.0km,横跨灵关河。乐英岸行政区划隶属市芦山县思延乡西河村,宝兴岸行政区划隶属市天全县老场乡禾林村。灵关河2号桥全长194m,宽10米,起止桩号为K18+966.191~K19+160.191m,设计标高774.163~777.193m。桥型采用上承式钢筋混凝土悬链线箱形拱,主桥主净跨径L0=115米,拱轴系数m=1.6,净矢跨比为1/5.5,正拱正置,预制吊装施工。主拱横断面由5个箱组成,单箱宽1.6m,拱圈横断面全宽8m;单箱预制高度2.1m,拱背设置10cm厚的现浇层。拱上结构为立柱(横墙)、盖梁、钢筋混凝土Π形梁;引桥上部结构为(2×11m)+(4×11m)钢筋混凝土Π形梁,下部结构为桩柱式桥墩,交界墩为双柱式矩形变截面实心墩;实体拱座,桩基,桩柱式桥台。灵关河2号桥总体布置图如图1所示。

桥梁施工方案

桥梁施工方案 目录 第一章编制依据 第二章工程概况 第三章施工总体安排 第四章施工准备工作 第五章桥梁工程施工 第六章季节施工技术措施 第七章桥梁施工安全、质量保证措施

第一章编制依据 1. 遵化东二环北路桥改建工程施工图纸。 2. 工地现场考察所获取的资料。 3. 《公路桥涵施工技术规范》(JTG/T F50-2011) 4. 《建筑桩基技术规范》(JGJ94-2008)及与本工程相关的标准、规程。 5. 施工合同文件及其他相关文件。 6. 我单位人员、设备等综合实力情况。 7. 质量、环境、职业健康安全管理体系文件及程序文件。 第二章工程概况 本工程位于遵化东二环北路,横跨遵化沙河,桥位按照现状桥位及与河道两侧道路顺接,水流方向为东西向;该桥总长62.5m,一孔跨径12.5m,共5孔,为先简支后连续空心桥板,桩柱式桥墩。桩式桥台。共两幅,桥面全宽30.5m,其中车行道宽25m,外侧人行道宽2.35m,护栏宽0.4m。 第三章施工总体安排 1. 临时设施 施工地点附近有高压、低压线通过,可就近接入,在施工现场合理布设线路用于施工生产和生活用电,现场配备发电机,以备停电之需。工程用水采用河水或地下水,生活用水接入自来水。采用自建的方式解决生产用房,在现场修建钢筋棚、水泥库及其他材料机具库、值班室等房屋。 2.施工队伍及工期安排 公司组建本工程的项目管理部,委派素质高、懂业务、善调度、有成熟经验的干部担任项目经理、技术负责人及各岗位的管理人员。

1)安排一支钻孔灌注桩工程施工班组,负责本工程桥梁灌注桩工程。 2)安排一支桥梁工程施工班组,负责本工程范围内的桥梁工程。 3)安排一支顺接道路施工班组,负责本工程顺接道路工程。 4)安排一支附属工程施工班组,负责本工程施工范围内的其他附属工程。 5)其余施工班组根据实际要求调配。 3. 工期安排按总进度计划表 具体安排: 3月1-5日搭设围挡,建设临时生产生活房屋,拆除旧桥,清理平整场地,做到三通一平。 3月6-15日在桥中心向东45米处堆设围堰后对河底清淤换填具备桩机进场条件,同时钢筋班组制作钢筋。护筒准备完毕 3月16-4月20日自0、5号台开始向内进行打桩作业,计划桩机4台同时施工,每根预估用时4天,共计用时36天。 3月30日-5月10日工序为:承台开挖,破桩,打垫层,承台绑筋、支模浇筑,台身盖梁等于4月25日前浇筑完成,而后养护。 4月10日-6月10日桥墩分系梁、立柱、盖梁三次浇筑完成。1、4号墩浇筑完成日期为5月10日。2、3号墩浇筑完成日期为5月20日,而后养护。墩盖梁模板拆除后立即进行河道恢复作业。 5月15日-6月20日进行支座安装、台后填土等,为桥板的安装做好准备工作,等桥台墩混凝土到达规定强度后即可马上进行安装空心板作业。 7月1-25日桥板安装,绞缝施工。 7月11-31日绞缝处理同时桥面凿毛铺装钢筋绑扎、台背搭板基础处理。具备条件即完成砼铺装。

视频监控业务知识普查试题(卷)(附答案解析)

一、选择题。(单选,共60题,每题1分) 1、视频监控中用于表征画面流畅度的指标是( B ) A、场频 B、帧率 C、码率 D、时延 2、以下不属于码流类型的是( C ) A、视频流 B、音频流 C、编码流 D、复合流 3、PAL制式的场频与扫描线是( B ) A、60Hz,625行 B、50Hz,625行 C、60Hz,525行 D、50Hz,525行 4、在PAL制式下,D1与CIF图像格式的有效像素为( B ) A、720×480,352×240 B、720×576,352×288 C、704×576,352×288 D、704×480,352×240 5、在不考虑磁盘格式化损耗情况下,保存30天2Mbps的D1格式

录像需要的磁盘空间是( C )MByte A、640000 B、644000 C、648000 D、652000 6、视频压缩编码的原理是( B ) A、将视频数据中色度分量信号去掉,节省编码空间 B、利用视频数据中存在的相关性,去掉冗余信息 C、将画面的分辨率降低,减少参与编码的像素数 D、对画面进行抽样,减少需要编码的帧数 7、以下哪个图像格式属于高清( C ) A、CIF B、4CIF C、UXGA D、SQIF 8、编码压缩比更高,图像质量更好,容错能力更强,网络适应性 更强,被普遍认为是目前最有影响力的行业标准是( C ) A、M-JPEG B、MPEG-4 C、H.264 D、AVS

9、以下关于H.264标准的说法中,不正确的是( C ) A、H.264比MPEG4能提高50%压缩率 B、H.264有更强的容错能力 C、H.264采用了浮点变换,所以能压缩得更多 D、H.264采用了多参考帧、帧内预测等压缩技术 10、人们常说的1080p是指( B ) A、分辨率1920×1080,隔行扫描 B、分辨率1920×1080,逐行扫描 C、分辨率1280×1080,隔行扫描 D、分辨率1280×1080,逐行扫描 11、在对图像分辨率与压缩码率进行匹配时,以下哪种不合理 ( A ) A、CIF,1Mbps B、D1,2Mbps C、720p,4Mbps D、1080p,8Mbps 12、以下说法哪个是错误的( C ) A、与CCD摄像机相比,CMOS摄像机功耗更低; B、与CCD摄像机相比,CMOS摄像机成像速度更快; C、与CCD摄像机相比,CMOS摄像机的灵敏度更高; D、与CCD摄像机相比,CMOS摄像机更具成本优势; 13、HDMI的传输距离为( B )

桥梁施工监控

桥梁施工监控 第一节桥梁施工监控的定义 桥梁监控是新桥施工过程中,按照实际施工工况,对桥梁结构的内力和线型进行量测,经过误差分析,继而修正调整以尽可能达到设计目标。桥梁监控,也称桥梁施工监控或桥梁施工控制。在大跨径悬索桥、斜拉桥、拱桥和连续刚构桥的平衡悬臂浇筑施工中,其后一块件是通过预应力筋及砼与前一块件相接而成,因此,每一施工阶段都是密切相关的。为使结构达到或接近设计的几何线形和受力状态,施工各阶段需对结构的几何位置和受力状态进行监测,根据测试值对下一阶段控制变量进行预测和制定调整方案,实现对结构施工控制。由于建桥材料的特性、施工误差等是随机变化的,因而施工条件不可能是理想状态。因此,决定上部结构每一待浇块件的预拱度具有头等的重要性。 虽然可采用各种施工计算方法算出各施工阶段的预抛高值、位移值、挠度,但当按这些理论值进行施工时,结构的实际变形却未必能达到预期的结果。 这主要是由于设计时所采用的诸如材料的弹性模量、构件自重、砼的收缩徐变系数、施工临时荷载的条件等设计参数,与实际工程中所表现出来的参数不完全一致而引起的;或者是由于施工中的立模误差、测量误差、观测误差、悬拼梁段的预制误差等;或者两者兼而有之。

这种偏差随着悬臂的不断加伸,逐渐累积,如不加以有效的控制和调整,主梁标高最终将显著地偏离设计目标,造成合龙困难,并影响成桥后的内力和线形。所以,桥梁施工监控就是一个施工→量测→识别→修正→预告→施工的循环过程。 其最基本的目的是确保施工中结构的安全,保证结构的外形和内力在规定的误差范围之内符合设计要求。 第二节桥梁施工监控监控的主要内容 桥梁施工监控的内容主要包括成桥理想状态确定,理想施工状态确定和施工适时控制分析。 成桥理想状态是指在恒载作用下,结构达到设计线形和理想受力状态;施工理想状态以成桥理想状态为初始条件,按实际施工相逆的步骤,逐步拆去每一个施工项对结构的影响,从而确定结构在施工各阶段的状态参数(轴线高程和应力),一般由倒退分析法确定;施工适时控制是在施工时,根据施工理想状态,按一定的准则调整,通过对影响结构变形和内力主要设计参数的识别进行修正,使结构性能、内力达到目标状态。 在建立了正确的模型和性能指标之后,就要依据设计参数和控制参数,结合桥梁结构的结构状态、施工工况、施工荷载、二期恒载、活载等,输入前进分析系统中,从前进分析系统中可获得结构按施工阶段进行的每阶段的内力和挠度及最终成桥状态的内力和挠度。接

桥梁施工方案及施工方法

桥梁施工方案及施工方法 1、总体施工方案 (1)桩基根据地质情况和桩基深度,保留采用小型松动爆破配合人工挖孔方案。 (2)明挖扩大基础土质基坑采用挖掘机配合人工开挖,石质基坑采用小型松动爆破配合挖掘机开挖,排水整平基底后,安装钢筋,支立侧模,浇筑砼。 (3)中低墩柱采用定型钢模一次浇筑成型,墩身系梁和墩帽采用抱箍承重支架现浇施工;桥台采用大平面钢模现浇施工。 (4)T梁在桥头预制场预制,采用自行拼装双导梁架桥机架设,结构连续T梁,在连续接头施工完毕后,拆除临时支座实现体系转换。 (5)桥梁砼集中拌和,砼罐车运到工地后,用输送泵输送。 2、施工方法 (一)基础施工 (1)扩大基础施工 土质基坑用挖掘机配合人工开挖,坑壁坡度根据地质情况确定,开挖过程中,须加强排水,开挖至距基底20cm时,由人工清理至设计标高。石质基坑采用挖掘机开挖,无法松动时,采用小型松动爆破配合开挖,挖至设计标高后,凿出新鲜岩面,用砂浆找平。开挖完成后,各项指标符合要求即可进行基础砼施工,如承载力达不到设计要求,应按监理工程师批复方案处理。

基础钢筋运到现场绑扎,并预埋墩台身联接钢筋。基础模板采用定型平面钢模,利用基坑壁对称支撑和对拉螺杆加固。砼由拌和站供应,砼罐车运送,输送泵输送入模,水平分层浇筑。 (2)桩基施工 ①桩基成孔 浅桩采用小型松动爆破配合人工挖孔,测量放样确定各桩基孔位后,按桩径做好孔口护围,并设置手摇绞车排渣。在开挖过程中,采用15cm厚C15砼护壁,每层护壁高度不得超过1.0m,地质变化段埋设连接钢筋增加护壁的整体性。岩层开挖采用爆破作业,炮眼布置根据岩层硬度和倾向而定,先试爆,确定间距及用药量,防止成孔过大或孔壁破坏。当桩底进入倾斜岩层时,桩底应凿成水平状。孔内经爆破后,应先通风排烟,经检查无毒气后,施工人员方可下井继续作业。 孔内有水时应做好排水工作,刚浇筑的护壁砼不得被水浸泡。 挖孔时,应注意施工安全。挖孔工人必须配有安全帽、安全绳,必要时应搭设掩体。提取土渣的吊桶、吊钩、钢丝绳、卷扬机等机具,应经常检查。井口围护应高出地面200㎜-300㎜,防止土、石、杂物落入孔内伤人。挖孔工作暂停时,孔口必须罩盖并派专人守护。如孔内的二氧化碳含量超过0.3%,或孔深超过10m时,应采用机械通风。 ②孔底清渣 挖孔桩爆破终了时,孔底应预留20-30cm,用人工、风镐凿除至设计标高,将松散石渣、淤泥等拢动软土层清理干净,如地质复杂,应用钢钎探明孔底以下地质情况,并报经监理工程师复查认可后方可灌注混凝土,以保证桩底嵌岩效果。

大桥监控工作报告

XX大桥施工监控月报 1 桥梁监控概况 1.1 工程概况 XXXX大桥起于湖南省XX县凤大路起点附近,桥梁起点桩号为K0+977.92,终点桩号为K1+332.08,桥梁全长354.16m。桥跨布置为47.34+3×83.0+47.34m,采用预应力混凝土连续刚构-连续梁组合体系。全线采用双向两车道二级公路标准,桥宽为16米,设计汽车荷载等级采用公路二级,设计速度80km/h,设计洪水频率为1/100,地震动峰值加速度小于0.05g,地震动反应谱特征周期为0.35s。 1.2 桥梁施工进度 本月桥梁XX侧次边跨以及大兴侧边跨顺利合龙;1#墩~3#墩已经完成了 1#~10#梁段的施工;4#墩施工完成了10#梁段施工工作。 图1:沱江大桥1#墩施工现场图图2:沱江大桥2#墩施工现场图 图3:沱江大桥3#墩施工现场图图4:沱江大桥4#墩施工现场图

XX大桥施工监控月报 注:阴影部分表示已施工完或已浇筑梁段,其他表示还未施工梁段。XX大学第2 页共15 页

1.3 监控工作总结 本月共四个监控项目,即墩台沉降监控、应力监控、线形监控以及立模标高监控,通过对监控项目的数据采集、处理和分析,总的来说,监控项目均正常。 1.3.1 墩台沉降监控总结 本月墩台沉降量,经测量皆在3mm以内,且由于天气情况、施工、读数和仪器本身等原因,从而导致测量过程中产生误差,故承台基本可以视为没有沉降。 1.3.2 应力监控总结 本月应力的监控,通过应变测试数据表可以发现,用实测应变值减去非应力应变后,再按照弹性关系求得的应力和理论应力计算值比较接近,但存在一定的偏差。产生这种偏差的原因主要有:测试仪器本身的误差、预应力钢筋的张拉误差、收缩徐变理论本身的近似性、材料力学参数误差、温度梯度的影响等等,但这样的精度已能完全满足我们的需要,此外,这也符合应力变化情况。 1.3.3 线形监控总结 本月线形的监控,通过观测的数据与理论值作比较分析,我们得知4#墩在张拉前后的挠度变化基本上都与理论值相符,可以经行下一阶段的施工。 本月XX侧次边跨以及大兴侧边跨的合龙,经过我们施工监控组的施工监控工作,合龙段两端合龙误差最大为6mm,我们将继续努力,保证全桥的顺利合龙。 1.3.4 立模标高监控总结 立模标高的监控,通过对立模标高的测量,凡误差超过允许值,皆下达指令给施工单位,经调整后,发现立模标高都符合要求,误差已基本控制在允许范围内。通过对数据的分析,误差可能是由模板变形和其他原因(视差、塔吊工作)所致,由于在所给定的立模标高监控指令时,已经考虑到了一些误差的影响,故对成桥后的线形并无影响。 2 桥梁墩台沉降监控 2.1 桥梁墩台沉降监控工作介绍 前期承台的标高测量与内业计算工作主要为监控承台的沉降情况,因为承台的标高与即将展开的工作(立模标高的确定、挠度的确定等)密切相关,与内业

桥梁工程变形监测.doc

§13—4 桥梁工程变形监测 一、概述 大型桥梁,如斜拉桥、悬索桥自20世纪90年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高,主跨段具有柔性特性。在这类桥梁的施工测量中,人们已针对动态施工测量作了一些研究并取得了一些经验。在竣工通车运营期间,如何针对它们的柔性结构与动态特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变化的“桥梁健康系统”,它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。然而,要真正达到桥梁安全监测之目的,了解桥梁的变化情况,还必须及时测定它们几何量的变化及大小。因此,在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求,以及大跨度桥梁塔柱高、跨度大和主跨梁段为柔性梁的特点,桥梁工程变形监观测的主要内容包括: 1) 桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2) 为了进行上述各项目的测量,还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩(台)沉陷观测点一般布置在与墩(台)顶面对应的桥面上;桥面线形与挠度观测点布置在主梁上。对于大跨度的斜拉段,线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约1.5m的上塔柱侧壁上,每柱设2点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移

桥梁施工组织设计(T梁)

1、1 桥梁工程 1、1、1 总体施工方案 1、1、1、1 混凝土、模板、钢筋、钢绞线施工 本桥所有结构部位混凝土均采用搅拌站集中搅拌,混凝土运输车运输。下部构造施工混凝土采用输送泵输送入模,T型梁预制混凝土用龙门架与吊斗灌注。 除T梁底模采用水磨石台面外,其余所有用于外露部位的模板都采用定型钢模板,隐蔽部份采用每块不小于2m2的钢模板组拼。 为保证钢筋下料精度,本工程所有钢筋采用集中加工制作,再将半成品运输至现场使用。挖孔桩钢筋在孔口接长。 1、1、1、2 下部构造 本合同段共设特大桥2座、大桥3座、支线上跨分离立交1座、立交小桥1座。除玉屏舞阳河特大桥主跨为150m钢筋混凝土箱形拱、拱上设钢筋混凝土排架外,其它部位与其它单位工程的下部构造均为桩柱式墩、重力式U型桥台,结构形式较简单。但因本合同段地形比较复杂,一部分墩台位于较陡的山坡上,对施工组织与场地布置造成一定的影响。基础形式为明挖扩大基础(桥台)与钻孔灌注桩基础(桥墩)、挖孔灌注桩基础三种,水中墩数量不大。 明挖扩大基础在机械挖除表层浮土后采取爆破法开挖,挖掘机装渣,汽车外运弃渣。爆破开挖时,在基底预留30cm人工清凿。基坑开挖采取上部斜坡式、下部入岩部分垂直坑壁式。 钻孔灌注桩基础采用回转钻机按照反循环施工工艺组织施工。施工前,平整好作业场地,并按照设计数据使用全站仪按座标法精确放样桩位。钻孔桩的入岩深度按照设计要求并结合现场实钻过程中的地层揭露情况确定,有较大变化时及时向监理工程师及设计部门通报情况,并按设计及监理的要求调整施工。 挖孔桩开挖前详细考察当地地理环境,气候条件,地质水文状况,确定开挖实施性组织方案,备足抽水与通风设备,及时排除洞内积水,并加强通风管理。在施工时,以少雨季节为契机,突击挖孔桩施工,同时无水基础可平行展开施工。挖孔桩采取护壁开挖,采用内齿式护壁形式,分段开挖,分段护壁。发现溶洞时,先行用风枪打眼对其洞内储水量进行探测,避免发生突然的涌水事故。一般地段每次开挖深度为1m,孔壁渗水量大、易坍塌地段每次开挖50cm即开始护壁。困难地段采取分片开挖,随挖随护,确保安全。挖孔桩开挖至设计标高后,用风枪向下垂直打眼,探明持力层下部一定深度内就是否仍存在溶洞,发现异常时,及时与监理工程师与设计部门取得联系,及时制定处理方案。 桥墩为双柱式墩,高墩采用变径设计形式,墩柱直径包括1、4m、1、5m、1、7m、1、8m、1、9m 等五种规格,高墩墩柱间最多设三道系梁。墩柱、盖梁混凝土都采用定型钢模浇筑。 重力式U型桥台施工时,模板一次支立到位,单座桥台混凝土一次浇筑完成。 1、1、1、3 上部构造 上部结构以后30m张法预应力混凝土T型梁为主,其次就是钢筋混凝土空心板,有25m与13m两种,支线上跨分离式立交(塔坡分离立交)为45m钢筋混凝土刚架拱结构,拱肋上安装预制微弯板,之后现浇混凝土层及铺装层。 后张法预应力混凝土T梁、钢筋混凝土空心板及微弯板均采用预制安装法施工。因地形起伏大、桥高路陡,在桥头路基两侧设预制场,或在它处设预制场、梁板运至现场架设的方案均无可行条件,只能将桥梁预制厂建在各桥的桥头路基顶面上。因本合同段桥梁预制量非常大,加之合同段总长度较小、路基宽度有限,桥梁预制场将会占用本合同段的大部分路基。所以,路基工程必须提前组织施工,为桥梁预制创造施工条件。预制场地布置详见《表4施工总平面布置》。 本合同段共设计30m 后张法预应力混凝土T梁320片,25m空心板150块,13m空心板216块,10m 空心板9块。底模修建于已填筑成型并经严格压实的路基上。底模为三层结构,下层浆砌片石30cm厚,修建于经压实的路基或经压实的场地上;中层采用厚度为30cm的C40钢筋混凝土,上层为厚10cm的细石混凝土。底模的上表层用水磨石机磨光,作为底模与梁底的接触面。底模呈“凸”形结构,在表层下部设预留孔,作为侧模对拉螺栓的通道,表层侧面与侧向模板间设空心橡胶止浆条。为避免张拉主梁时梁端底部产生裂缝,在底

安防监控基础知识汇总.doc

安防监控基础知识汇总 一、镜头探析 1.镜头的种类(根据应用场合分类) 广角镜头:视角90度以上,观察范围较大近处图像有变形。 标准镜头:视角30度左右,使用范围较广。 长焦镜头:视角20度以内,焦距可达几十毫米或上百毫米。 变焦镜头:镜头焦距连续可变,焦距可以从广角变到长焦,焦距越长则成像越大。 针孔镜头:用于隐蔽观察,经常被安装在如天花板或墙壁等地方。 2.被摄物体的大小、距离与焦距的关系 假设被摄物体的宽度和高度分别为w.h,被摄物体与镜头间的距离为l,镜头的焦距为f。 3.相对孔径 为了控制通过镜头的光通量的大小,在镜头的后部均设置了光圈。假定光圈的有效孔径为d,由于光线折射的关系,镜光实际有效的有效孔径为d,比d大,d与焦距f之比定义为相对孔径a,即a=d/f,镜头的相对孔径决定被摄像的照度,像的照度与镜头的相对孔径的倒数来表示镜头光圈的大小。f值越小,光圈越大,到达ccd芯片的光通量就越大。所以在焦距f相同的情况下,f值越小,表示镜头越好。 4.镜头的焦距 1)定焦距:焦距固定不变,可分为有光圈和无光圈两种。 有光圈:镜头光圈的大小可以调节。根据环境江照的变化,应相应调节光圈的大小。光圈的大小可以通过手动或自动调节,人为手工调节光圈的,称为手动光圈。镜头自带微型电机自动调整光圈的,称为自动光圈。 无光圈:即定光圈,其通光量是固定不变的。主要用于光源恒定或摄像机自带电子快门的情况。 2)变焦距:焦距可以根据需要进行调整,使被摄物体的图像放大或缩小。常用的变焦镜头为六倍、十售变焦。 三可变和二可变镜头 三可变镜头:可调焦距、调聚焦、调光圈。 二可变镜头:可调焦调、调聚焦、自动光圈。

监控工程必备监控摄像头安装调试知识汇总

前言: 监控工程的设计和规划中少不了“安装调试监控摄像”,正确安装摄像机,连通信号电缆,接通电源工作,但在实际使用中,如果没有正确安装镜头并调整摄像机及镜头的状态,可能无法达到预期的效果,那么如何安装与调试监控摄像头呢?下面本文就详细汇总监控工程安装、调试必备的知识供参考! 1 监控摄像头的调试方法: 1、打开摄像机自动电子快门功能。 2、用控制器将镜头光圈调到最大。 3、将摄像机对准30米以外的物体,聚焦调至无穷远处(大部分镜头是面对镜头将前面的聚焦调节环顺时针旋转到头)。 4、用控制器调整镜头变焦将景物推至最远,调整镜头后截距使景物最清楚。 5、用控制器调整镜头变焦将景物拉至最近,微调镜头聚焦使景物最清楚。 6、重复4-5步数遍,直至景物在镜头变焦过程中始终清楚。

2 调整镜头的光圈与对焦: 关闭电子快门,逆光补偿等开关上的摄像头,摄像头,你要监视的场景,调整镜头的光圈与对焦环,使监视器上的图像。如果它被用在照明场合的变化比较大的摄像头,最佳匹配的自动光圈镜头和摄像机的电子快门开关(ELC)为OFF。如果选择手动光圈摄像机的电子快门开关(ELC)ON的最亮的点在应用程序(环境光),在镜头光圈尽可能打开一个大的和静止图像是最好的(和不那么太白色图像过载),透镜调整完成。安装屏蔽,并上好支架即可。由于较大的光圈,景深范围相对较小,焦距应该是尽可能照顾的全程监控,现场的清晰度。当现场照明降低时,电子快门自动调整,具有较大的光圈,速度慢,仍然可以使图像满意 后焦调整后焦距: 后焦调整后焦距也被称为该后焦距,正是由于在靶的表面,在CCD图像传感器,当安装在一个标准的透镜(标准的C / CS mount镜头),使被摄体场景成像,一般照相机工厂,背部重点作出适当的调整,在与定焦镜头的应用程序,一般不需要调整后焦距的摄像头。 监控改造在某些应用中,它可能会出现当镜头对焦环调整的最终位置仍然不清晰的图像,必须先确认正确的镜头接口。如果确认,您需要调整后焦距的摄像头。根据经验,绝大多数的摄像机连接用电动变焦透镜的应用,往往需要调整相机的后焦距。

相关文档