文档库 最新最全的文档下载
当前位置:文档库 › 液态烃深度脱硫技术探讨

液态烃深度脱硫技术探讨

液态烃深度脱硫技术探讨
液态烃深度脱硫技术探讨

液态烃深度脱硫技术探讨

李俸禄赵金涛曾铮

气分MTBE车间

1 前言

脱硫装置始建于1991年,处理量为3万吨/年。1997年,装置进行技术改造后处理能力达到4.5万吨/年。自2005年催化装置改造后,液态烃加工量明显增大,脱硫装置已无法满足生产需求,为了与现有催化装置产能配套,设计新建了一套15万吨/年液化气脱硫装置。该套液态烃脱硫装置采用湿式脱硫工艺,先用二乙醇胺法脱除硫化氢,然后用碱洗法脱除硫醇,应用了液膜脱硫技术,经过多年的运行发现液膜脱硫塔脱硫效率高,而且固碱消耗量大幅降低,减少了硫对设备的腐蚀,降低了对环境的危害。

2 液态烃脱硫现状

目前,玉门炼厂液态烃脱硫装置由胺脱硫化氢、预碱洗、液膜脱硫醇和水洗系统组成,主要用来处理催化液态烃原料。为了保证后续装置的产品质量、减缓设备腐蚀,脱硫后的液态烃中硫化氢含量控制在0ppm总硫控制在30mg/m3以下。

表1 液态烃脱硫效果分析表

注:自4月份以来液态烃原料硫含量大幅下降,2013年7月22日至9月15日进行装置大检修,各阶段均取典型值。

2.1 原料性质

玉门炼厂加工的原油有玉门油、哈国油、吐哈油、新疆油和塔指油,液态烃原料性质变化趋势如图1所示。

图1 液态烃原料性质分析图

从图1可以看出,脱硫装置液态烃加工量基本稳定,尤其大检修前后,加工负荷非常接近;但液态烃原料中硫化氢含量波动较大,最大波动达3倍以上,这给脱硫装置操作带来了困难,严重影响液态烃脱硫效果。

2.2 脱硫效果

结合表1数据和图2趋势分析可以看出,进液膜脱硫塔硫化氢、总硫含量与原料性质密不可分,自5月份以来,液态烃原料中硫化物含量大幅下降,进液膜脱硫塔硫化氢达到设计要求,创历史最好水平,但总硫受装置运行到三年一修的后期,液膜脱硫塔出现堵塞等问题的影响,液膜脱硫塔脱硫醇效果不明显。装置大检修投用后,在原料性质相同的情况下,无论进液膜脱硫塔还是出装置,液态烃脱硫装置脱硫效果得到了大幅提高,脱硫率较大检修前提高了2个百分点以上,均创下历史最好水平。

图2 液态烃脱硫效果分析图

3 液态烃脱硫存在问题及整改措施

3.1 存在问题分析

通过对液态烃脱硫和脱硫醇装置工艺、设备、化验分析数据综合分析,液态烃脱硫醇装置主要存在以下问题。

3.1.1 胺脱效果差

正常情况下,液化气经过胺脱硫化氢后硫化氢含量在20 mg/m3左右,再经过预碱洗,硫化氢含量可控制在2 mg/m3之内。而从表1分析数据可以看出,玉门炼厂脱硫装置进料硫化氢含量在2500 mg/m3左右(远达不到设计值),经过胺脱和预碱洗两级精制处理后液化气的硫化氢含量仍在200 mg/m3左右,相比正常操作数据,脱后硫化氢含量太高,说明目前胺脱存在严重不足。

3.1.2 脱硫醇效果差

液膜脱硫塔主要用来脱硫醇,液膜脱硫塔硫脱除量在2.13~10.10mg/m3,进入6月份以后,液膜脱硫塔脱硫效果显著降低,几近失去脱硫效果。目前,液膜脱硫醇因没有碱液再生措施,碱液经过循环抽提脱硫醇后,其中的硫醇钠浓度不断积累增高,造成硫醇在碱液中的溶解度越来越小,进而制约碱液抽提脱硫醇的深度,造成精制后液化气总硫含量增高,最终造成后续MTBE产品硫含量较高。

另一方面,因胺脱效果差,液化气中有部分未被脱除的硫化氢随液化气进入脱硫醇段,这些硫化氢在液化气脱硫醇时一并被脱除干净,因硫化氢在脱除过程中需要消耗碱液,从而造成脱硫醇碱液浓度不断降低,进而影响脱硫醇效果,并大幅增加脱硫醇新碱用量和排渣频次。

3.2 整改措施

3.2.1 液膜塔结构调整

液膜脱硫塔自2006年投用以来,平均每年更换一次内芯,而且在使用期间会进行两到三次蒸

汽吹扫清洗,存在使用寿命短,动力消耗大,液态烃损失多,脱硫效果差等问题。

为了延长液膜脱硫塔运行周期,节约了生产成本,提高了经济效益,改善脱硫效果,消除了安全隐患。与液膜脱硫塔厂家进行了技术交流,厂家针对液膜脱硫塔结构进行了大量的技术攻关,对进料方式进行了优化:原塔顶碱液进口用盲板隔断,合并到塔侧碱液与液化气一直从塔侧部进料。液膜塔顶部封头内增设了液体分配器,保证液化气和碱液均匀分配到纤维丝上。

脱硫装置利用此次大检修机会,对原液膜脱硫塔上部立式反应器进行整体更换,通过近期运行数据分析来看(见图3),液态烃脱硫醇效果取得了明显改善。检修后出装置硫含量基本控制在15 mg/m3以下,较检修前硫含量减少了近10 mg/m3。

图3 出装置(出液膜脱硫塔)硫含量分析图

3.2.2 提高胺脱硫化氢效果

大检修前,低压瓦斯脱硫后硫化氢控制在100 mg/m3以下,干气脱硫后硫化氢控制在200 mg/m3以下,远高于设计要求的20mg/m3。为了提高胺脱效果,采取了一系列措施:⑴检修期间,对高低压瓦斯脱硫塔的进出口滤芯进行更换,减少杂质带入量;⑵检修期间,对塔内部构件进行检查清洗;

⑶增设贫液冷却器,降低贫液温度;⑷优化胺液再生操作,提高贫液质量。

表2 胺脱硫化氢效果分析表

从表2数据可以看出,大检修后,在操作条件稳定的情况下,胺脱效果出现明显下降,初步判断贫液质量下降。由于胺液系统中热稳盐不能及时脱除、贫液使用周期长未得到更换和腐蚀发泡等因素,严重影响贫液质量,降低了脱硫活性。为了提高胺脱效果、降低能耗,将在贫液中加入SH 除臭精制液功能强化助剂。该剂在高酸性气负荷条件下,能有效提高贫液脱硫活性、胺液抗氧化降解能力和抑制高浓度下的发泡,从而改善胺脱硫化氢效果。

3.2.2.1高压瓦斯加剂前后H2S含量对比情况

使用SH除臭液前后脱硫效果对比如下。

表3 干气脱硫加剂前后情况对比

注:为验证脱硫效果,数据具有可参考性,在加剂前、后取原料性质接近的数据进行对照分析,验证脱硫效果。

图4 干气脱硫率数据对比

从图4来看,在加剂前高压瓦斯H2S脱除率在62.5~96.88%,并且脱后H2S含量均超过了工艺指标的200mg/m3,最高值达到了1000mg/m3。在加入SH除臭液以后,高压瓦斯H2S脱除率在91.55~99.37%,脱后H2S含量均在200mg/m3以下,在工艺指标范围内,并且呈现一定的下降趋势。平均脱硫率由加剂前的85.26%提高到了加剂后的96.34%,提高了11.08%。

3.2.2.2液态烃加剂前后H2S含量对比情况

表4 液态烃脱硫抽提塔加剂前后脱硫效果对比

图5 液态烃脱硫率数据对比

从表4、图5来看,在加剂前液态烃脱后H2S含量在100~240mg/m3,脱除率在95.57~98.52%。在加剂后液态烃脱后H2S含量在30.46~45.62mg/m3,脱除率在99.50~99.69%。从脱除效果来看,脱后H2S含量明显降低,脱除率由原来的97.76%提高到了目前的99.61%,脱除率提高到了1.85%。

3.2.3 通过技术对比,提高液态烃深度脱硫效果

深度脱硫技术是在深入分析传统技术原理、原料中硫化物的分布规律以及硫醇和二硫化物是导致精制后总硫高的主要原因等理论和事实基础上,为了解决炼油液化气总硫高的问题而提出的。深度脱硫技术主要包括功能强化助剂、三相混合氧化再生、再生催化剂与抽提剂分离等工艺设备措施。功能强化助剂的加入可提高循环抽提剂抽提和再生的综合性能,提高循环剂对硫醇的抽提能力、羰基硫的溶解性和抽提剂再生的活性;三相混合氧化再生反应,使再生反应形成的二硫化物能够及时转移到反抽提油中,强化了再生反应推动力,从而大大提高了再生效果,还实现了常温再生,并延长了碱液的使用寿命,简化了流程和控制,降低了投资和操作费用;固定床催化剂技术,将氧化催化剂固定在再生塔内,从而明显减弱了溶解氧的影响,消除了抽提反应时发生再生副反应的主要因素,减少或避免在抽提时形成二硫化物,从而实现了深度脱硫。

目前,液膜脱硫醇因没有碱液再生措施,碱液经过循环抽提脱硫醇后,随着硫醇钠浓度不断积累增高,造成硫醇在碱液中的溶解度越来越小,进而制约碱液抽提脱硫醇的深度,造成精制后液化气总硫含量增高,最终导致后续MTBE产品硫含量较高。因此,建议脱硫装置新增氧化再生塔,保证抽提反应后的抽提剂能够及时得到再生,为控制抽提脱硫醇过程形成二硫化物的反应,再生氧化塔可采用催化剂填料塔,将再生催化剂整体固载在填料上,消除抽提反应时发生再生副反应;同时为了保证脱硫效果,建议增上一级抽提脱硫醇,与现有的液膜形成二级脱硫醇。根据脱硫醇液化气原料来源不同,深度脱硫后液化气的硫含量有所差异,单纯催化液化气经过液化气深度脱硫最低可以降到5ppm以下。

4 结论

综上所述,通过液膜脱硫塔结构调整、原料性质优化等一系列措施后,目前脱硫装置整体脱硫效果得到了大幅改善。虽然取得了进步,但脱硫效果仍存有很大的提升空间,争取通过提高胺脱效果、提高液化气深度脱硫等措施,将液态烃硫含量降低到5ppm以下,为进一步降低MTBE产品中硫含量打下良好基础,保证汽油产品升级合格,提升总厂经济效益。

化工废水深度处理方法

化工废水深度处理方法: 一、臭氧废水分解法 此法主要依靠强氧化剂,臭氧与化工废水中的有机物接触反应,可以有效地把废水中的酚和氰等杂质清理干净,消除水中异味,还能起到一定的杀菌作用;臭氧的氧化功能可以清除掉水中的污染物质,而且臭氧在水中经过分解还可以转化成氧气;不过在使用臭氧废水分解法时,它的操作方法一定按照要求进行,若某一环节出现错误,则会造成更大损失。 4.铁碳微电解废水处理技术 铁碳微电解废水处理技术处理效果突出,它可以有效地将废水中的铁屑分解、过滤掉,利用电化学对物质的氧化还原、对絮体的电富集以及电化学反应所产生的物质凝聚、新形成的絮体进行吸收、过滤;因废水处理效果好、成本造价低,易操作和维护,此方法在化工废水处理上应用广泛。 二、蒸发法处理化工废水 蒸发法,选用蒸发工艺将废水开展蒸发浓缩、蒸发结晶的方法,主要是将化工废水进行盐水分离。 三、膜技术废水分离法 化工废水的处理工艺较为复杂,处理过程中进行科学化处理才能达到预期的效果,膜技术在进行废水处理时,不需要借用别的一些物质,就能够将水中的有害物质分离开,而且可以把再利用的原料进行有效的回收; 膜技术中的超滤技术还可以把化工废水中的聚乙烯醇浆料有效回收,但此法也有不足之处,即过滤膜的使用造价过高,过滤时间比较短,且易受到污染。 四、电催化废水分解法 电催化废水分解可将水中的有毒物质进行有效的处理,在常温情况下会发生催化活性的电极反应形成羟基自由基,并将水中的有机物逐渐转变成可生物降解的有机物,而且有的部分有机物会出现燃烧现象,转化成二氧化碳和水,是可利用资源;电催化废水分解法操作简

单方便,且废水处理效率高,应用广泛。

生活饮用水深度处理技术-膜分离技术论文

生活饮用水的深度处理技术-膜分离技术摘要:膜处理技术在国外已经发展成为饮用水深度处理的核心技术。本文指出了饮用水的处理要求,介绍了几种典型的膜分离技术:微滤、超滤,纳滤,反渗透。最后介绍了膜分离技术的优缺点。 关键字:微滤、超滤,纳滤,反渗透 abstract: the processing technology in foreign film has become the core technology of the deep treatment of drinking water. this paper points out that the drinking water treatment requirements, introduces several kinds of typical membrane separation technology: micro filter, ultrafiltration, nanofiltration, reverse osmosis. at last, the paper introduces the advantages and disadvantages of the membrane separation technology. key word: micro filter, ultrafiltration, nanofiltration, reverse osmosis 中图分类号:tu74 文献标识码:a 文章编号: 为保证饮用水质量,世界各国不仅及时修订了本国的水质标准,而且制定了控制水中有毒有害物质的对策。随着这些调查和研究工作的不断深人,人们逐步认识到,在很多情况下,常规的净化工艺已不能完全有效地去除水中的病原菌、病毒等。因此,以去除饮用水中有机污染及有毒有害物质为目标的饮用水深度净化技术得到 日益广泛的应用。

脱硫塔

第一章运行管理 一、工艺流程及流程简介 1.1工艺流程 1.1 工艺流程图 1.2工艺流程简介 锅炉烟气经引风机、多管除尘器、后,首先进入脱硫除尘塔内与经喷嘴雾化后的脱硫液进行脱硫反应;烟气在塔内通过三层喷淋装置进行三级脱硫除尘反应,SO2总脱除率可达99%以上,除尘效率达到99%以上;脱硫塔内 NaOH吸收SO2发生中和反应生成NaHSO3与Na2SO3,然后流入下游水池进行循环使用,完成对烟气中SO2的吸收净化。 经一级除尘脱硫后的干净烟气通过塔上部的弯头、管道进入二级脱硫除尘塔经过收水器进一步净化脱水,,除去烟气中夹带的水,经过脱硫除雾后的烟气进入烟囱排放。随着脱硫反应的进行,循环池内pH值不断下降,当循环池内pH值降低到10以下时,要及时向循环池补充钠碱以防pH值过低影响脱硫效果。 二、人员配备 1、脱硫控制室配室操作人员3人,负责脱硫工程的日常工作。 2、脱硫工程配机修人员1人,负责站区日常的设备维修工作。 三、各主要处理单元运行控制参数 1、循环池中有关参数的控制 循环池中pH应控制在10以上,低于10时脱硫效果不理想。 2、脱硫塔内有关参数的控制 脱硫塔出口pH应控制在7.0以上。 第二章操作规程 一、循环泵房及泵房内循环水泵、冲洗水泵、排液泵 1、循环泵作用 向脱硫塔供脱硫液。 1.1、开泵前准备 (1)检查循环池内水位,确保循环池内水位不低于池深的2/3。

(2)检查管路系统是否有跑、冒、滴、漏现象存在,如有要及时处理。 (3)检查水泵及系统零部件是否齐全完好。如:所有紧固件是否紧固;连轴器间隙是否合适;水泵注油孔是否已按规定注油;仪表、阀门是否完好等。 (4)进行手动盘车旋转两周看是否正常,应不卡不重,无异常声音。否则应查明原因进行处理。 (5)检查循环泵有无冷却水,是否打开。 (6)检查机械部分时,不得将水泵电路开关合闸使电机处于带电状态,且在配电柜上挂有“有人操作,不许合闸”标牌。 1.2.操作顺序 (1)开启循环泵 打开泵进口管路的碟阀,开启循环泵。当压力表显示压力达到额定压力 0.3-0.4MPa后即为所需工况。 (2)关闭循环泵 循环泵停止工作后,慢慢关闭进水管路上的碟阀 1.3.泵在运行中,应注意以下事项: (1)开启水泵后,如压力表指针不动或剧烈摆动,有可能是泵内积有空气,停泵后排净泵内空气再启动。 (2)检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大、过小应立即停机检查。 (3)注意轴承温度,轴承最大温度不得大于95度。 (4)按动停泵按钮后,严禁马上再按启泵按钮,否则会发生水击造成设备管路损坏等重大事故。因此,特别规定,停泵10分钟后才允许按启动按钮,待无异常情况后方允许离开开关柜。 (5)泵电动机在不允许连续起动,启动间隔时间至少为10分钟。 2冲洗水泵的作用 向脱硫塔除雾器提供冲洗水,冲洗除雾器,防止除雾器积灰致使除雾器压降过大。建议每小时冲洗时间不低于10分钟。 2.1、开泵前准备

饮用水深度处理工艺设计

饮用水深度处理工艺设计 [摘要]针对饮用水水源有机物污染现象日趋严重,常规水处理工艺已难以生产出符合水质标准的饮用水,本文在常规饮用水处理的基础上设计了饮用水深度处理工艺,采用臭氧+砂滤+生物活性炭的新型组合工艺,能够有效保证饮用水的安全性。 [关键词]饮用水;深度处理;臭氧;生物活性炭 1.设计背景 饮用水的质量与人们的生活水平和身体健康息息相关。由于人们对饮用水水质的要求在不断提高,我国也提出了比现行饮用水水质标准(GB5749-85)更严格的2000年城市供水水质目标。 2.设计思想 2.1活性炭吸附 活性炭是一种具有较大吸附能力的多孔性物质。活性炭吸附在常规处理基础上去除水中有机污染物最有效最成熟的水处理深度处理技术。实验研究表明,饮用水处理中活性炭吸附去除的有机物的分子量主要分布在500-1000u(道尔顿)之间,分子量过大或过小吸附作用都较差。 2.2臭氧氧化 臭氧是一种氧化剂,它可以通过氧化作用分解有机污染物。臭氧可氧化溶解性铁、锰、氰化物、酚、致嗅物质和有色物质、生物难降解的大分子有机物等。 2.2.1去除无机物 臭氧预氧化可去除大多数无机物,但预氧化后必须有过滤或凝聚一絮凝一沉淀处理措施,以除去金属离子氧化后形成的不溶物。 2.2.2促进凝聚一絮凝处理 低剂量03(0.5g/m3lg/m3)就足以强化凝聚一絮凝处理。因为一些大分子溶解状污染物被03氧化后分子的极性变大,可与其他含有氢原子的有机物形成氢键,增加分子量,当这种达到一定程度时,溶解度将降低,产生微絮凝效果。 2.2.3氧化天然有机物 地表水和地下中含有大量会使水质恶化的有机物,另外,在末端氧化中腐殖

当代制浆造纸废水深度处理技术与实践

当代制浆造纸废水深度处理技术与实践 发表时间:2018-08-23T17:06:59.550Z 来源:《建筑学研究前沿》2018年第9期作者:王凯 [导读] 造纸工业废水排放量大,组分复杂,色度高,化学需氧量高,可生化性差,特别是含有纤维素。 汤原金豪纸业有限公司黑龙江佳木斯 154700 摘要:提高当代制浆造纸废水处理技术,不仅能够有效促进区域经济以及环境发展,而且能够有效推动经济结构调整。随着国家对环境治理力度的加大,造纸工业采用新生产工艺以及对废水深度处理,已经很难适应国家建设资源节约型社会的发展趋势。鉴于此,本文就当代制浆造纸废水深度处理技术与实践展开探讨,以期为相关工作起到参考作用。 关键词:纸浆造纸;深度处理;实践 造纸工业废水排放量大,组分复杂,色度高,化学需氧量高,可生化性差,特别是含有纤维素、半纤维素、单糖、木素及其衍生物等难降解有机物,易造成严重污染,是难处理的高浓度有机废水之一,被美国列为六大公害之一。造纸废水经传统处理后出水指标一般难以达到国家《制浆造纸工业水污染物排放标准》(GB3544-2008)。为此,随着水资源日益紧缺以及水污染物排放总量控制日渐严格,废水深度处理技术的研究日渐活跃,深度处理技术的应用势在必行。 1、概述 制浆造纸工业是一个能耗高、污染物产排量大、对环境污染较为严重的行业之一;主要原因是该行业废水排放量大,且废水中污染物成分复杂,浓度高,去除难度大。目前,国内常采用“一级物化+二级生化”的方式处理制浆造纸综合废水,可有效去除废水中的大部分污染物。然而,随着环保要求的不断提高,废水中污染物允许排放浓度降低,仅采用“物化+生化”的处理方式,废水中污染物排放浓度达不到《纸浆造纸工业水污染物排放标准》(GB3544-2008)的限值要求。 2、水质特征 制浆造纸废水中的主要污染物有4类:还原性类(如木素及衍生物等),用COD表征;可生物降解类(如半纤维素、寡糖、有机酸及醇等),用BOD表征;悬浮类(如细小纤维、无机填料等),用SS表征;色素类(如油墨、染料、木质素等),用色度表征。二级生化处理后,废水中仍含有多种有机物质,主要包括木素、木素衍生物、纤维素、漂白药剂及施胶过程中的添加剂等,不同污染物各具特点,构成了二级生化出水水质的多样性[3]。二级生化处理后,废水中COD、色度等污染物的浓度仍然较高,仍达不到GB3544-2008的排放限值要求。因此,需对二级生化出水进行深度处理,确保污染物达标排放。 3、当前制浆造纸废水深度处理研究的现状 造纸工业是世界上六大污染工业之一,我国造纸行业年排放废水量达40亿吨,占全国工业废水排放量的1/6,具有排放量大、污染物复杂、难处理等特点。由于其污染性巨大而且处理难度大,所以就要考虑到在带来巨大经济效益的同时,也严重影响着人类的生存环境,长久发展下去会有难以想象的后果,这是我们不得不考虑到的现实因素。 4、当代有关制浆造纸废水处理措施 4.1、物化法 1)混凝法:混凝法通常比较常用,是指通过混凝剂处理废水,使出水水质科达造纸工业水污染物排放标准中的一级标准,可以选择的混凝剂种类很多较为好获取,所以这种方式以相对较少的投入,较高的性价比的优势被经常应用。2)气浮法:气浮法是指在造纸废水中回收废纸浆,着重处理中段废水,通过装置上的独立,使出水水质达到造纸工业废水排放标准二级标准。气浮法所应用的装置,技术含量很高,适用性强,且操作简单,运行费用相对较低。3)膜分离法:这是一种应用化学变化实现对难降解的有机物造纸废水的处理,要考虑到污水水质的特点,应用在特定条件下效果十分明显。4)吸附法:这是一种相对简便的办法,也是较为基础的方式,即利用粉末性活性炭作为吸附剂,使出水标准达到国家有关于工业污水的排放标准。 4.2、运用吸附剂进行处理 运用吸附处理法进行处理,主要是指依靠吸附剂进行废水处理。吸附剂上具有密集的孔状结构和庞大的比表面积,运用专门的吸附物进行对污水的处理,比表层面存在大量的活性基因和吸附物的各种化学元素,通过吸附物的离子转换产生吸引力,达到对废水中污染物的吸附功能,吸附污染物是有选择*性的聚集各种有机物和无机物,最终达到净化废水的目的。我国通常采用的吸附剂是活性炭、活性焦或者粉煤灰等材料,其中也包括大孔吸附树脂等,这样能够大大提高吸附剂的吸附能力,使废水得到净化。吸附剂处理方法中,吸附剂的选择是关键。当前废水处理中的吸附剂材料主要是活性炭。活性炭的表面积大,吸附的污染物量也比较大,水中的溶解性有机物吸附能力较强,但是采用活性炭深度处理废水污染物的成本非常高,并且很容易造成二次污染,所以以活性炭为主的吸附剂,在市场上的应用慢慢受到限制。粉煤灰自身的表面积也非常大,空隙高,孔隙率大,吸附性能好,而且价格相对比较便宜,但其直接利用到废水处理上的效果不好,需要结合其他的材料和技术对其进行改进,故而其在制浆造纸方面的前景非常广阔。大孔吸附树脂是最具有市场前景的吸附剂原材料,它的大孔结构注定了它的吸附能力非常优越,其具有和活性炭相同的特点,但是吸附能力比活性炭更强大,具有非常好的市场应用性。 4.3、膜分离处理法 这种技术主要是采用一种特殊的薄膜,对废水中的一些化学元素和化学成分进行选择性过滤的处理方式。根据薄膜的规格可以分为微滤、超滤、纳滤等级,薄膜分离法处理制浆造纸中的废水污染物的时间很短,但是由于处理效果非常好,所以发展和传播速度非常快。薄膜分离处理技术的分离技术、净化技术、浓缩技术和过滤技术,比传统的废水处理技术的优点明显得多。薄膜处理技术的优点在于占地面积小、操作环境好、工作方便简单,维护方式简单易行、无二次污染等。这些就加速了薄膜处理技术的发展,为制浆造纸中的废水处理提供了更加先进技术。 5、制浆造纸废水深度处理技术的展望 制浆造纸废水是一个十分复杂的混合体系,应用传统的处理技术已经很难达到最新的排放要求。因此,必须加强对制浆造纸废水深度处理技术的研究与工程应用,建议向以下几方面发展:(1)生物基因工程技术。生物酶处理无疑是高效、省时的一种手段,但存在处理成

脱硫塔防腐施工方案

脱硫塔防腐施工方案 1、工程概况 本工程为2×660MW机组脱硫岛脱硫塔内防腐工程。脱硫吸收塔1台,直径1米、塔体高度12米;主要工程量包括:脱硫塔本体内部玻璃鳞片防腐,以及部分出口烟道防腐,为此,特编制吸收塔防腐施工方案。 2、编制依据 2.1HG/T2640-94 《玻璃鳞片衬里施工技术条件》 2.2GB8923-98 《涂装前钢材表面锈蚀等级和除锈等级》 2.3GB50212-2002 《建筑防腐蚀工程施工及验收规范》 2.4GB50205-2001 《钢结构工程施工质量验收规范》 2.5GB/T3854 《纤维增强塑料巴氏硬度试验方法》 2.6GB/T 7692 《涂装作业安全规程涂漆前处理工艺安全及其通风净化》 2.7HG/T2641-94 《中碱玻璃鳞片》 2.8Q320282NNK16-2004 <江阴市大阪涂料有限公司乙烯酯玻璃鳞片企业标准> 2.9HG223-91《工业设备、管道防腐工程施工及验收规范》 2.10GB/T7760《硫化橡胶与金属粘合的测定?? 单板法》 2.11GB/T13288-91《涂装前钢材表面粗糙度等级的评定》(比较样块法) 2.12DIN 28051德国标准对金属构件的结构造型的要求 2.13DIN 28053德国标准《金属构件有机涂层和衬里对金属基体的要求》 2.14GB18241.4烟气脱硫衬里 2.15JIS-6940-1998日本工业标准《玻璃鳞片树脂衬里标准》 2.16防腐施工技术规范 a. 干膜测厚(ISO 2808) b. 粗糙度检查方法(ISO 8503-2) c. 钢体表面处理(ISO 8503-1) 3、施工单位工器具准备 3.1主要机具要求配置 表一施工机具 机具名称 功率 数量 说明 空压机 65KW 1 产气量:13m3/min 额定压力:0.8MPa ACR-32喷砂机 2 连续加砂式 轴流风机(防爆) 3KW 产风量:6000m3/h

液化烃事故处理专项预案与液化石油气火灾应急措施汇编

液化烃事故处理专项预案与液化石油气火灾应急措施 汇编 液化烃事故处理专项预案 为了正确处理液化烃泄漏事故,防止重大事故特别是次生事故的发生,根据公司液化烃生产、输送、贮存的实际情况,在细化公司《重大事故及灾害应急处理预案》的基础上,特制订我公司《液化烃事故处理预案》,奉预案适用于所有液化烃类物质的生产场所,其它可燃气体生产场可参照执行。 一、建立液化烃事故处理指挥系统 本着综合防灾,整体效能,反应迅速,有条不紊的原则,提高公司整体事故处理能力,公司建立抢险救灾指挥系统。一旦发生严重的液化烃泄漏或火灾爆炸事故,抢险救灾组织系统立即启动,各救灾职能组织迅速赶赴事故现场,迅速投入抢险救灾,达到反应快速,应急处理有效,以最快速度控制事故,减少损失。 公司液化烃事故处理指挥系统组成以及救灾职能组的分工责任按公司《重大事故及灾害应急处理预案》的有关规定执行。 二、完善、补充液化烃事故处理的工具和物资 涉及液化烃的装置、罐区、供气站、关键岗位必须配备下列堵漏、抢险物资和劳动防护用品,以作应急处理事故时使用:1.防静电工作服、防静电鞋,其中公司消防、气防员应备防火隔热服。 2.呼吸器材,其中进入现场抢险人员必备空气呼吸器。

3.防爆工具,主要是铜质工具。 4.石棉布及铜质或棉、麻的捆绑丝、绳,木楔子、卡箍、厚度 1cm以上的橡胶片以及刀具。 5.便携式可燃气体检测仪、防爆灯具。 6.断路标志牌和风向标。 三、液化烃泄漏及火灾事故的应急处理 (一)异常情况及报告 1.液化烃容器、管线、阀门等设备发生下列情况之一时,岗位人员除按操作规程立即采取紧急措施外,必须立即向上级报告: (1)容器工:作压力、介质温度或容器壁温超过许用值或工艺卡片、安全操作规程规定值,采取措施仍不能有效控制时; (2)容器主要受压元件发生裂缝、鼓包、变形等缺陷时; (3)安全附件失效时; (4)接管、紧固件损坏或设备、管线、阀门、焊口开裂时; (5)过量充装时; (6)液位失控时; (7)容器或管线严重振动,危及安全运行时; (8)发生较大泄漏现象时; (9)发生火灾或爆炸时。 2.事故报告程序按公司《重大事故及灾害应急处理预案》中事故灾害报告程序执行。 (二)液化烃泄漏及火灾爆炸事故的应急处理措施 1.现场管制

深度水处理系统工艺设计高密度澄清池

1.1.1深度水处理系统工艺设计 1.1.1.1混凝沉淀系统工艺描述及技术参数 工艺过程描述 高密度沉淀池内加入合适的软化剂-石灰和纯碱,软化剂与水中的悬浮的有机物和无机物快速的凝聚,同时软化剂还与水中可生物降解的有机物(包括生物颗粒与菌胶团)有较强的亲和力,因此在软化剂凝聚的过程中还会将可生物降解的有机物(即BOD5)从水中去除。软化剂凝聚处理除了能够降低水中悬浮的有机物、无机物和BOD5外,还能够降低水中细菌和病毒含量,同时还能有效去除硬度(包括暂硬和永硬)和碱度。 高密度沉淀池采用污泥外循环高密度沉淀池技术。高密度沉淀池主要结构应由反应室、斜板沉降室、集水槽、搅拌机、刮泥机、钢结构(含桥架、内外反应筒、集水槽、支撑架、固定件和取样装置等)等部分组成。 高密度沉淀池为污泥外循环高效澄清池。 高密度沉淀池按2系列配置,鉴于装置内废水回流的影响,高密度沉淀池设计处理能力按不低于2×155m3/hr考虑。

高密度沉淀池工艺是在传统的 平流沉淀池的基础上,充分利用了动 态混凝、加速絮凝原理和浅池理论, 把混凝、强化絮凝、斜管沉淀三个 过程进行优化。主要基于4个机理: 独特的一体化反应区设计、反应区 到沉淀区较低的流速变化、沉淀区 到反应区的污泥循环和采用斜管沉 淀布置。反应池分为2个部分:快 速混凝搅拌反应池和慢速混凝推流式反应池。快速混凝搅拌反应池是将原水引入到反应池底板的中央,在圆筒中间安装一个叶轮,该叶轮的作用是使反应池内水流均匀混合,并为絮凝和聚合电解质的分配提供所需的动能。矾花慢速地从预沉池进入到澄清池,这样可避免矾花破碎,并产生涡旋,使大量的悬浮固体颗粒在该区均匀沉积。矾花在澄清池下部汇集成污泥并浓缩。浓缩区分为两层:上层为再循环污泥的浓缩,下层是产生大量浓缩污泥的地方。逆流式斜管沉淀区将剩余的矾花沉淀。通过固定在清水收集槽进行水力分布,斜管将提高水流均匀分配。清水由一个集水槽系统收回。絮凝物堆积在澄清池下部,形成的污泥也在这部分区域浓缩。该沉淀池有以下几方面的优点:1)将混合区、絮凝区与沉淀池分离,采用矩形结构,简化池型;2)沉淀分离区下部设污泥浓缩区,占地少;3)在浓缩区和混合部分之间设污泥外部循环,部分浓缩污泥由泵回流到机械混合池,与原水、混凝剂充分混合,通过机械絮凝形成高浓度混合絮凝体,然后进入沉淀区分离。 高密度沉淀池的主要特点 (1)最佳的絮凝性能,矾花密集,结实。 (2)斜板分离,水力配水设计周密,原水在整个容器内被均匀分配。 (3) 很高的上升速度,上升速度在15~35m/h 之间。 (4)外部污泥循环,污泥从浓缩区到反应池。 (5)集中污泥浓缩。高密度沉淀池排泥浓度较高(用于澄清处理时为20~10

污水深度处理工艺的综述与比较综述.

安徽建筑大学 污废水深度处理技术论文 专业:xx级市政工程 学生姓名:xx xx 学号:xxxxx 课题:污水深度处理工艺的综述与比较指导教师:xxxx xx年xx月xx日

污水深度处理工艺的综述与比较 摘要:为了达到一定的回用水标准使污水作为水资源回用于生产或生活中,污水经过城市污水或工业废水经一级、二级处理后必须进行深度处理。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。深度处理的方法有:絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、催化氧化法等物理化学方法与生物脱氮、脱磷法等。熟悉了解国内外这些工艺,因地制宜的合理选择适用技术对我们的城市污水深度处理处理工程设计和建设都有重要的意义。关键词:城市污水;污水深度处理工艺;优缺点 引言: 目前,饮用水水质安全正受到人们普遍关注,而国家现行的水质标准也在不断提高.为了满足日益严格的饮用水水质标准,深度处理工艺正在成为技术改造的主要途径。污水深度处理,也称高级处理或三级处理。它是将二级处理出水再进一步进行物理、化学和生物处理,以便有效去除污水中各种不同性质的杂质,从而满足用户对水质的使用要求。深度处理常见的方法有以下几种。 1.絮凝沉淀法 1.1絮凝沉淀法概述 絮凝沉淀处理利用絮凝剂使水中悬浮颗粒发生凝聚沉淀的时处理过程。地面水中投加絮凝剂后形成的矾花或生活污水的有机性悬浮物、活性污泥等在沉淀池中沉降处理时,絮体互相碰撞凝聚,颗粒尺寸变大,沉速随深度加深而增快。这时,水的沉淀处理效率不仅取决于颗粒沉速,而且与沉淀池深度有关。絮凝过程为水中细小胶体与分散颗粒由于分子吸引力的作用互相粘结凝聚的过程,分自由絮凝与接触絮凝两种类型(前者发生在沉淀池中,而后者发生在悬浮澄清池或接触滤池中),生成的矾花在沉淀、过滤等水处理过程中起着强化和提高处理效率的作用。 1.2絮凝沉淀法工艺特点 絮凝沉淀法絮凝体成型快,活性好,过滤性好;不需加碱性助剂,如遇潮解,其效果不变;适应PH值宽,适应性强,用途广泛;处理过的水中盐份少;能除去重金属及放射性物质对水的污染;有效成份高,便于储存,运输。 2.砂虑法 2.1砂虑法概述 水和废水通过粒状滤料(如砂滤中的石英砂)床层时,在压力差的作用下,悬浮液中的液体(或气体)透过可渗性介质(过滤介质),固体颗粒为介质所截留,从而实现液体和固体的分离.其中的悬浮颗粒和胶体就被截留在滤料的表面和内部空隙中,这种通过粒状介质层分离不溶性污染物的方法称为粒状介质过滤。石英砂滤器是利用一种或几种过滤介质,常温

脱硫塔施工方案

脱硫填料吸收塔施工方案 编制依据 1) 山东煤业化工有限公司脱硫工段填料吸收塔设计图纸; 2)《钢制焊接常压容器》JB/T4735-1997 3)《钢制塔式容器》JB4710-92 4)《化工塔类设备施工及验收规范》HGJ211-1985 5) 《现场设备,工艺管道焊接工程及验收规范》GB50236-1998 6)《手供电弧焊接头的基本形式与尺寸》GB983-1988 7)《化工工程起重施工规范》HGJ201-1983 塔器设备现场制作安装方案 本工程简介: 本脱硫填料吸收塔为较大直径塔器,直径6400mm,高度为44000mm;塔体底部设富液槽;中部为填料吸收段,上部设喷淋清扫管;塔体采用普通碳素钢Q235—A型钢板制作,塔内填料支撑板采用0Cr19Ni9材料制作,每层填料吸收段上部设液体再分布器;根据设计图纸及现场情况本脱硫填料吸收塔采用分片制作、分段组对、以轮胎式起重机分段吊装组对就位施工方法进行现场制作安装(操作平台及梯子施工待设计图纸到位后另行编制)。 塔器制造安装工艺流程: 施工准备——会审图纸、备料——技术交底——筒体卷弧胎具、胀圈、组装平台等技术措施准备——划线、号料套裁—

—筒体壁板分片制作——塔内件、人孔、接管附件制作——塔体单节筒体组对——于基础上组对安装塔底富液槽及相关内件——分段预组对塔体——筒节焊接质量检测——安装塔内填料支撑、液体再分布器、附件等——塔体分段吊装立式正装组对——液体分布器及喷头喷淋试验——焊缝无损检测、塔器安装压力、致密性试验 1.施工准备: a.仔细了解图纸中有关塔器的结构、细节尺寸及各技术样图 之间的衔接和要求有无矛盾; b.会审图纸,明确工艺、材料要求及特别的制作要求,并据 此提供材料采购计划(塔体尽量采用原平板以提高塔体的 强度和韧性)。 c.施工技术负责人组织人员进行技术交底和安全文明教育; 详细明确塔器的具体制作步骤、图样、技术法规、标准规 范,现场条件、质量标准、必要的技术措施等。 d.根据施工现场平面布置图(见附后)清理、规划制作场地, 预留吊装机械等车辆行走路线,与建设单位沟通架设施工 用用电线路、电焊机棚等临时设施; e.铺设9*15.6 m钢板平台(见附后详图)用以制作单塔节 及分段组对塔体;配置相应的施工设备、工具、准备工卡 具、样板和检测量具、胎具、胀圈等;并将设备机具按施 工现场平面布置图规定的位置就位;卷板机放置于规定场

液态烃泄漏

液态烃罐区的火灾预防与泄漏火灾扑救技术 液态烃,除了液化石油气外,还有液化乙烷、乙烯、丙烷、丁二烯、天然气等,为了储存、输送之便,这些物质必须常压下降低温度或常温下增加压力变成液体。常温常压下,其爆炸极限均小于10%,属于易燃气体,与空气能够形成爆炸性混合物,遇热源和明火有着火爆炸危险,是甲A类火灾危险物质。 一、火灾危险性分析 储罐区一直是石油化工企业防火防爆的重点,液态烃球罐区更是防火工作的重中之重。如果管理不到位,存在的事故隐患不及时消除,就可能发生火灾爆炸事故,危及生产和人的生命安全,使企业蒙受巨大损失。引起液态烃储罐火灾爆炸的因素有静电、雷击、误操作、设备故障、违章动火、泄漏、外界因素(停电、停水、停气、停汽)等几条,具体为:1易燃易爆气体,如液化石油气、发生小孔喷射时,因流速快,会产生高位静电,实践证明,液化石油气在高速喷射时产生的静电电位高达9000 V,特别是气体中伴有其它微粒物质时,其静电危险性更大,而当带电体与不带电或静电电位很低的物体相接近时,只要电位差达到300 V以上,就会发生静电放电现象,并产生火花。当火花能量超过0.3 mJ时,就足以引燃处于爆炸浓度极限范围内的液化石油气,引起燃烧和爆炸。1998年2月26日,江西九江石化总厂储运分厂液化石油气罐区排空爆燃,就是因805.2输料管端头板处大量液化石油气高速喷射,积聚静电,并放电产生火花引燃液化石油气和空气的混合物燃爆起火。 2若避雷装置因管理疏漏,导致避雷效果降低可失去作用而遭雷击,会引起配电间停电,所有电气设备将停止运行,可燃气体报警设施处于失控状态,消防电动泵不能启动。一旦储罐发生火灾,如果电气设备未及时修复,不能满足火灾用水量和水压的要求,因为消防喷淋冷却系统、消防水炮的供水一般由工业水供给。 3设备出现故障,如丁二烯罐区冷冻机出现故障停止运行,就会使丁二烯罐内温度升高,造成丁二烯聚合。低温罐区压缩机故障,则会使乙烯罐内温度升高,罐底压力上升,造成球罐超压,易导致球罐变形和韧性破裂。 4液态烃球罐由于误操作而引发的火灾事故发生频率较多,其中最典型的就是“88·10·22”小梁山液化石油气恶性爆燃事故,死亡26人,烧伤15人。其事故原因是:操作工在对某液化石油气球罐进行开阀脱水操作时,未关闭球罐脱水包的上游阀,就打开脱水包的下游阀,在带压情况下,边进料边脱水,致使水和液化石油气一起排出,液化石油气向外扩散并积聚,遇火源引起爆燃。 5液化烃罐区发生频率最多的还是要数因液化烃贮罐泄漏而引发的事故,主要有:(1)罐体阀门垫片损坏,出现裂缝,引起泄漏;(2)液位计,压力表损坏;(3)管道破裂;(4)罐体焊缝破裂;(5)压缩机损坏等原因。从发生在1998年3月5日西安大爆炸事故中就可见一斑,其事故原因为西安煤气公司液化石油气管理所一台400 m3球罐底部阀门磨损而漏气,因无法控制泄漏造成2台400 m3球罐爆裂,大火浇了37个小时,33人受伤,11人死亡。由于液态烃球罐危险性比一般的油罐大,所以操作条件苛刻,不允许有超温、超压、液位失控、物料泄漏现象发生。否则,由于其特殊性质,会导致物料从阀门泄漏。一旦泄漏难以控制,将会发生类似西安“98·3·5”液化石油气大爆炸的恶性火灾事故。 二、预防对策 液化烃本身的危险性比较大,加上多个储罐集中布置,储量大,一旦着火爆炸难以扑救,会造成严重后果。由于这方面原因引起的火灾事故不胜枚举,我们应从中吸取教训,防患于

中水处理方法

1.几种中水处理技术简介 中水回用的处理技术按其机理可分为物理化学法、生物化学法和物化生化组合法等。通常回用技术需多种污水处理技术的合理组合,即各种水处理方法结合起来深度处理污水,这是因为单一的某种水处理方法一般很难达到回用水水质的要求。发展到目前,中水回用的工艺流程有:生物化学法生物化学法(简称生化法)利用自然界存生的各种细菌微生物,将废水中有机物分解转化成无害物质,使废水得以净化。原水→格栅→调节池→接触氧化池→沉淀地→过滤→消毒→出水。 ●生物化学法 生物化学法可以分活性污泥法、生物膜法、生物氧化塔、土地处理系统、厌氧生物处理法等方法。 1、活性污泥法(1)鼓风曝气:即排流式曝气,将压缩空气不断地鼓入废水中,保证水中有一定的溶解氧,以维持微生物的生命活动,分解水中有机物,以达到净化污水效果。(2)机械曝气:即表面曝气,利用装在曝气池内的机械叶轮转动,剧烈搅动水面,使空气中的氧溶于水中,供微生物生命活动,进行生化作用以达到净化污水效果。(3)纯氧曝气:它是按鼓风曝气方法向水中吹入纯氧,以提高充氧效率,从而加快污水净化速度。(4)深井曝气:般用直径为0.5~6.0m,深度50~60m的曝气装置,利用水压来提高水中氧的转移速率,以提高其净化效率。 2、生物膜法(1)生物滤池:使废水流过生长在滤料表面的生物膜,通过两面间的物质交换及生化作用,使废水中有机物降解,达到净化目的。(2)生物转盘:由固定在一横轴上的若干间距很近的圆盘组成,不断旋转的圆盘面上生长一层生物膜,以净化废水。(3)生物接触氧化:供微生物栖附的填料全部浸于废水中,并采用机械设备向废水中充入空气,使废水中有机物降解,以净化废水。 3、生物氧化塔:利用水中微生物的藻类、水生植物等对废水进行好氧或厌氧生物处理的天然或人工塘。 4、土地处理系统(1)土地渗滤:利用土壤膜中的微生物和植物根系对污染物的净化能力(过滤、吸附、微生物分解等)来处理生活污水,同时利用污水中的水、肥来促进农作物、牧草、树木生长。(2)污水灌溉:主要目的为灌溉,以充分利用净化后的污水。 5、厌氧生物处理法:利用厌氧微生物(如甲烷微生物等)分解污水中有机物,达到净化水目的,同时产生甲烷气、CO2等气体。厌氧生化处理主要用于处理高浓度有机废水及污泥硝化处理。 ●物理化学法 原水→格栅→调节池→絮凝沉淀池→超滤膜→消毒→出水。运用物理和化学的综合作用使废水得到净化的方法。通常是指由物理方法和化学方法组成的废水处理系统,或指包括物理过

水的深度处理工艺课程设计要点

《水的深度处理工艺》 系别:市政与环境工程学院 专业:环境工程 姓名:柴剑雄 学号: 021411114 指导教师:张霞

随着我国现代工农业的发展、城市化进程的加快,工农业用水、城市、农村生村和生活用水需求量激增,工农业污水、城市、农村生活污水的排放量日益增多,对于人均水资源相对匮乏的我国来说,水资源的供应量远远不能满足人们的生产、生活的需求,越来越多的城市、农村出现了用水荒,水资源供应量的不足已经成为制约社会经济发展和人们生活的重要障碍因素。为了满足现代工农业、经济发展及城市建设的需要,满足人们生活用水的需求,加强污水处理厂建设已经成为各级政府以及社会各界的共识,但是,经过污水处理厂处理过的中水还含有重金属、细菌等有害、有毒物质。这些物质的存在,在一定程度上影响污水的利用效率。因此,有必要采取技术手段在污水处理厂建设过程中对污水进行深度处理,实现水资源的可持续使用。 (一)污水深度处理技术分析 污水深度处理技术简单地说可以分为三大类,即生物处理法、膜处理法和物理化学处理法。生物处理法又可分为人工湿地深处理技术、生物接触氧化法、曝气生物滤池 (BAF) 等生物技术。人工湿地深处理技术主要适用于农村污水、工业行业废水以及城市污水处理厂二级出水,由于污水处理厂是采用传统工艺处理城市污水,因此,污水处理厂二级出水中不但含有重金属、细菌等有害、有毒物质,而且污水中的一些物质不能处理干净,一般情况下,污水处理厂二级出水 P 含量为 6—10mg/L 、NH3-N 含量为 15—25mg/L、BOD5含量为 20—30mg/L 、SS 含量为 20

—30mg/L、COD含量为 60—100mg/L。采用人工湿地深处理可以实现景观与处理效果相结合的良性循环,通过种植了美人蕉、芦苇、富贵竹、空心菜等湿地植物,通过光合作用去除氨氮等成分,通过种植凤眼莲、空心莲子草、稗草、藨草、黄菖蒲等植物去除工业废水中的有害物质等。生物接触氧化法是是在充氧的污水池中填充填料,用生物膜布满填料,污水以固定流速以埋没生物膜的方式,在微生物作用下除去有害物质的污水深处理方式,应用于农药、石油化工、纺织、印染、食品加工、轻工造纸和发酵酿造等工业废水以及二级出水、生活污水的深处理,去除铁、锰、亚硝酸盐、氨氮等物质;曝气生物滤池通过在生物滤池底部或下部加设曝气装置对污水进行处理的技术,通过该技术处理的污水基本上能够达到杂用水的标准。污水深度处理技术中的膜处理法和物理化学处理法包括混凝技术、活性炭吸附技术、臭氧法、膜分离技术、高级氧化法等。这些污水深度处理技术适用的范围不同,各有所长,又各有所短,因此,在污水深度处理过程中,要充分照顾到各种处理技术的技术特点,扬长避短,综合采用,为污水处理厂取得较好的经济效益和社会效益打下坚实的基础。(二)污水深度处理技术的应用 污水深度处理技术是在污水预处理及主处理的基础上,对二级处理水用物理化学处理法&生物处理法及膜处理法去除二级出水中存留的细菌&重金属等危害人体健康的有害及有毒物质,从而达到污水的回收和利用的一种处理技术其典型处理流程如表:

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

液化烃球罐区安全注水系统设计规定

液化烃球罐区注水系统设计规定液化烃球罐紧急切断阀选型设计规定 中国石化 2011年5月20日

目录 液化烃球罐区注水系统设计规定 (3) 液化烃球罐紧急切断阀选型设计规定 (10)

液化烃球罐区注水系统设计规定 1 总则 为了规范液化烃球罐区安全注水系统的设计、运行管理,做好防范重大特大事故发生的补救措施,特制定本规定。 本规定适用于股份公司各分(子)公司、控股公司所属炼化企业液化烃球罐的注水系统的设计和运行管理,参股公司参照本规定执行。 本规定提出了液化烃球罐注水系统安全设计的原则和技术要求,液化烃球罐的安全注水系统设计、运行管理除执行本规定外,还应符合国家和行业现行有关标准规范及中国石化集团公司相关技术和安全监督管理规定。 已有液化烃球罐的注水系统设计可以结合实际情况,参照本规定执行。 2 规范性引用文件 下列文件对于本规范的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规定。 GB 50160-2008 石油化工企业设计防火规范 SH/T3007-2007 石油化工储运系统罐区设计规范 3 术语和定义 液化烃 在15℃时,蒸气压大于的烃类液体,不包括液化天然气。 全压力式液化烃储罐 以常温压力存储的液化烃储罐。 4 适用范围 全压力式液化烃储罐。

5 注水系统的安全设计 注水系统的设计原则 注水设施的设计应以安全、快速有效、可操作性强为原则,在此前提下,尽可能减少注水设备的一次性投入,节省注水设备的运营费用和设备的检维修费用。 注水水源 可采用稳高压消防水系统作为事故状态下球罐的注水水源。在进行稳高压消防水系统管网的设计时需考虑球罐泄漏状态下50~100吨/小时的用水需求。 注水点 5.3.1 注水点位置 当物料泵的参数满足表1和表2中对注水水量的规定可以借用进行注水时则需分以下两种情况: 对于需要进行注水作业的液化烃球罐可以采用直接注水或借用工艺泵注水的方案。采用何种方案,用户在操作时要根据事故状况下高压消防管网压力和液化烃罐的压力指示进行综合判断后确定。当确定采用直接注水时,通过物料泵入口侧管线完成向球罐的注水操作。当确定采用间接注水时,则需通过物料泵提压后通过泵的出口倒罐线或泵进、出料管道的跨通线利用泵的入口管道完成向球罐的注水。两注水方式的接入点位置均设在泵入口过滤器与切断阀之间。直接注水及借用工艺泵注水系统示意流程见图1。 在利用物料泵完成注水时应满足本规定5.4.1条和条中对注水压力和流量的基本要求,同时要考虑进行注水操作时电机能否满足其负荷的需要。 5.3.1.2 当物料泵不能满足本规定条和条中对注水压力和流量的基本要求时,则需设置专用注水泵完成注水。专用注水泵的参数需符合本规定的要求,与专有注水泵相连接的管线的管路等级与需注水的工艺物料的管路等级保持一致,与物料管线接入点位置见注水系统示意流程图,设置专用泵注水系统示意流程见图2。 5.3.2 注水点的连接方式 注水点宜采用半固定式连接,需要注水时连接快装接头,实现迅速注水。快装接头及连接软管宜采用LPG装卸车专用系列产品。实现半固定连接时除在连接端设双阀外还应加设单向阀(单向阀流向为从消防水管道流往工艺管道)

常用水厂深度水处理技术解析

常用水厂深度水处理技术解析 1中山市供水有限公司广东中山 528403;2广东中山建筑设计院股份有限公司广东中山528403 【摘要】对目前常用的水厂饮用水深度处理工艺进行了综述,分别介绍了活性炭吸附法、深度氧化法和膜过滤法的技术原理、研究进展与应用特点,为供水企业实施技术改造和提高 饮用水质提供一定的理论参考。 【关键词】水厂饮用水;深度处理;技术进展 0引言 水厂饮用水处理技术包括预处理、常规处理、应急处理和深度处理[1]等,常规和应急水 处理以物理沉降法、化学混凝法和生物分解法等相互搭配的多级联合处理最为常用,主要目 的是除去悬浮颗粒、胶体和微生物等,往往不能除去特征有机污染物,所以还需合适的深度 水处理进行补充。 按技术分类,目前常用深度水处理可分为活性炭技术、深度氧化技术与膜分离过滤技术等。国内外对于深度水处理技术已开展了大量实验研究与生产应用,并取得了一定成果[2]。 本文综述了常用水厂深度水处理技术,分别介绍了各自具体处理方法及优缺点,为供水企业 的技术改造工作提供一定的理论参考。 1活性炭吸附处理 活性炭技术原理是利用石墨微晶不同孔径结构的物理吸附能力,以及表面极性含氧有机 官能团的分子间作用力,从而对有机污染物分子进行吸附。活性炭具有比表面积大、物化性 能稳定、经济易得等特点,广泛应用于饮用水处理、化工催化、废气吸收等工业与生活领域。根据材料制备来源不同可将活性炭划分为果壳碳、煤质碳、木质碳和骨质碳,其中果壳碳因 孔径最小而得到较多关注。根据材料存在形态不同可将活性炭分为颗粒碳、碳纤维与粉末碳 活性炭的性能表征手段一般参照国标(GB/T 12496.6-1999)和相关行标(DL/T 582-2004)规定,以粒度、表观密度、灰分、pH、漂浮率等作为物理指标,以对碘、亚甲基蓝和苯酚或木 质素、单宁酸等吸附值测定作为化学指标。供水处理活性炭应具有吸附性好、机械强度高、 化学稳定性好等特性,质量符合中华人民共和国城镇建设行业标准CJ/T 345-2010《生活饮用 水净水厂用煤质活性炭》。实际应用中较少采用单一活性炭吸附处理,目前活性炭发展趋势 一是对其进行改性处理以提高吸附能力,如在活性炭表面复合一层生物膜制成生物活性炭、 利用一定功率的微波辐射改性等;二是进行活性炭再生以提高使用效率,可用方法有催化氧 化法、药剂洗脱法、高温加热法等;三是采用活性炭与其他深度处理技术的联用,如已得到 成熟应用的臭氧生物活性炭处理技术。该技术先对饮用水进行臭氧处理,将高分子有机物分 解为小分子如CH2Cl2、CHCl3等,再通过生物活性炭滤池吸附臭氧处理产生的小分子产物, 既弥补了臭氧处理无法解决部分小分子有机物的缺陷,又提高了生物活性炭对有机物的吸附 量和工作寿命。 2深度氧化处理 深度氧化处理技术[3]是指在声、光、电、催化剂等因素作用下产生自由羟基(?OH), 从而将有机污染物氧化或完全矿化为小分子化合物,该技术主要包括化学催化氧化、光催化 氧化、湿式氧化、超声空化和电化学氧化等,具有降解效率高,环境友好,普适性强等特点。 Fenton法是目前应用最为普遍的深度化学催化氧化处理。Fenton法因强氧化试剂 (Fe2+/H2O2)及其发明人Fenton而得名,在广义上是指采用光辐射(UV)、催化剂 (C2O2-4、EDTA)、或电化学手段,使得H2O2产生较强自由羟基以氧化有机物,且Fe2+还

相关文档
相关文档 最新文档