文档库 最新最全的文档下载
当前位置:文档库 › 氨基酸测试题

氨基酸测试题

氨基酸测试题
氨基酸测试题

【测试题】一、名词解释 1.氮平衡 2.必需氨基酸 3.蛋白质互补作用 4.内肽酶 5.外肽酶 6.蛋白质腐败作用7.转氨基作用8.氧化脱氨基作用9.联合脱氨基作用10.多胺11.一碳单位12. PAPS 13. SAM 二、填空题14.氮平衡有三种,分别是氮的总平衡、____、____ ,当摄入氮<排出氮时称____。15.正常成人每日最低分解蛋白质____克,营养学会推荐成人每日蛋白质需要量为____克。16.必需氨基酸有8种,分别是苏氨酸、亮氨酸、赖氨酸、____、____ 、____ 、_____、____。17.胰腺分泌的外肽酶有____、____,内肽酶有胰蛋白酶、____和____。18.氨基酸吸收载体有四种,吸收赖氨酸的载体应是____ ,吸收脯氨酸的载体是____。19.假神经递质是指____和____,它们的化学结构与____相似。20.氨基酸代谢去路有合成蛋白质、____、____、____,其中____ 是氨基酸的主要分解代谢去路。21.肝脏中活性最高的转氨酶是____,心肌中活性最高的转氨酶是____。22.L-谷氨酸脱氢酶的辅酶是____或____,ADP和GTP 是此酶的变构激活剂,____ 和____是此酶的变构抑制剂。23.生酮氨基酸有____和____。24.氨的来源有____、____、____,其中____是氨的主要来源。25.氨的转运有两种方式,分别是____、____,在肌肉和肝脏之间转运氨的方式是____。26.鸟氨酸循环又称____或____。28.γ-氨基丁酸是由____脱羧基生成,其作用是____。27.尿素分子中碳元素来自____,氮元素来自____和____,每生成1 分子尿素消耗____个高能磷酸键。29.一碳单位包括甲基、____、____、____、____,其代谢的载体或辅酶是____。30.可产生一碳单位的氨基酸有____、____、____、____。31.肌酸激酶有三种同工酶分别是____、____、____,其中____ 主要存在于心肌中。32.体内可产生硫酸根的氨基酸有____、____、____,其中____ 是体内硫酸根的主要来源。33.儿茶酚胺包括____、____、____,帕金森氏病是由于脑组织中____生成减少。34.支链氨基酸包括____、____、____。三、选择题A型题35.下列哪种氨基酸是生糖兼生酮氨基酸? A. Gly B. Ser C. Cys D. Ile E. Asp 36.下列哪种不是必需氨基酸? A. Met B. Thr C. His D. Lys E. Val 37.苯酮酸尿症是由于先天缺乏: A.酪氨酸酶 B.酪氨酸羟化酶C.酪氨酸转氨酶D.苯丙氨酸转氨酶 E.苯丙氨酸羟化酶38.不参与构成蛋白质的氨基酸是: A.谷氨酸 B.谷氨酰胺 C.鸟氨酸 D.精氨酸 E.脯氨酸39.体内氨基酸脱氨基的主要方式是: A.转氨基 B.联合脱氨基 C.氧化脱氨基 D.非氧化脱氨基 E.脱水脱氨基40.肌肉组织中氨基酸脱氨基的主要方式是: A.转氨基B.嘌呤核苷酸循环 C.氧化脱氨基 D.转氨基与谷氨酸氧化脱氨基联合 E.丙氨酸-葡萄糖循环41.体内氨的主要代谢去路是:

A.合成尿素

B.生成谷氨酰胺

C.合成非必需氨基酸

D.渗入肠道

E.肾泌氨排出42.脑组织中氨的主要代谢去路是: A.合成非必需氨基酸 B.合成谷氨酰胺C.合成尿素D.合成嘧啶 E.扩散入血43.下列哪种物质是氨的运输形式? A.谷氨酰胺 B.天冬酰胺 C.谷胱甘肽 D.精氨酸 E.瓜氨酸44.属于S-腺苷甲硫氨酸的功能的是: A.合成嘌呤 B.合成嘧啶 C.合成四氢叶酸 D.甲基供体 E.生成黑色素45.下列哪类氨基酸全部是必需氨基酸? A.酸性氨基酸B.碱性氨基酸 C.含硫氨基酸D.支链氨基酸 E.芳香族氨基酸46.关于胃蛋白酶不正确的是: A.以酶原的方式分泌 B.由胃粘膜主细胞产生 C.可由盐酸激活 D.属于外肽酶 E.具凝乳作用47.下列哪种蛋白质消化酶不属于胰液酶? A.氨基肽酶B.羧基肽酶 C.胰蛋白酶 D.糜蛋白酶 E.弹性蛋白酶48.可激活胰蛋白酶原的是: A.二肽酶 B.肠激酶 C.盐酸 D.胆汁酸 E.糜蛋白酶49.不能参与转氨基作用的氨基酸是: A.丙氨酸 B.缬氨酸 C.天冬氨酸 D.赖氨酸 E.亮氨酸50.ALT活性最高的组织是: A.血清 B.心肌 C.脾脏 D.肝脏 E.肺51.催化α-酮戊二酸和氨生成谷氨酸的酶是:A.谷丙转氨酶 B.谷草转氨酶 C.谷氨

酸脱羧酶 D.谷氨酰胺酶 E.谷氨酸脱氢酶52.下列哪种氨基酸缺乏可引起氮的负平衡? A.谷氨酸 B.苏氨酸 C.天冬氨酸 D.丙氨酸 E.精氨酸53.属于外肽酶的是: A.羧基肽酶 B.二肽酶 C.胰蛋白酶 D.弹性蛋白酶 E.糜蛋白酶54.对PAPS描述不正确的是: A.参与某些物质的生物转化 B.参与硫酸软骨素的合成C.又称活性硫酸根 D.主要由半胱氨酸分解产生E.主要由色氨酸分解产生55.在鸟氨酸循环中,下列哪种物质要穿出线粒体进行后续反应? A.鸟氨酸 B.瓜氨酸 C.精氨酸 D.天冬氨酸 E.延胡索酸56.关于牛磺酸哪项叙述是正确的? A.是半胱氨酸的代谢产物 B.存在于肝脏 C.存在于脑组织 D.是结合胆汁酸的组成成分 E.由半胱氨酸直接脱羧生成57.下列哪组维生素参与联合脱氨基作用? A. B1,B2 B. B1,B6 C. 泛酸,B6 D. B6,PP E. 叶酸,B2 58.关于一碳单位代谢描述错误的是:

A.一碳单位不能游离存在

B.四氢叶酸是一碳单位代谢辅酶

C. N5 -CH3-FH4是直接的甲基供体

D.组氨酸代谢可产生亚氨甲基

E.甘氨酸代谢可产生甲烯基59.哪种氨基酸脱氨基产生草酰乙酸? A.谷氨酸 B.谷氨酰胺 C. 天冬氨酸 D. 天冬酰胺 E.丝氨酸60.精氨酸酶主要存在于哪种组织? A.肝脏 B.肾脏 C.脑组织 D.血浆E.小肠61.氨基酸脱羧的产物是: A.胺和二氧化碳 B.氨和二氧化碳 C.α-酮酸和胺 D. α-酮酸和氨 E.草酰乙酸和氨62.下列哪种物质未参与尿素生成? A.精氨酸B. CPS-Ⅰ C. CPS-Ⅱ D. AGA E. 瓜氨酸63.关于氨基甲酰磷酸叙述错误的是: A. 可在肝线粒体中生成 B.可在胞液中生成 C.可由氨提供氮源D.可由谷氨酰胺提供氮源 E.只用于合成尿素64.下列哪种物质对巯基酶有保护作用? A.活性硫酸根 B.生物素 C.泛酸 D. GSH E. FADH2 65.哪种物质缺乏可引起白化病? A.苯丙氨酸羟化酶 B.酪氨酸转氨酶 C.酪氨酸酶 D.酪氨酸脱羧酶 E. .酪氨酸羟化酶66.体内哪种氨基酸代谢后可转变为NAD+ ? A.半胱氨酸 B.甲硫氨酸 C. 苯丙氨酸 D. 酪氨酸 E.色氨酸67.可产生一碳单位的氨基酸是: A.丙氨酸 B.甘氨酸 C.缬氨酸 D.苏氨酸 E.半胱氨酸68.不需SAM提供甲基生成的物质是: A.肉碱 B.肾上腺素 C.胆碱 D.肌酸 E.胸嘧啶69.下列哪种物质不是由酪氨酸代谢生成? A.苯丙氨酸 B.多巴胺 C.去甲肾上腺素 D.黑色素 E. 肾上腺素70.可直接产生乙醇胺的氨基酸是: A.谷氨酸 B.丝氨酸 C.丙氨酸 D.天冬氨酸 E.色氨酸71.参与肌酸合成的物质有: A.甘氨酸和精氨酸B.肌酸酐和甘氨酸 C.肌酸酐和精氨酸D.甲硫氨酸和半胱氨酸 E.肌酸激酶和半胱氨酸72.血氨升高的主要原因是: A.体内氨基酸分解增加 B.食物蛋白质摄入过多 C.肠道氨吸收增加D.肝功能障碍 E.肾功能障碍73.肾脏产生的氨主要来自: A.尿素水解 B.谷氨酰胺水解 C.氨基酸脱氨基D.胺的氧化 E.血液中的氨74.氨基酸彻底分解的产物是: A.胺,二氧化碳 B.二氧化碳,水,尿素 C.尿酸D. 氨,二氧化碳 E.肌酸酐,肌酸75.各种蛋白质含氮量平均约为: A. 10% B. 15% C. 16% D. 18% E. 24% 76.下列哪种氨基酸是肽链合成后经加工才出现在蛋白质中的?A.谷氨酸 B.脯氨酸 C.赖氨酸 D.半胱氨酸 E.羟脯氨酸

77.苯丙氨酸羟化酶的辅酶是: A.叶酸 B.二氢叶酸 C.四氢叶酸 D.四氢生物喋呤 E.磷酸吡哆醛78.关于苯丙氨酸描述错误的是: A.苯丙氨酸是必需氨基酸 B.苯丙氨酸可转变为酪氨酸 C.酪氨酸可生成苯丙氨酸 D.属芳香族氨基酸 E.对苯酮酸尿症患儿应控制食物中苯丙氨酸的含量79.下列哪种物质属神经递质? A.β-羟酪胺 B.苯乙醇胺 C.腐胺 D. 5-羟色胺 E.组胺80.甲基的直接提供体是: A. S-腺苷甲硫氨酸 B.甲硫氨酸 C.同型半胱氨酸 D.胆碱 E. N5 -CH3-FH4 81.参与甲硫氨酸循环的维生素是: A. B1 B. PP C. B12 D. B6 E. B2 82.巯基酶的巯基直接来自哪种氨基酸残基? A.甲硫氨酸 B.胱氨酸 C.精氨酸

D.组氨酸

E.半胱氨酸83.哪种酶先天缺乏可产生尿黑酸尿症? A.酪氨酸酶 B.尿黑酸氧化酶 C.酪氨酸转氨酶D.酪氨酸羟化酶 E.苯丙氨酸羟化酶B型题(84~89)A.鸟氨酸循环 B.甲硫氨酸循环 C.γ-谷氨酰循环 D.嘌呤核苷酸循环 E.丙氨酸-葡萄糖循环84.合成尿素的过程是:85.参与氨基酸脱氨基作用的是:86.生成SAM 以提供甲基的是:87.参与氨基酸吸收的是:88.作为氨的一种转运方式的是:89.需谷胱甘肽参加的循环是:(90~95) A.酪氨酸 B.甘氨酸 C.丝氨酸 D.缬氨酸 E.精氨酸90.可在体内生成黑色素的是:91.水解可产生尿素的是:92.参与卟啉合成的是:93.体内参与胆碱生成的是:94.属支链氨基酸的是:95.参与鞘氨醇合成的是:(96~101) A. L-谷氨酸脱氢酶 B.腺苷酸脱氨酶 C.谷氨酰胺合成酶D.精氨酸代琥珀酸合成酶 E.甲硫氨酸合成酶96.参与尿素合成的酶是:97.参与组织间氨的转运的酶是:98.参与N5 -CH3-FH4→→SAM的酶是:99.参与嘌呤核苷酸循环的酶是:100.参与氧化脱氨基的酶是:

101.以辅酶Ⅰ或辅酶Ⅱ为辅酶的酶是:(102~107) A. Vit B6 B. Vit PP C. Vit B12 D. 四氢叶酸 E. 四氢生物喋呤102.酪氨酸羟化酶的辅酶是:103.氨基酸脱羧酶的辅酶含有:104.氨基酸转氨酶的辅酶含有:105.一碳单位的载体是:106.N5 -CH3-FH4转甲基酶的辅酶是:107.L-谷氨酸脱氢酶的辅酶含有:(108~114)A.细胞液 B.细胞核 C.细胞膜 D.溶酶体 E.线粒体108.真核细胞降解膜蛋白、长寿命蛋白的部位是:109.真核细胞依赖ATP和泛素降解异常蛋白和短寿命蛋白的部位是:110.氨基甲酰磷酸合成酶Ⅰ存在的部位是:111.氨基甲酰磷酸合成酶Ⅱ存在的部位是:112.精氨酸水解产生尿素的反应部位是:113.γ-谷氨酰基转移酶存在于小肠上皮细胞的部位是:114.氨基酸吸收载体存在于小肠上皮细胞的部位是:(115~121)A.支链氨基酸 B.芳香族氨基酸 C.酸性氨基酸 D.碱性氨基酸 E.含硫氨基酸115.代谢可产生PAPS的是:116.只含有非必需氨基酸的是:117.体内代谢可产生少量尼克酸的氨基酸属:118.可产生维持蛋白质空间结构的二硫键的氨基酸属:119.代谢可产生组织胺的氨基酸属:120.肠道中蛋白质腐败可产生尸胺的氨基酸属:121.严重肝功能障碍时可产生假神经递质的氨基酸属:X型题122.参与鸟氨酸循环的氨基酸有:A.天冬氨酸 B.瓜氨酸 C. N-乙酰谷氨酸 D.精氨酸 E.鸟氨酸123.氨在组织间转运的主要形式有: A.尿素 B.铵离子 C.氨 D.丙氨酸 E.谷氨酰胺124.甘氨酸参与下列哪些过程? A.谷胱甘肽合成 B.肌酸合成 C.血红素合成D.嘌呤核苷酸合成 E.一碳单位生成125.关于谷氨酰胺正确的是: A.氨的转运形式 B.氨的贮存形式 C.氨的解毒产物D.必需氨基酸 E.非必需氨基酸126.α-酮酸的代谢去路有: A.可转变为糖 B.可转变为脂肪 C.生成非必需氨基酸 D.氧化生成水和二氧化碳 E.生成必需氨基酸127.半胱氨酸在体内代谢可产生:

A.谷胱甘肽

B.牛磺酸

C. PAPS

D.硫化氢

E.甲硫氨酸128.生糖兼生酮的氨基酸有: A.酪氨酸 B.色氨酸 C.脯氨酸 D.亮氨酸 E.苏氨酸129.蛋白质消化酶中属内肽酶的有: A.胃蛋白酶 B.胰蛋白酶 C.氨基肽酶 D.羧基肽酶 E.弹性蛋白酶130.下列哪些物质属多胺? A.精胺 B.精脒 C.组织胺 D.γ-氨基丁酸 E.腐胺131.可生成或提供一碳单位的氨基酸有: A.丝氨酸 B.组氨酸 C.甘氨酸 D.色氨酸 E.甲硫氨酸132.参与肌酸合成的物质有: A.精氨酸 B.甘氨酸 C.甲硫氨酸 D.半胱氨酸 E.肌酸酐133.精氨酸参与下列哪些物质的生成?

A.尿素

B.蛋白质

C.胆碱

D.肌酸

E.肾上腺素134.甲硫氨酸可: A.代谢产生PAPS B.参与肉碱生成 C.可转化生成半胱氨酸D.参与精胺生成 E.参与胆碱生成135.嘌呤核苷酸循环中参与的物质有: A.草酰乙酸 B.α-酮戊二酸 C.腺嘌呤核苷酸D.次黄嘌呤核苷酸 E.苹果酸136.天冬氨酸可参与: A.嘌呤核苷酸生成

B.嘧啶核苷酸生成

C.尿素生成

D.谷胱甘肽生成

E.嘌呤核苷酸循环137.属生糖氨基酸的有: A.缬氨酸 B.亮氨酸 C.赖氨酸 D.半胱氨酸 E.谷氨酰胺四、问答题138.如何用实验方法判断体内蛋白质代谢状况?139.试从蛋白质营养价值角度分析小儿偏食的害处。140.参与蛋白质消化的酶有哪些?各自作用?141.从蛋白质、氨基酸代谢角度分析严重肝功能障碍时肝昏迷的成因。142.食物蛋白质消化产物是如何吸收的?143.简述体内氨基酸代谢状况。144.1分子天冬氨酸在肝脏彻底氧化分解生成水、二氧化碳和尿素可净生成多少分子ATP?简述代谢过程。145.简述苯丙氨酸和酪氨酸在体内的分解代谢过程及常见的代谢疾病。146.简述甲硫氨酸的主要代谢过程及意义。147.试述一碳单位的代谢及生理功用。148.比较CPS-Ⅰ和CPS-Ⅱ的作用。149.简述谷胱甘肽在体内的生理功用。150.简述维生素B6在氨基酸代谢中的作用。【参考答案】一、名词解释1.氮平衡是测定摄入食物中的含氮量即摄入氮和粪、尿含氮量即排出氮来研究体内蛋白质代谢情况的一种实验。2.必需氨基酸是指机体需要又不能自身合成,必须由食物摄入的氨基酸,共8种:苏氨酸、亮氨酸、异亮氨酸、赖氨酸、色氨酸、缬氨酸、苯丙氨酸、甲硫氨酸。

3.几种营养价值较低的蛋白质合理调配使用,因所含必需氨基酸可相互补充故可提高其营养价值,此称蛋白质互补作用。4.可水解蛋白质肽链内部肽键的酶称内肽酶。5.可水解蛋白质肽链N端或C端肽键的酶称外肽酶,有羧基肽酶和氨基肽酶。6.食物中一部分蛋白质未被消化,一部分消化产物未被吸收,肠道细菌对其的分解作用称蛋白质腐败。7.在转氨酶催化下,一种氨基酸的α-氨基转移到另一种α-酮酸上,生成另一种氨基酸和相应的α-酮酸,此称转氨基作用。8.氧化脱氨基作用是指L-谷氨酸在L-谷氨酸脱氢酶作用下脱氢脱氨基生成氨和α-酮戊二酸的过程。9.转氨酶与L-谷氨酸脱氢酶或腺苷酸脱氨酶联合作用脱去氨基酸的氨基,此称联合脱氨基作用。10.含有多个氨基的胺类称多胺,有腐胺、精脒、精胺等。11.某些氨基酸在代谢过程中产生的含有一个碳原子的有机基团称一碳单位。12.PAPS为活性硫酸根,即3-磷酸腺苷-5-磷酸硫酸,其是活泼的硫酸基供体。13.SAM即S-腺苷甲硫氨酸,又称活性甲硫氨酸,其是活泼的甲基供体。二、填空题14.氮的正平衡氮的负平衡氮的负平衡15.20 80 16.异亮氨酸色氨酸缬氨酸苯丙氨酸甲硫氨酸17.羧基肽酶A 羧基肽酶B 糜蛋白酶弹性蛋白酶18.碱性氨基酸载体亚氨基酸和甘氨酸载体19.β-羟酪胺苯乙醇胺儿茶酚胺20.脱氨基脱羧基转变为其它含氮物脱氨基21.谷丙转氨酶谷草转氨酶22.NAD+ NADP+ ATP GTP 23.亮氨酸赖氨酸24.氨基酸脱氨基肠道吸收的氨肾产生的氨氨基酸脱氨基25.丙氨酸-葡萄糖循环谷氨酰胺转运丙氨酸-葡萄糖循环26.尿素循环Krebs-Henseleit循环27.二氧化碳氨天冬氨酸 4 28.谷氨酸抑制性神经递质29.甲烯基甲炔基亚氨甲基甲酰基30.丝氨酸甘氨酸组氨酸色氨酸31.MM型BB型MB型MB型32.甲硫氨酸半胱氨酸胱氨酸半胱氨酸33.肾上腺素去甲肾上腺素多巴胺多巴胺34.亮氨酸异亮氨酸缬氨酸三、选择题A型题34. D 36. C 37. E 38. C 39. B 40. B 41.

A 42.

B 43. A 44. D 45. D 46. D 47. A 48. B

49. D 50. D 51. E 52. B 53. A 54. E 55. B 56. E

57. D 58. C 59. C 60. A 61. A 62. B 63. E 64. D 65.

C 66. E 67. B 68. E 69. A 70. B 71. A 72. D

73. B 74. B 75. C 76. E 77. D 78. C 79. D 80. A 81. C 82. E 83. B

B型题84. A 85. D 86. B 87. C 88. E 89. C 90. A

91. E 92. B 93. C 94. D 95. C 96. D 97. C 98. E 99. B 100. A 101.A 102. E 103. A 104. A 105. D 106. C 107.B 108. D 109. A 110. E 111. A 112. A 113. C 114. C 115. E 116. C 117. B 118. E 119 .D 120. D 121. B X型题122. ABCDE 123. DE 124. ABCDE 125. ABCE 126. ABCD 127. ABCD 128. ABE 129. ABE 130. ABE 131. ABCDE 132. ABC 133. ABD 134. ABCDE 135. ABCDE 136. ABCE 137. ADE 四、问答题138.氮平衡实验是研究机体蛋白质代谢状况的一种方法,各种蛋白质含氮量较恒定,约为16%,食物中的含氮物主要是蛋白质,其它含氮物含量很少,可忽略不计,尿、粪等排泄物中的含氮物主要是蛋白质在体内的分解产物,故测定食物含氮量(摄入氮)和排泄物含氮量(排出氮)可计算出每日蛋白质的摄入量和分解量,从而反映体内蛋白质代谢状况,其有三种情况:(1)氮的总平衡,摄入氮=排出氮,氮的收支平衡,常见于正常成人。(2)氮的正平衡,摄入氮>排出氮,部分摄入氮用于合成体内蛋白质,常见于儿童、孕妇及恢复期病人。(3)氮的负平衡,摄入氮<排出氮,蛋白质需要量不足,常见于饥饿或消耗性疾病。139.食物蛋白质的营养价值高低决定于所含必需氨基酸的种类和数量以及各种氨基酸的比例与人体蛋白质的接近程度。单一食物易出现某些必需氨基酸的缺乏,营养价值较低,如果将几种营养价值较低的蛋白质混合使用,则必需氨基酸可相互补充从而提高营养价值,此称蛋白质的互补作用。小儿偏食易导致体内某些必需氨基酸的不足,食物蛋白质使用效率低,影响小儿的生长发育。140.参与食物蛋白质消化的酶主要有来自胃粘膜的胃蛋白酶和来自胰腺的胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧基肽酶A、B以及来自肠道的氨基肽酶、二肽酶、肠激酶。胃蛋白酶和来自胰腺的消化酶初分泌时均为酶原,胃中盐酸可激活胃蛋白酶原,肠激酶可激活胰蛋白酶原,胰蛋白酶又可激活糜蛋白酶原、弹性蛋白酶原和羧基蛋白酶原A、B。胃蛋白酶、胰蛋白酶、弹性蛋白酶、糜蛋白酶均为内肽酶,可水解蛋白质内部肽键,将食物蛋白质消化为小分子多肽。羧基蛋白酶A、B和氨基肽酶为外肽酶,可分别水解肽链C端和N端的肽键,产生大量的氨基酸和二肽,二肽酶水解二肽为两分子氨基酸。通过诸消化酶的共同作用,食物蛋白质可消化为大量的氨基酸,然后吸收。141.严重肝功能障碍时,肝脏尿素合成功能不足,导致血氨升高,氨进入脑组织可与脑组织中α-酮戊二酸结合生成谷氨酸,并可进一步生成谷氨酰胺,引起脑组织中α-酮戊二酸减少、三羧酸循环减弱,使ATP生成减少,脑功能发生障碍,导致肝昏迷。此外,肠道蛋白质腐败产物吸收后因不能在肝脏有效解毒、处理也成为肝昏迷的成因之一,尤其是酪胺和苯乙胺,因肝功能障碍未分解而进入脑组织,可分别羟化后形成β-羟酪胺和苯乙醇胺,因与儿茶酚胺相似,称假神经递质,可取代正常神经递质儿茶酚胺但不能传导神经冲动,引起大脑异常抑制,导致肝昏迷。142.食物蛋白质消化产物氨基酸和二肽、三肽可吸收进入人体,均系主动耗能过程,主要在小肠进行。氨基酸的吸收有氨基酸吸收载体和γ-谷氨酰循环两种机制,二肽和三肽可通过相应的主动转运体系吸收。氨基酸吸收载体有四种,分别是酸性氨基酸载体、碱性氨基酸载体、中性氨基酸载体、亚氨基酸和甘氨酸载体,分别吸收相应的氨基酸。氨基酸、Na+ 和氨基酸载体形成三联体,将Na+ 和氨基酸转入胞内,再将Na+ 泵出,消耗ATP。肠上皮细胞膜上有γ-谷氨酰转移酶,在谷胱甘肽的参与下经γ-谷氨酰循环机制将氨基酸吸收入体内,每吸收一分子氨基酸消耗3分子ATP。143.分布于体内各处的氨基酸共同构成氨基酸代谢库。氨基酸有三个来源:(1)食物蛋白质消化吸收的氨基酸。(2)体内组织蛋白质分解产生的氨基酸。(3)体内合成的非必需氨基酸。氨基酸有四个代谢去路:(1)脱氨基作用生成α-酮酸和氨,氨主要在肝脏生成尿素排泄,α-酮酸可在体内生成糖、酮体或氧

化供能,此是氨基酸分解代谢的主要去路。(2)脱羧基作用生成CO2和胺,许多胺类是生

物活性物质如γ-氨基丁酸、组织胺等。(3)生成其他含氮物如嘌呤、嘧啶等。(4)合成蛋白质,以20种氨基酸为基本组成单位,在基因遗传信息的指导下合成组织蛋白质,发挥各种生理功能。144.1分子天冬氨酸在肝脏彻底氧化分解生成水和二氧化碳、尿素可净生成16分子ATP,其代谢过程:天冬氨酸在肝细胞线粒体中经联合脱氨基生成1分子氨和1分子草酰乙酸并产生1分子NADH + H+ 。1分子氨进入鸟氨酸循环与来自另1分子天冬氨酸的氨基形成1分子尿素,此步相当于消耗2分子ATP。产生的1分子NADH + H+ 经呼吸链氧化生成3分子A TP。草酰乙酸在线粒体中需1分子NADH + H+ 还原为苹果酸,苹果酸穿出线粒体在胞液中生成草酰乙酸和1分子NADH + H+ (NADH + H+ 在肝细胞中主要通过苹果酸-天冬氨酸穿梭进入线粒体补充消耗的1分子NADH + H+ ),草酰乙酸→磷酸烯醇式丙酮酸→丙酮酸,分别消耗1分GTP和产生1分子A TP,可抵消。丙酮酸进入线粒体经丙酮酸脱氢酶催化生成1分子乙酰CoA和1分子NADH + H+ ,经三羧酸循环及氧化呼吸链可产生15分子ATP,1分子天冬氨酸彻底分解合计可净产生15+3-2=16分子ATP。145.苯丙氨酸的主要分解代谢去路是经苯丙氨酸羟化酶催化生成酪氨酸,然后代谢,如苯丙氨酸羟化酶先天缺乏,则苯丙氨酸经转氨基作用生成苯丙酮酸,可进一步生成苯乙酸造成苯酮酸尿症。酪氨酸在肾上腺髓质和神经组织中可在酪氨酸羟化酶作用下生成多巴,再脱羧基生成多巴胺,经羟化生成去甲肾上腺素,再经甲基化生成肾上腺素,成为神经递质或激素,脑组织中多巴胺生成减少可导致帕金森氏病。酪氨酸在黑色素细胞中经酪氨酸酶催化生成多巴,再经氧化、脱羧、等反应最后生成黑色素。酪氨酸酶先天性缺乏导致白化病。酪氨酸在甲状腺中参与甲状腺素的生成。酪氨酸在一般组织中可在酪氨酸转氨酶作用下生成对羟苯丙酮酸,后转变为尿黑酸,在尿黑酸氧化酶作用下进一步氧化分解可生成延胡索酸和乙酰乙酸,分别参与糖、脂、酮体的代谢,故苯丙氨酸和酪氨酸均为生糖兼生酮氨基酸。尿黑酸氧化酶缺乏可导致尿黑酸尿症。146.甲硫氨酸在腺苷转移酶作用下与ATP反应生成S-腺苷甲硫氨酸(SAM),又称活性甲硫氨酸,是活泼的甲基供体,参与体内50多种物质的甲基化反应,如肾上腺素、肌酸、肉碱、胆碱的生成以及DNA、RNA的甲基化等,S-腺苷甲硫氨酸还参与细胞生长物质精脒和精胺的生成,此外,还可通过甲硫氨酸循环机制将N5 -CH3-FH4的甲基转移给甲硫氨酸,通过S-腺苷甲硫氨酸将甲基转出,参与体内广泛的甲基化反应,成为N5-CH3-FH4代谢与利用的重要途径。甲硫氨酸转甲基后生成同型半胱氨酸,可与丝氨酸缩合生成胱硫醚,进一步生成半胱氨酸和α-酮丁酸,α-酮丁酸可转变为琥珀酰辅酶A,可氧化分解或异生为糖,故甲硫氨酸是生糖氨基酸。高同型半胱氨酸血症是动脉粥样硬化发病的独立危险因子。甲硫氨酸作为含硫氨基酸,其氧化分解也可产生硫酸根,部分硫酸根以无机硫酸盐形式随尿排出,另一部分可活化为活性硫酸根PAPS,PAPS 参与某些物质的生物转化,还可参与硫酸软骨素、硫酸角质素等的合成。147.某些氨基酸在代谢过程中生成的含有一个碳原子的有机基团称一碳单位,有甲基、甲烯基、甲炔基、甲酰基和亚氨甲基。四氢叶酸是一碳单位代谢的载体,丝氨酸、甘氨酸代谢可产生N5 ,N10 -CH2-FH4,组氨酸代谢可产生N5 -CH=NH-FH4,色氨酸代谢可产生N10 -CHO-FH4。各种一碳单位之间可相互转变,唯N5 -CH3-FH4不能转变为其他类型的一碳单位,N5 ,N10 -CH2-FH4可提供胸嘧啶合成的甲基,N5 ,N10 =CH-FH4可提供嘌呤合成时C8的来源,N10 -CHO-FH4可提供嘌呤合成时C2的来源。甲硫氨酸活化为S-腺苷甲硫氨酸可直接提供甲基,参与体内50多种物质的甲基化。N5 -CH3-FH4可通过甲硫氨酸循环将甲基转移给甲硫氨酸并通过S-腺苷甲硫氨酸转出,参与体内广泛存在的甲基化反应。一碳单位代谢成为联系氨基酸、核酸及体内多种物质甲基化反应的枢纽。148.CPS-Ⅰ主要存在于肝细胞线粒体中,以氨为氮源催化合成氨基甲酰磷酸,参与鸟氨酸循环生成尿素,N-乙酰谷氨酸是该酶的变构激活剂。CPS-Ⅱ存在于一般细胞的胞液中,以谷氨酰胺为氮源催化合成氨基甲酰磷酸,参与嘧啶核苷酸的合成,UMP对该酶有反馈抑制作用。CPS-Ⅰ是肝细胞高度分化的结果,

其活性可作为肝细胞分化程度的指标。CPS-Ⅱ与细胞增殖过程中嘧啶核苷酸的合成有关,其活性可作为细胞增殖程度的指标。149.谷胱甘肽是由谷氨酸、半胱氨酸和甘氨酸通过谷氨酰半胱氨酸合成酶、谷胱甘肽合成酶催化合成的三肽,其重要生理功能有:(1)还原型谷胱甘肽可保护巯基酶及某些蛋白质分子中的巯基从而维持其生物学

功能。(2)谷胱甘肽在谷胱甘肽过氧化物酶催化下可还原过氧化氢或过氧化物,从而保护生物膜和血红蛋白免遭损伤。(3)参与肝脏中某些物质的生物转化过程,谷胱甘肽可与许多卤代化合物或环氧化合物结合生成谷胱甘肽结合物,主要从胆汁排泄。(4)谷胱甘肽通过γ-谷氨酰循环参与氨基酸的吸收。150.维生素B6即吡哆醛,其以磷酸酯形式即磷酸吡哆醛作为氨基酸转氨酶和氨基酸脱羧酶的辅酶。在氨基酸转氨基作用和联合脱氨基作用中,磷酸吡哆醛是氨基传递体,参与氨基酸的脱氨基作用,同样也参与体内非必需氨基酸的生成。作为氨基酸脱羧酶的辅酶,磷酸吡哆醛参与各种氨基酸的脱羧基代谢,许多氨基酸脱羧基后产生具有生理活性的胺类,发挥重要的生理功能,如谷氨酸脱羧基生成的γ-氨基丁酸是一种重要的抑制性神经递质,临床上常用维生素B6对小儿惊厥及妊娠呕吐进行辅助性治疗;半胱氨酸先氧化后脱羧可生成牛磺酸,其是结合型胆汁酸的重要组成成分;组氨酸脱羧基后生成的组胺是一种强烈的血管扩张剂,参与炎症、过敏等病理过程并具有刺激胃蛋白酶和胃酸分泌的作用;色氨酸先羟化后脱羧生成5-羟色胺,其在神经组织是一种抑制性神经递质,在外

20种氨基酸的英文、缩写以及功能【完整版本】

加粗为8种人体必需氨基酸 常见氨基酸的作用: 一. 甘氨酸(GLY) 1、降低血液中的胆固醇浓度,防治高血压 2、降低血液中的血糖值,防治糖尿病 3、能防治血凝、血栓 4、提高肌肉活力,防止胃酸过多 5、甜味为砂糖的0.8倍,对人体有补益等营养作用 二. 亮氨酸(LEU)

1、降低血液中的血糖值,对治疗头晕有作用 2、促进皮肤、伤口及骨头有愈合作用 3、如果缺乏时,会停止生长,体重减轻 三. 蛋(甲硫)氨酸(MET) 1、参与胆碱的合成,具有去脂的功能,防治动脉硬化高血脂症 2、有提高肌肉活力的功能 3、促进皮肤蛋白质和胰岛素的合?? 四. 酪氨酸(TYR) 1、造肾上腺激素、甲状腺激素和黑色素的必需氨基酸 2、可防治老年痴呆症 3、促进新陈代谢,增进食欲 4、对治疗胃溃疡等慢性疾病、神经性炎症及发育不良等效果 5、与色素形成有关系,缺乏时会利白化症 五. 组氨酸(HIS) 1、参与血球蛋白合成,促进血液生成 2、产生组氨、促进血管扩张,增加血管壁的渗透性 3、医治胃病、十二指肠等有特效 4、促进腺体分泌,对过敏性疫病有效果 5、可治疗消化性溃疡、发育不良等症状 6、对治疗心功能不全、心绞痛、降低血压、哮喘及类风湿关节炎有效果 六. 苏氨酸(THR) 人体必需,缺乏时会使人消瘦,甚至死亡 七. 丙氨酸(ALA) 1、能促进血液中酒精的代谢(分解)作用增强肝功能,有保肝护肝作用 2、甜味为砂糖的1.2倍 八. 异亮氨酸(ILE) 1、能维持机体平衡,治疗精神障碍 2、有促进食欲的增加和抗贫血的作用 3、如果缺乏时,会出现体力衰竭,昏迷等症状 九. 色氨酸(TRY) 1、促进血红蛋白的合成 2、防治癞皮病 3、促进生长,增加食欲 4、甜味为砂糖的35倍,配制生产的低塘食物等对糖尿病、肥胖病人食用较好 十. 胱氨酸(CYS) 1、有治疗脂肪肝和解毒效果

氨基酸对农作物的作用

氨基酸对农作物的作用 随科学技术的创新,化学家们让氨基酸登上农业的历史舞台,使它在无污染方面大显身手。氨基酸是蛋白质的基石,它们都含有一定量的氮素,正是农作物生长所必需的。把氨基酸制成的肥料,喷洒在农作物上,农作物像人吃了“补药”一样,茁壮成长,结出丰硕的果实;在蔬菜和瓜果上施用,也会使人得到满意的效果。日本科学家用脯氨酸万分之四的溶液喷洒到玉米上,玉米产量提高20%,只要它喷洒到水稻、黄瓜上,产量均提高15%。日本农业科技人员还将甘氨酸拌人无污染的磷、钾肥中,可增加农作物对磷、钾元素的吸收。甘氨酸本身也起到氮肥的作用美国科学家证明,甘氨酸对甘蔗的生长起特殊作用,如1亩地用85%的甘氨酸溶液0.2公斤洒喷,成熟时甘蔗的糖份可增加13%;此外,还可用谷氨酸钠溶液浸泡大豆种子,大豆生长旺盛,产量大增。氨基酸配成的农药功能十分良好。能起到植物“抗菌素”的作用。实践证明,直接使用各种氨基酸能有效地防、治农作物的各种疾病。如印度科学家辛格用低浓度的蛋氨酸喷在水稻上,防止了水稻腐根菌的侵害。同时蛋氨酸能杀灭黄瓜茎上的许多寄生病菌。日本科学家用万分之五浓度的DI一苏氨酸3O毫升喷于柠檬树上,有效地抵抗黑斑病。近年来许多国家的科学家研究发现把色氨酸、半胱氨酸、丙氨酸等喷洒于农作物上,都有抵抗和消灭农作物病菌的效果。氨基酸农药还有除草作用。根据近年统计,用氨基酸衍生物研究成功的除草剂,形成的专利已有100多个已形成一大类无污染的除草剂。七十年代初德国化学家合成了N—磷酸甲酯甘氨酸,在玉米和大豆田里试用表明,每亩只用1.5公斤就可消灭一切杂草。相继日本化学家合成一种广谱除草剂——硫代氨基酸,它可消灭一切杂草,而且对人畜无害。氨基酸农药可以灭虫或驱虫,例如南瓜子和使君子等药物作驱虫剂,现代化学家研究,其中有效成分就是氨基酸。80年代初美国科学家傲了一个试验,他用10%浓度的半胱氨酸和饱和蔗糖溶液拌合杀黄瓜蝇,20天后黄瓜蝇全部死亡。更有研究人员用4%的月桂酰肌氨酸杀灭体虱,两分钟后体虱全部死亡。氨基酸做成农药和化肥,从理论和实践上已知绝不会蛤环境、空气、水源、土壤造成污染,更不会使农产品(粮食、蔬菜、水果等)带有潜伏性的危害。在这知识创新、科技创新的时代里,农业生产无污染化已提到科技人员的面前,只有更新当前使用的化肥和农药。氨基酸的生理功能氨基酸通过肽键连接起来成为肽与蛋白质。氨基酸、肽与蛋白质均是有机生命体组织细胞的基本组成成分,对生命活动发挥着举足轻重的作用。某些氨基酸除可形成蛋白质外,还参与一些特殊的代谢反应,表现出某些重要特性。(1)赖氨酸赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。赖氨酸可以调节人体代谢平衡。赖文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。往食物中添加少量的赖氨酸,可以刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。赖氨酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。单纯性疱疹病毒是引起唇疱疹、热病性疱疹与生殖器疱疹的原因,而其近属带状疱疹病毒是水痘、带状疱疹和传染性单核细胞增生症的致病者。印第安波波利斯Lilly研究室在1979年发表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。长期服用赖氨酸可拮抗另一个氨基酸――精氨酸,而精氨酸能促进疱疹病毒的生长。(2)蛋氨酸蛋氨酸是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒

各种氨基酸的生产工艺

各种氨基酸的生产工艺 1、谷氨酸 (1)等电离交工艺方法——从发酵液中提取谷氨酸,即将谷氨酸发酵液降温并用硫酸调PH值至谷氨酸等电点(pH3.0- 3.2),温度降到10 以下沉淀,离心分离谷氨酸,再将上清液用硫酸调pH至1.5上732强酸性阳离子交换树脂,用氨水调上清液pH10进行洗脱,洗脱下来的高流分再用硫酸调pH1.0返回等电车间加入发酵液进行等电提取,离交车间的上柱后的上清液及洗柱水送去环保车间进行废水处理。 该工艺方法的缺点是:废水量大,治理成本高,酸碱用量大。 (2)连续等电工艺——将谷氨酸发酵液适当浓缩后控制40℃左右,连续加入有晶种的等电罐中,同时加入硫酸,控制等电罐中PH值维持在3.2左右,温度40℃进行结晶。 该工艺方法废的优点是:水量相对较少;缺点是:氨酸提取率及产品质量较差。 (3)发酵法生产谷氨酸的谷氨酸提取工艺——谷氨酸发酵液经灭菌后进入超滤膜进行超滤,澄清的谷氨酸发酵液在第一调酸罐中被调整pH值为3.20~3.25,然后进入常温的等电点连续蒸发降温结晶装置进行结晶,分离、洗涤,得到谷氨酸晶体和母液,将一部分母液进入脱盐装置,脱盐后的谷氨酸母液一部分与超滤后澄清的谷氨酸发酵液合并;另一部分在第二调酸罐中被调整pH值至4.5~7,蒸发、浓缩、再在第三调酸罐中调pH值至3.20~3.25后,进入低温的等电点连续蒸发降温结晶装置,使母液中的谷氨酸充分结晶出来,低温的等电点连续蒸发降温结晶装置排出的晶浆被分离、洗涤,得到谷氨酸晶体和二次母液。(4)水解等电点法 发酵液-----浓缩(78.9kPa,0.15MPa蒸汽)----盐酸水解(130 ℃,4h )----过滤-----滤液脱色-----浓缩-----中和,调pH至3.0-3.2(NaOH或发酵液) -----低温放置,析晶-------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (5)低温等电点法 发酵液-----边冷却边加硫酸调节pH4.0-4.5-----加晶种,育晶2h-----边冷却边加硫酸调至pH3.0-3.2------冷却降温------搅拌16h------4 ℃静置4h------离心分离 --------谷氨酸晶体 此工艺的优点:设备简单、废水量减少、生产成本低、酸碱用量省 (6)直接常温等电点法 发酵液-----加硫酸调节pH4.0-4.5-----育晶2-4h-----加硫酸调至pH3.5-3.8------育晶2h------加硫酸调至pH3.0-3.2------育晶2h------冷却降温------搅拌16-20h------沉淀2-4h-------谷氨酸晶体 此工艺的优点:设备简单、操作容易、生产周期短、酸碱用量省。 2、L-亮氨酸 (1)浓缩段 原料:蒸汽 将一次母液通入浓缩罐内,通入蒸汽,温度120度,气压-0.09Mpa,浓缩时间6h,结晶。终点产物:结晶液(去一次中和段) (2)一次中和段 辅料:硫酸,纯水 结晶液进入一次中和罐,通入硫酸,纯水,温度80,中和时间4h,过滤 终点产物:1,滤液(回收利用)2,滤渣(去氨解段)

蛋白质的生理功能

蛋白质的生理功能 1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。 2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。 3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。 4、白蛋白:维持机体内的渗透压的平衡及体液平衡。 5、维持体液的酸碱平衡。 6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。 7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。 8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。 9、提供热能。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质。 蛋白质能供给能量。这不是蛋白质的主要功能,我们不能拿“肉”当“柴”烧。但在能量缺乏时,蛋白质也必须用于产生能量。另外,从食物中摄取的蛋白质,有些不符合人体需要,或者摄取数量过多,也会被氧化分解,释放能量。

二十种氨基酸英文缩写

英文名英文缩写单字母缩写结构式中文名Alanine ala a CH3-CH(NH2)-COOH 丙氨酸Arginine arg r HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH 精氨酸Asparagine asn n H2N-CO-CH2-CH(NH2)-COOH 天冬酰胺Aspartic acid asp d HOOC-CH2-CH(NH2)-COOH 天冬氨酸Cysteine cys c HS-CH2-CH(NH2)-COOH 半胱氨酸Glutamine gln q H2N-CO-(CH2)2-CH(NH2)-COOH 谷氨酰胺Glutamic acid glu e HOOC-(CH2)2-CH(NH2)-COOH 谷氨酸Glycine gly g NH2-CH2-COOH 甘氨酸Histidine his h NH-CH=N-CH=C-CH2-CH(NH2)-COOH 组氨酸|__________| Isoleucine ile i CH3-CH2-CH(CH3)-CH(NH2)-COOH 异亮氨酸Leucine leu l (CH3)2-CH-CH2-CH(NH2)-COOH 亮氨酸ysine lys k H2N-(CH2)4-CH(NH2)-COOH 赖氨酸Methionine met m CH3-S-(CH2)2-CH(NH2)-COOH 甲硫氨酸(蛋氨酸)Phenylalanine phe f Ph-CH2-CH(NH2)-COOH 苯丙氨酸Proline pro p NH-(CH2)3-CH-COOH 脯氨酸Serine ser s HO-CH2-CH(NH2)-COOH 丝氨酸Threonine thr t CH3-CH(OH)-CH(NH2)-COOH 苏氨酸Tryptophan trp w Ph-NH-CH=CH-CH2-CH(NH2)-COOH 色氨酸Tyrosine tyr y HO-p-Ph-CH2-CH(NH2)-COOH 酪氨酸Valine val v (CH3)2-CH-CH(NH2)-COOH 缬氨酸

生糖氨基酸的主要功能

生糖氨基酸的主要功能 生糖氨基酸也是氨基酸的一种表现形式,它主要是通过代谢转变为葡萄糖氨基酸,这种表现形式多达15种之多,对调理保健身体的作用比较好,尤其是在治疗和预防关节炎,疼痛,肿胀和僵硬方面的作用很好,对于骨质疏松患者出现耗损的情况,有很好的治疗作用,另外它能够强化软骨结构,具有预防关节炎的功效。 ★葡萄糖氨基酸的主要功能 ★1、舒缓因关节炎引起的疼痛、僵硬和肿胀 骨质疏松症使软骨耗损,最终导致碎裂剥落,关节少了软骨的缓冲,易产生痛苦的僵硬和发炎。而葡萄糖胺有助于修复受损软骨,刺激新软骨的生成,改善发炎症状,舒缓关节疼痛、僵硬及肿胀。 ★2、强化软骨结构,预防关节功能失效 随着身体老化,关节组织会严重磨损,葡萄糖胺可以保护并

强化软骨结构,预防因关节老化而产生的关节功能失效。 ★3、润滑关节及维持关节功能 葡萄糖胺可制造蛋白多糖润滑关节,防止骨关节摩擦疼痛,使关节活动自如。 ★1、葡萄糖酸钙有什么副作用啊? 一般情况下,葡萄糖是没有副作用的,是属于补钙较好的产品,只要是适量的服用就可以放心,如果没有效果或者效果不明显可能还是吸收的不好。你可以和橙汁或鱼肝油什么的一起喝促进钙的吸收。如果服用的人患有糖尿病,因体内摄入过量的葡萄糖而导致血糖浓度升高,会加重病情,可以这样解释。但是服用的人如果只是个孩子,那就没有什么太大的问题。 ★2、葡萄糖吃多了到底会怎么样? 葡萄糖的主要作用是用来提供能量的,特别是人在进行了剧烈的体育活动,或者大量的体力劳动之后,是可以迅速的提供能量,补充体力的。如果葡萄糖吃得太多,那么多余的葡萄糖就会

转化成人的代谢物,对身体没有太大的影响。但是葡萄糖也是糖分,含糖的食物吃得太多,对身体也是没有好处的,而且就会降低葡萄糖对人体功能的效果,所以建议身体健康的时候不需要吃。

化妆品常用词汇中英文对照

一、化妆品类别 二、功效类 三、彩妆类 四、常见名称 五、化妆品 INGREDIENTS(成份)中文标示简介 一、化妆品类别 护?? 肤:skin care 洗面奶:facial cleanser/face wash(Foaming,milky,cream,Gel) 爽肤水:toner/astringent 紧肤水:firming lotion 柔肤水:toner/smoothing toner (facial mist/facial spray/comple xion mist) 护肤霜:moisturizers and creams 精华:serum/essence 喷雾:spa water/spray 乳液:fluid 保?? 湿:moisturizer 隔离霜,防晒:sun screen/sun block 美白:whitening 露:lotion,霜:cream 日霜:day cream 晚霜:night cream 眼部GEL: eye gel 面膜: facial mask/masque 眼膜: eye mask 护唇用:Lip care

口红护膜:Lip coat 磨砂膏: facial scrub 去黑头: (deep) pore cleanser/striper pore refining 去死皮: Exfoliating Scrub 润肤露(身体):bodylotion/moisturizer 护手霜: hand lotion/moisturizer 沐浴露: body wash 二、功效类 Acne/Spot(青春痘用品) Active(赋活用) After sun(日晒后用品) Alcohol-free(无酒精) Anti-(抗、防) Anti- wrinkle(抗老防皱) Balancing(平衡酸硷) Clean-/Purify-(清洁用) Combination(混合性皮肤) Dry(干性皮肤) Essence(精华液) Facial(脸部用) Fast/Quick dry(快干) Firm(紧肤) Foam(泡沫) Gentle(温和的)

世界氨基酸行业六大生产商

世界氨基酸行业六大生产商 日本Ajinomoto(味之素)、德国Deguasa、台湾地区的味丹国际、韩国CJ公司、美国ADM公司和日本KyowaHakko是世界主要氨基酸生产商,现将这些企业在科研、生产和应用等领域的最新发展动向介绍如下,以飨读者。 日本Ajinomoto公司——创新开拓 日本Ajinomoto公司是世界上最大的氨基酸生产企业,包括日本在内分别在16个国家和地区建有102个工厂,在23个国家和地区投资经营。其主要产品除味素和核苷酸外,还有赖氨酸、苏氨酸、色氨酸等饲料氨基酸和甜味剂、药用产品、化妆品添加剂等。 Ajinomoto公司是世界最大的味精生产商,年产味精50多万吨,占世界总量超过30%。2004年财政年,该公司饲料级赖氨酸总产量约27万吨,占全球市场的35%;饲料级苏氨酸占70%,饲料级色氨酸占70%—80%。 2004年,Ajinomoto在巴西的饲料级赖氨酸生产能力已由原来的4.8万吨扩产到7.2万吨,并又开始着手再建一个有5.3万吨产能的饲料级赖氨酸生产厂。在中国,Ajinomoto公司计划于2005年12月扩建川化集团的饲料级赖氨酸,产能为原来的2倍,以满足市场日益增加的需求。 2005年财政年下半年,Aji nomoto公司将在巴西的里梅拉(Limeira)开始生产谷氨酰胺。财政年2006年下半年,在新厂将开始生产支链氨基酸(BCAA)。目前其总的年产能力为4000吨,除了满足巴西市场外,产品还销往北美、欧洲、亚洲和其他地区。在氨基酸需求迅猛的市场上,该厂也将成为世界生产药用和食用最大的氨基酸生产企业。之所以在新厂生产谷氨酰胺和BCAA,主要是为了满足近年来全球医药和食品业日益对这两种产品需求的增

各种氨基酸的作用

天然的氨基酸现已经发现的有300多种,其中人体所需的氨基酸约有22种,分非必需氨基酸和必需氨基酸(人体无法自身合成)。另有酸性、碱性、中性、杂环分类,是根据其化学性质分类的。1、必需氨基酸(essential amino acid):指人体(或其它脊椎动物)不能合成或合成速度远不适应机体的需要,必需由食物蛋白供给,这些氨基酸称为必需氨基酸。共有8种其作用分别是:①赖氨酸(Lysine ):促进大脑发育,是肝及胆的组成成分,能促进脂肪代谢,调节松果腺、乳腺、黄体及卵巢,防止细胞退化;②色氨酸(Tryptophan):促进胃液及胰液的产生;③苯丙氨酸(Phenylalanine):参与消除肾及膀胱功能的损耗; ④蛋氨酸(又叫甲硫氨酸)(Methionine);参与组成血红蛋白、组织与血清,有促进脾脏、胰脏及淋巴的功能;⑤苏氨酸(Threonine):有转变某些氨基酸达到平衡的功能;⑥异亮氨酸(Isoleucine ):参与胸腺、脾脏及脑下腺的调节以及代谢;脑下腺属总司令部作用于甲状腺、性腺;⑦亮氨酸(Leucine ):作用平衡异亮氨酸;⑧缬氨酸(Valine):作用于黄体、乳腺及卵巢。8种人体必需氨基酸的记忆口诀①"借一两本蛋色书来" 谐音: 借(缬氨酸), 一(异亮氨酸),两(亮氨酸),本(苯丙氨酸),蛋(蛋氨酸),色(色氨酸),书(苏氨酸),来(赖氨酸). ②"笨蛋来宿舍,晾一晾鞋" 笨(苯丙氨酸)蛋(蛋氨酸)来(赖氨酸)宿(苏氨酸)舍(色氨酸),晾(亮氨酸)一晾(异亮氨酸)鞋(缬氨酸)③”携带一两本甲硫色书来”携(缬氨酸)带一(异亮氨酸)两(亮氨酸)本(苯丙氨酸)甲硫(甲硫氨酸)色(色氨酸)书(苏氨酸)来(赖氨酸) 其理化特性大致有:1)都是无色结晶。熔点约在230°C 以上,大多没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中,除胱氨酸、酪氨酸、二碘甲状腺素外,均溶于水;除脯氨酸和羟脯氨酸外,均难溶于乙醇和乙醚。2)有碱性[二元氨基一元羧酸,例如赖氨酸(lysine)];酸性[一元氨基二元羧酸,例如谷氨酸(Glutamic acid)];中性[一元氨基一元羧酸,例如丙氨酸(Alanine)]三种类型。大多数氨基酸都呈显不同程度的酸性或碱性,呈显中性的较少。所以既能与酸结合成盐,也能与碱结合成盐。3)由于有不对称的碳原子,呈旋光性。同时由于空间的排列位置不同,又有两种构型:D型和L型,组成蛋白质的氨基酸,都属L型。由于以前氨基酸来源于蛋白质水解(现在大多为人工合成),而蛋白质水解所得的氨基酸均为α-氨基酸,所以在生化研究方面氨基酸通常指α-氨基酸。至于β、γ、δ……ω等的氨基酸在生化研究中用途较小,大都用于有机合成、石油化工、医疗等方面。氨基酸及其衍生物品种很多,大多性质稳定,要避光、干燥贮存。2、非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。例如甘氨酸、丙氨酸等氨基酸。1,2萘醌、4磺酸钠在碱性溶液深红色(检验α-氨基酸)肽键(peptide bond):一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。是氨基酸通过肽键相连的化合物,蛋白质不完全水解的产物也是肽。肽按其组成的氨基酸数目为2个、3个和4个等不同而分别称为二肽、三肽和四肽等,一般含10个以下氨基酸组成的称寡肽(oligopeptide),由10个以上氨基酸组成的称多肽(polypeptide),它们都简称为肽。肽链中的氨基酸已不是游离的氨基酸分子,因为其氨基和羧基在生成肽键中都被结合掉了,因此多肽和蛋白质分子中的氨基酸均称为氨基酸残基(amino acid residue)。多肽有开链肽和环状肽。在人体内主要是开链肽。开链肽具有一个游离的氨基末端和一个游离的羧基末端,分别保留有游离的α-氨基和α-羧基,故又称为多肽链的N端(氨基端)和C端(羧基端),书写时一般将N端写在分子的左边,并用(H)表示,并以此开始对多肽分子中的氨基酸残基依次编号,而将肽链的C端写在分子的右边,并用(OH)来表示。目前已有约20万种多肽和蛋白质分子中的肽段的氨基酸组成和排列顺序被测定了出来,其中不少是与医学关系密切的多肽,分别具有重要的生理功能或药理作用。多肽在体内具有广泛的分布与重要的生理功能。其中谷胱甘肽在红细胞中含量丰富,具有保护细胞膜结构及使细胞内酶蛋白处于还原、活性状态的功

人体20种氨基酸的英文全名、缩写以及功能【完整版本】

中文名称甘氨酸 丙氨酸 缬氨酸英文名称 Glycine Alanine Valine Leucine Isoleucine Proline Phenylanine Tryptophan Methionine Tyrosine Serine Threonine Cystine Asparagine Glutamine Aspartic acid Glutamic acid

Lysine Argine Histidine三字母缩写Gly Ala Val Leu Ile Pro Phe Trp Met Tyr Ser Thr Cys Asn Gln Asp Glu Lys

Arg His单字母GAVLIPFWMY STCNQD EK RH非极性 R侧链组 (9种)亮氨酸 异亮氨酸 脯氨酸 苯丙氨酸 色氨酸 蛋氨酸(甲硫氨酸)酪氨酸 极性不带电荷R侧链组(6种)丝氨酸 苏氨酸 半胱氨酸 天冬酰胺 谷氨酰胺 极性带负电

荷(2种) 极性带正电 荷(3种)天冬氨酸 谷氨酸 赖氨酸 精氨酸 组氨酸 加粗为8种人体必需氨基酸 常见氨基酸的作用: 一.甘氨酸(GLY) 1、降低血液中的胆固醇浓度,防治高血压 2、降低血液中的血糖值,防治糖尿病 3、能防治血凝、血栓 4、提高肌肉活力,防止胃酸过多 5、甜味为砂糖的 0."8倍,对人体有补益等营养作用 二.亮氨酸(LEU) 1/3 1、降低血液中的血糖值,对治疗头晕有作用 2、促进皮肤、伤口及骨头有愈合作用 3、如果缺乏时,会停止生长,体重减轻

三.蛋(甲硫)氨酸(MET) 1、参与胆碱的合成,具有去脂的功能,防治动脉硬化高血脂症 2、有提高肌肉活力的功能 3、促进皮肤蛋白质和胰岛素的合?? 四.酪氨酸(TYR) 1、造肾上腺激素、甲状腺激素和黑色素的必需氨基酸 2、可防治老年痴呆症 3、促进新陈代谢,增进食欲 4、对治疗胃溃疡等慢性疾病、神经性炎症及发育不良等效果 5、与色素形成有关系,缺乏时会利白化症 五.组氨酸(HIS) 1、参与血球蛋白合成,促进血液生成 2、产生组氨、促进血管扩张,增加血管壁的渗透性 3、医治胃病、十二指肠等有特效 4、促进腺体分泌,对过敏性疫病有效果 5、可治疗消化性溃疡、发育不良等症状 6、对治疗心功能不全、心绞痛、降低血压、哮喘及类风湿关节炎有效果 六."苏氨酸(THR) 人体必需,缺乏时会使人消瘦,甚至死亡 七.丙氨酸(ALA) 1、能促进血液中酒精的代谢(分解)作用增强肝功能,有保肝护肝作用

氨基酸概况主要供应商

氨基酸工业现状及趋势 世界上最大的氨基酸消费市场是饲料添加剂,氨基酸作为饲料添加剂主要有4 个方面的功效:①促进动物生长发育;②改善肉质,提高产量;③节省蛋白饲料,提高饲料转化率; ④降低成本,提高饲料利用率。目前国内用于饲料添加剂的氨基酸主要有赖氨酸、蛋氨酸、苏氨酸。其中赖氨酸和蛋氨酸占饲料工业的95% 以上,而苏氨酸的使用呈增长趋势,需求的增长促进了产量和产能的提高。表1 为近10 年来,世界三种氨基酸产量及主要生产商。 表1 近10年来世界三种氨基酸产量及主要生产商 品名1996年1999年2002年2006年主要生产商 DL-蛋氨酸35 50 55 65 德固萨、住友、诺伟司、安迪苏 L-赖氨酸30 60 65 80 味之素、ADM、巴斯夫、大成、德固萨、协和、希杰L-苏氨酸 2.5 3 4 12 味之素、ADM、德固萨、协和 1、蛋氨酸 近年来,国内外市场对蛋氨酸的需求逐年强劲增长,成为需求增长最快的氨基酸品种之一。1993年,全世界蛋氨酸产量为26万t,1999年达50万t,2002年为55万t。目前,全球的年产能约为100万t,年产量约为70万t。预计全球总产能会达到110万t/年左右,但产量不会超过70万t,市场仍将明显供过于求。蛋氨酸的生产主要集中在安迪苏、德固赛和诺伟司,约占世界产量的90%,其中诺伟司的产能最大。 1.1中国市场概况 在中国市场,每年都要从国外大量进口蛋氨酸,现已成为中国化学原料药进口的大宗产品,2003年进口量高达7万t,进口额过1亿美元。据专家预测,到2010年,全世界蛋氨酸需求将达到90万t,中国的需求量也将超过10万t。近年中国对蛋氨酸的需求量还将持续增长,但一定时期内依靠大量进口来满足。中国是世界第2大饲料生产国,市场需求的年增长率7%-8%,蛋氨酸基本依靠进口。在中国市场,日本公司占据了43%份额、德固赛为21%、诺伟司10%、安迪苏为21%,其他占5%。由于中国蛋氨酸市场快速扩张且竞争日趋激烈,国外蛋氨酸生产厂商均加大了在中国的销售力度。 目前,中国生产蛋氨酸在工艺技术、原料、设备、成本等方面还存在一些有待解决的问题,但火爆的市场已对企业产生了巨大的诱惑,已有企业着手蛋氨酸规模生产的研发、设计和规划。

蛋白质的主要生理功能和作用

蛋白质的主要生理功能和作用 张世林外语学院日语14.1 学号:201407030120 摘要本文阐述了蛋白质的定义概念、组成特点、结构性质、生理功能以及作用。 关键词历史定义组成特点结构性质功能 正文: 在18世纪,安东尼奥·弗朗索瓦(Antoine Fourcroy)和其他一些研究者发现蛋白质是一类独特的生物分子,他们发现用酸处理一些分子能够使其凝结或絮凝。当时他们注意到的例子有来自蛋清、血液、血清白蛋白、纤维素和小麦面筋里的蛋白质。荷兰化学家格利特·马尔德(Gerhardus Johannes Mulder)对一般的蛋白质进行元素分析发现几乎所有的蛋白质都有相同的实验公式。用“蛋白质”这一名词来描述这类分子是由Mulder的合作者永斯·贝采利乌斯于1838年提出。Mulder随后鉴定出蛋白质的降解产物,并发现其中含有为氨基酸的亮氨酸,并且得到它(非常接近正确值)的分子量为131Da。 对于早期的生物化学家来说,研究蛋白质的困难在于难以纯化大量的蛋白质以用于研究。因此,早期的研究工作集中于能够容易地纯化的蛋白质,如血液、蛋清、各种毒素中的蛋白质以及消化性和代谢酶(获取自屠宰场)。1950年代后期,Armour Hot Dog Co.公司纯化了一公斤纯的牛胰腺中的核糖核酸酶A,并免费提供给全世界科学家使用。

这一构想最早是由威廉·阿斯特伯里于1933年提出。随后,Walter Kauzman在总结自己对变性的研究成果和之前Kaj Linderstrom-Lang的研究工作的基础上,提出了蛋白质折叠是由疏水相互作用所介导的。1949年,弗雷德里克·桑格首次正确地测定了胰岛素的氨基酸序列,并验证了蛋白质是由氨基酸所形成的线性(不具有分叉或其他形式)多聚体。原子分辨率的蛋白质结构首先在1960年代通过X射线晶体学获得解析;到了1980年代,NMR也被应用于蛋白质结构的解析;近年来,冷冻电子显微学被广泛用于对于超大分子复合体的结构进行解析。截至到2008年2月,蛋白质数据库中已存有接近50,000个原子分辨率的蛋白质及其相关复合物的三维结构的坐标。 蛋白质是一种复杂的有机化合物,旧称“朊(ruǎn)”。氨基酸是组成蛋白质的基本单位,氨基酸通过脱水缩合连成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链有二十至数百个氨基酸残基(-R)不等;各种氨基酸残基按一定的顺序排列。蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种基本氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以一起,往往是通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。合成多肽的细胞器是细胞质中

氨基酸生产工艺

氨基酸生产工艺 主讲人:韩北忠 刘萍 氨基酸是构成蛋白成分 目前世界上可用发酵法生产氨基酸有20多种。 氨基酸 α 碳原子分别以共价键连接氢原子、羧基和氨基及侧链。侧链不同,氨基酸的性质不同。 氨基酸的用途 1. 食品工业: 强化食品(赖氨酸,苏氨酸,色氨酸于小麦中) 增鲜剂:谷氨酸单钠和天冬氨酸 苯丙氨酸与天冬氨酸可用于制造低热量二肽甜味剂(α-天冬酰苯丙氨酸甲酯),此产品1981年获FDA批准,现在每年产量已达数万吨。 2. 饲料工业: 甲硫氨酸等必需氨基酸可用于制造动物饲料 3. 医药工业: 多种复合氨基酸制剂可通过输液治疗营养或代谢失调 苯丙氨酸与氮芥子气合成的苯丙氨酸氮芥子气对骨髓肿瘤治疗有效,且副作用低。 4. 化学工业:谷氨基钠作洗涤剂,丙氨酸制造丙氨酸纤维。 氨基酸的生产方法 发酵法: 直接发酵法:野生菌株发酵、营养缺陷型突变发酵、抗氨基酸结构类似物突变株发酵、抗氨基酸结构类似物突变株的营养缺陷型菌株发酵和营养缺陷型回复突变株发酵。 添加前体法 酶法:利用微生物细胞或微生物产生的酶来制造氨基酸。 提取法:蛋白质水解,从水解液中提取。胱氨酸、半胱氨酸和酪氨酸 合成法:DL-蛋氨酸、丙氨酸、甘氨酸、苯丙氨酸。 传统的提取法、酶法和化学合成法由于前体物的成本高,工艺复杂,难以达到工业化生产的目的。 生产氨基酸的大国为日本和德国。 日本的味之素、协和发酵及德国的德固沙是世界氨基酸生产的三巨头。它们能生产高品质的氨基酸,可直接用于输液制剂的生产。 日本在美国、法国等建立了合资的氨基酸生产厂家,生产氨基酸和天冬甜精等衍生物。 国内生产氨基酸的厂家主要是天津氨基酸公司,湖北八峰氨基酸公司,但目前无论生产规模及产品质量还难于与国外抗衡。 在80年代中后期,我国从日本的味之素、协和发酵以技贸合作的方式引进输液制剂的制造技术和仿造产品, 1991年销售量为二千万瓶,1996年达六千万瓶,主要厂家有无锡华瑞,北京费森尤斯,昆明康普莱特,但生产原

氨基酸是什么、作用

什么是氨基酸? 1、氨基酸是构建生物机体的众多生物活性大分子之一是构建细胞、修复组织的基础材料被人体用于制造抗体蛋白以对抗细菌和病毒的侵染制造血红蛋白以传送氧气制造酶和激素以维持和调节新陈代谢氨基酸是制造精卵细胞的主体物质是合成神经介质的不可缺少的前提物质氨基酸能够为机体和大脑活动提供能源 2、氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 3、氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。 氨基酸对人体的作用: 1、构成人体的基本物质,是生命的物质基础。(构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。)构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、3.5.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物

中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。 其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。 胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 生命代谢的物质基础。(生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病。同样,如果人体内缺乏某些非必需氨基酸,会产生抗体代谢障碍。精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。总之,氨基酸在人

氨基酸的生理功能

氨基酸的生理功能 氨基酸通过肽键连接起来成为肽与蛋白质。氨基酸、肽与蛋白质均是有机生命体组织细胞的基本组成成分,对生命活动发挥着举足轻重的作用。 某些氨基酸除可形成蛋白质外,还参与一些特殊的代谢反应,表现出某些重要特性。(1)赖氨酸 赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。 赖氨酸可以调节人体代谢平衡。赖氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。往食物中添加少量的赖氨酸,可以

刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。 赖氨酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。 单纯性疱疹病毒是引起唇疱疹、热病性疱疹与生殖器疱疹的原因,而其近属带状疱疹病毒是水痘、带状疱疹和传染性单核细胞增生症的致病者。印第安波波利斯Lilly研究室在1979年发

表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。 长期服用赖氨酸可拮抗另一个氨基酸――精氨酸,而精氨酸能促进疱疹病毒的生长。 (2)蛋氨酸 蛋氨酸是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。 蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒的作用。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。

氨基酸生产工艺的上下游技术

氨基酸生产工艺的上下游技术

氨基酸生产工艺的上下游技术学院:国际学院专业:生物工程姓名: 李尚义学号:201048970115 摘要: 论述了氨基酸国内外生产现状、生物技术在氨基酸开发中的应用以及氨基酸发展前景,并提出我国氨基酸发展建议和了氨基酸废水主要组成特点及治理方法,重点对氨基酸废水处理工艺进行了详细分析和探讨,以及处理氨基酸生产废水的方法,必须把废水治理和综合利用相结合,才能实现清洁生产。 关键词: 氨基酸;生产技术;发展;废水;处理;工业化;氨基酸废水处理;水处理技术。 正文: 氨基酸是含氨基和羧基的有机化合物的统称,是构成生物体蛋白质的基本单位。蛋白质氨基酸有20种,非蛋白质氨基酸有400 多种,其衍生物和合成的短肽品种达数千种之多。氨基酸广泛应用于医药、食品、保健、饲料、化妆品、农药、肥料、制革、科学研究等领域。 氨基酸生产方法分为四种:生物资源提取法(蛋白质水解法) 、化学合成法、发酵法(分直接发酵法和前体添加发酵法) 、酶法。 其上游技术主要分为: (1) 氨基酸生物合成途径研究要想培育出某种氨基酸的产生菌,首先要了解此氨基酸的生物合成途径,关键酶的反馈调控机制,考虑解除方法,从而设计育种方案。 (2) 载体- 受体系统及克隆表达①获得受体。氨基酸工程菌受体主要是大肠杆菌和棒状杆菌家族,通常是通过诱变选育出的基础产率高的菌株; ②载体构建。有效的载体需要有在受体菌中可启动的复制起始位点,可从棒状杆菌家族内源小质粒中获得;载体所需的筛选标记及外源基因插入的多克隆位点,可从常用的克隆载体中获得; ③基因转移。通常采用的方法有:原生质体转化、转导、电转化、接合转移; ④外源基因克隆。通常使用营养缺陷型互补法; ⑤基因表达。 (3) 酶调控 ①酶量的调控。也可视为酶基因转录的调控,在氨基酸途径上关键酶的表达,受到调节基因产物和代谢终产物的共同影响,诱导物利用酶的浓度较高时的合成,而阻遏物抑制酶的合成; ②酶活性调节。酶的活性可受到代谢物的抑制,在达到一定浓度时,代谢产物可结合于酶上,酶由活性态聚合为无活性的复合物。 (4) 构建高效氨基酸产生菌 ①获得大量的前体物质。切断除目的氨基酸外的其它控制共用酶的终产物分枝合成途径,增加目的氨基酸前体物质的合成,可使氨基酸产量增加或减少其分解; ②酶量的提高。用高拷贝的克隆载体将目的基因在宿主菌中大量扩增,将得到的关键酶基因与高拷贝的表达载体相连,将重组质粒导回原始菌株,使酶产量

氨基酸的制备

氨基酸的制备方法 几乎所有的氨基酸分离纯化工艺均利用了氨基酸在不同的pH值时电荷量不同这一特性。氨基酸的分离纯化方法主要有:沉淀法、离子交换法、萃取法、吸附法、膜分离法及结晶法等。 1、沉淀法 沉淀法是最古老的分离、纯化方法,目前仍广泛应用在工业上和实验室中。它是利用某种沉淀剂使所需要提取的物质在溶液中的溶解度降低而形成沉淀的过程。该方法具有简单、方便、经济和浓缩倍数高的优点。氨基酸工业中常用沉淀法有等电点沉淀法,特殊试剂沉淀法和有机溶剂沉淀法。 1.1利用氨基酸的溶解度分离或等电点沉淀法 在生产中常利用各种氨基酸在水和乙醇等溶剂中溶解度的差异,将氨基酸彼此分离。如胱氨酸和酪氨酸在水中极难溶解,而其它氨基酸则比较易溶;酪氨酸在热水中溶解度大,而胱氨酸则无大差别。根据此性质,即可把它们分离出来,并且互相分开。另外,可以利用氨基酸的两性解离有等电点的性质。由于氨基酸在等电点时溶解度最小,最容易析出沉淀,所以利用溶解度法分离氨基酸时,也常结合等电点沉淀法。 1.2特殊试剂沉淀法 某些氨基酸可以与一些有机或无机化合物结合,形成结晶性衍生物沉淀,利用这种性质向混合氨基酸溶液中加入特定的沉淀剂,使目标氨基酸与沉淀剂沉淀下来,达到与其它氨基酸分离的目的。较为成熟的工艺有:揩氨酸与苯甲醛在碱性和低温条件下,可缩合成溶解度很小的苯亚甲基精氨酸,分离这种沉淀,用盐酸水解除去苯甲醛,即可得精氨酸盐酸盐;亮氨酸与邻一二甲苯一4一磺酸反应,生成亮氨酸的磺酸盐,后者与氨水反应得到亮氨酸;组氨酸与氯化汞作用生成组氨酸汞盐的沉淀,再经处理就可得到组氨酸。 特殊试剂沉淀法虽然操作简单、选择性强,但是由于沉淀剂回收困难,废液排放污染严重,残留沉淀剂的毒性等原因已逐渐被它方法取代。 2、离子交换法 离子交换法是利用不溶性高分子化合物(即离子交换树脂)对不同氨基酸吸附能力的差异对氨基酸混合物进行分组或实现单一成分的分离。离子交换树脂是一种具有离子交换能力的高分子化合物。它不溶于水、酸和碱,也不溶于普通有机溶剂,化学性质稳定。离子交换树脂作为固定相,本身具有正离子或负离子基团,和这些离子相结合的不同离子是可电离的交换基团(或称功能基团)。在离子交换过程中,溶液中的离子自溶液中扩散到交换树脂的表面,然后穿过表面,又扩散到交换树脂颗粒内,这些离子与交换树脂中的离子互相交换,交换出来的离

相关文档