文档库 最新最全的文档下载
当前位置:文档库 › 一元二次方程的解法经典例题精讲

一元二次方程的解法经典例题精讲

一元二次方程的解法经典例题精讲
一元二次方程的解法经典例题精讲

《一元二次方程的解法》经典例题精讲

例1解方程025x 2

=-.

分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.

解:025x 2=-, 25x 2=,

25x ±=,x =±5.

∴5x 5x 21-==,.

例2解方程

2)3x (2=+. 分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.

解:2)3x (2=+,

23x ±=+,

23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.

例3解方程

081)2x (42=--. 分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.

解:081)2x (42=--

整理,81)2x (42=-,

481)2x (2=

-, 29

2x ±=-, ∴

25x 213x 21-==,. 注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;

若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.

例4解方程02x 3x 2=+-.

分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:

02x 3x 2=+-,

(x -2)(x -1)=0,

x -2=0,x -1=0,

∴2x 1x 21==,.

解法二:

∵a =1,b =-3,c =2,

01214)3(ac 4b 22>=??--=-, ∴21

3x ±=.

∴1x 2x 21==,.

注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△<0,则方程无解,就不必解了.

例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.

分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程

为关于x 的方程,即x 为未知数,m ,n 为已知数.在确定0ac 4b 2≥-的情况下,

利用公式法求解.

解:把原方程左边展开,整理,得

0)n mn m 2(mx 3x 222=--+-.

∵a =1,b =-3m ,22n mn m 2c --=,

)n mn m 2(14)m 3(ac 4b 2222--??--=- 22n 4mn 4m ++=

0)n 2m (2≥+=. ∴

2)n 2m (m 3x 2

++= 2)

n 2m (m 3+±=.

∴n m x n m 2x 21-=+=,.

注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2

-的值,然后求解.但解字母系数方程时要注意:(1)哪个字母代表未知数,也就是关于哪个未知数的方程;(2)不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;

(3)在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.

例6用配方法解方程x 73x 22

=+.

分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.

解:x 73x 22=+, 023x 27x 2=+-,

0234747x 27x 2

2=+??? ??-??? ??+-2, 162547x 2

=??? ??-, ∴4547x ±=-. ∴

21x 3x 21==,.

注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.

例7不解方程,判别下列方程的根的情况:

(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.

分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=?的值的

符号就可以了.

解:

(1)∵a =2,b =3,c =-4, ∴

041)4(243ac 4b 22>=-??-=-. ∴方程有两个不相等的实数根.

(2)∵a =16,b =-24,c =9,

∴09164)24(ac 4b 2

2=??--=-.

∴方程有两个相等的实数解.

(3)将方程化为一般形式0x 75x 52=-+, 05x 7x 52=+-.

∵a =4,b =-7,c =5,

554)7(ac 4b 22??--=- =49-100

=-51<0.

∴方程无实数解.

注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.

例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.

分析:根据韦达定理

a c x x a

b x x 2121=?-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.

解:设另一根为,则

5522, ∴

53x 2-=,k =-7.

即方程的另一根为,k 的值为-7.

注意:一元二次方程的两根之和为,两根之积为.

例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的

(1)平方和;(2)倒数和. 分析:已知

21x x 23x x 2121-=?-=+,.要求(1)2221x x +,(2)21x 1x 1+, 关键是把

2221x x +、21x 1x 1+转化为含有2121x x x x ?+、的式子. 因为两数和的平方,等于两数的平方和加上这两数积的2倍,即

ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出(1).同样,可用两数和与积表示两数的倒数和.

解:

(1)∵

21x x 23x x 2121-=?-=+,, ∴212212221x x 2)x x (x x -+=+

??? ??--??? ??-=212232 149+=

; (2)2112

2

1x x x x x 1x 1+=+ 212

3

--

= =3.

注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.

例10已知方程0m x 4x 22=++的两根平方和是34,求m 的值.

分析:已知34x x 2m x x 2x x 2

2212121=+=?-=+,,,求m 就要在上面三个式

子中设法用222121x x x x ++和来表示,m 便可求出.

解:设方程的两根为21x x 、,则

22121.

∵212212221x x 2)x x (x x -+=+,

∴)x x ()x x (x x 2222122121+-+=

34)2(2--=

=-30. ∵

2m x x 21=,

∴m =-30. 注意:解此题的关键是把式子2221x x +变成含2121x x x x 、+的式子,从而求得

m 的值.

例11求一个一元二次方程,使它的两个根是2、10.

分析:因为任何一元二次方程都可化为(二次项系数为1)0q px x 2=++的形

式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=?-=+,.将p 、

q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=?++-.

解:设所求的方程为0q px x 2=++.

∵2+10=-p ,2×10=q ,

∴p =-12,q =20.

∴所求的方程为020x 12x 2=+-.

注意:以21x x 、为根的一元二次方程不止一个,但一般只写出比较简单的一个.

例12已知两个数的和等于8,积等于9,求这两个数.

分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-8,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.

解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.

∵q x x p 8x x 2121=?-==+,,

∴方程为09x 8x 2=+-. 解这个方程得74x 74x 21-=+=,, ∴这两个数为7474-+和.

例13如图22-2-1,在长为32m ,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2

m 540,那么道路的宽度应是多少

分析:设道路的宽度为x m ,则两条道路的面积和为2

x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.

解:设道路的宽度为x m ,则

2032x x 20x 325402?=-++.

0100x 52x 2=+-, (x -2)(x -50)=0,

x -2=0,x -50=0,

∴50x 2x 21==,.

∵x =50不合题意,

∴取x =2.

答:道路的宽度为2m .

注意:两条道路重合了一部分,重合的面积为.因此计算两条道路的面积和时应减去重合面积.

例14某钢铁厂去年1月份钢的产量为5000吨,3月份上升到7200吨,求这两个月平均每月增长的百分率是多少

分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(1+x),增长两次后的产量是2

)x 1(5000+,….增长n 次后的产量b 是

n )x 1(5000b +=. 这就是重要的增长率公式.

解:设平均每月增长的百分率为x .则

7200)x 1(50002=+,

2536)x 1(2=

+, 56

x 1±=+,

∴22x 20x 21.,.-==(不合题意,舍去).

答:平均每月增长的百分率是20%.

注意:解方程时,由1+x 的值求x ,并舍去负值.

一元二次方程经典测试题(附答案解析)

. . . 一元二次方程测试题 考试范围:一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x(x﹣2)=3x的解为() A.x=5 B.x1=0,x2=5 C.x1=2,x2=0 D.x1=0,x2=﹣5 2.下列方程是一元二次方程的是() A.ax2+bx+c=0 B.3x2﹣2x=3(x2﹣2)C.x3﹣2x﹣4=0 D.(x﹣ 1)2+1=0 3.关于x的一元二次方程x2+a2﹣1=0的一个根是0,则a的值为() A.﹣1 B.1 C.1或﹣1 D.3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是() A.12(1+x)=17 B.17(1﹣x)=12 C.12(1+x)2=17 D.12+12(1+x)+12(1+x)2=17 5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是() A.2秒钟B.3秒钟C.4秒钟D.5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为() A.x(x+12)=210 B.x(x﹣12)=210 C.2x+2(x+12)=210 D.2x+2(x﹣12)=210 7.一元二次方程x2+bx﹣2=0中,若b<0,则这个方程根的情况是() A .有两个正根B.有一正根一负根且正根的绝对值大 C.有两个负根D.有一正根一负根且负根的绝对值大 8.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为() A.﹣1 B.或﹣1 C.D.﹣或1 9.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根B.有两个负根 C.有一正根一负根且正根绝对值大D.有一正根一负根且负根绝对值大 10.有两个一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中a﹣c≠0,以下列四个结论中,错误的是() A.如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根 B.如果方程M有两根符号相同,那么方程N的两根符号也相同 C.如果5是方程M的一个根,那么是方程N的一个根 D.如果方程M和方程N有一个相同的根,那么这个根必是x=1 11.已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是() A.7 B.11 C.12 D.16

一元二次方程专题复习讲义(知识点-考点-题型总结)-----hao---use--ok

一元二次方程专题复习 一、知识结构: 一元二次方程?? ???*?韦达定理根的判别解与解法 二、考点精析 考点一、概念 (1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。 (2)一般表达式:)0(02≠=++a c bx ax ⑶难点:如何理解 “未知数的最高次数是2”: ①该项系数不为“0”; ②未知数指数为“2”; ③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。 典型例题: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。 例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为 。 针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程, ⑴求m 的值;⑵写出关于x 的一元一次方程。 ★★3、若方程()112=?+ -x m x m 是关于x 的一元二次方程,则m 的取值范 围是 。 ★★★4、若方程2x2=0是一元二次方程,则下列不可能的是( ) 2 21 C21 1 考点二、方程的解 ⑴概念:使方程两边相等的未知数的值,就是方程的解。 ⑵应用:利用根的概念求代数式的值; 典型例题: 例1、已知322-+y y 的值为2,则1242++y y 的值为 。 例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根, 则m 的值为 。 针对练习: ★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 ★2、已知关于x 的方程022=-+kx x 的一个解与方程 311=-+x x 的解相同。 ⑴求k 的值; ⑵方程的另一个解。

一元二次方程计算题_解法练习题(四种方法)

一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3 、9642=-x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、 x 2+4x -12=0 3、0862=+-x x 4、03072=--x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x

7、()02152 =--x 8、0432=-y y 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、36 31352=+x x 15、()()213=-+y y 16、)0(0)(2≠=++-a b x b a ax 17、03)19(32 =--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x

一元二次方程应用题经典题 型汇总含答案

z一元二次方程应用题经典题型汇总 一、增长率问题 例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%) (1+x)2=193.6, 即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去). 答 这两个月的平均增长率是10%. 说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n. 二、商品定价 例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少? 解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0, 解这个方程,得a1=25,a2=31. 因为21×(1+20%)=25.2,所以a2=31不合题意,舍去. 所以350-10a=350-10×25=100(件). 答 需要进货100件,每件商品应定价25元. 说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题 例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税) 解 设第一次存款时的年利率为x. 则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得 90x2+145x-3=0. 解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去. 答 第一次存款的年利率约是2.04%. 说明 这里是按教育储蓄求解的,应注意不计利息税. 四、趣味问题 例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗? 解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为 (x+0.1+1.4)m. 则根据题意,得 (x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0. 解这个方程,得x1=-1.8(舍去),x2=1. 所以x+1.4+0.1=1+1.4+0.1=2.5. 答 渠道的上口宽2.5m,渠深1m.

一元二次方程典型例题解析

龙文教育学科辅导学案 教师: 学生: 年级: 日期:2013. 星期: 时段: 学情分析 课 题 一元二次方程章节复习及典型例题解析 学习目标与 考点分析 学习目标:1、通过对典型例题、自身错题的整理,抓住本章的重点、突破学习的难点; 2、通过灵活运用解方程的方法,体会四种解法之间的联系与区别,进一步熟练根据方程特征找出最优解法; 3、通过实际问题的解决,进一步熟练运用方程解决实际问题,体会方程思想在解决 问题中的作用 考点分析:1一元二次方程的定义 、解法、及根与系数的关系 学习重点 理解并掌握一元二次方程的概念及解法 学习方法 讲练说相结合 学习内容与过程 一 回顾梳理旧的知识点(这些知识点必须牢牢掌握) 一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程及解法经典习题及解析

一元二次方程及解法经典习题及解析 知识技能: 一、填空题: 1.下列方程中是一元二次方程的序号是 . 42=x ① 522=+y x ② ③01332=-+x x 052=x ④ 5232=+x x ⑤ 412=+x x ⑥ x x x x x x 2)5(0143223-=+=+-。。。。⑧⑦ 2.已知,关于2的方程12)5(2=-+ax x a 是一元二次方程,则a 3.当=k 时,方程05)3()4(22=+-+-x k x k 不是关于X 的一元二次方程. 4.解一元二次方程的一般方法有 , , , · 5.一元二次方程)0(02=/=++a c bx ax 的求根公式为: . 6.(2004·沈阳市)方程0322=--x x 的根是 . 7.不解方程,判断一元二次方程022632 =+--x x x 的根的情况是 . 8.(2004·锦州市)若关于X 的方程052=++k x x 有实数根,则k 的取值范围是 . 9.已知:当m 时,方程0)2()12(22=-+++m x m x 有实数根. 10.关于x 的方程0)4(2)1(222=++-+k kx x k 的根的情况是 . 二、选择题: 11.(2004·北京市海淀区)若a 的值使得1)2(42 2-+=++x a x x 成立,则a 的值为( ) A .5 8.4 C .3 D .2 12.把方程x x 332-=-化为02=++c bx ax 后,a 、b 、c 的值分别为( ) 3.3.0.--A 3.3.1.--B 3.3.1.-C 3.3.1.--D 13.方程02=+x x 的解是( ) x A .=土1 0.=x B 1,0.21-==x x C 1.=x D

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

2.2《一元二次方程的解法》专题训练题及答案

湘教版九年级数学上册 第2章 反比例函数 一元二次方程 2.2 一元二次方程的解法 根据平方根的意义解一元二次方程 专题训练题 1.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( ) A .2 B .0 C .0或2 D .0或-2 2.若关于x 的一元二次方程ax 2+bx +c =0有一个根为1,则下列结论正确的是( ) A .a +b +c =1 B .a +b +c =0 C .a -b +c =0 D .a -b +c =1 3.已知m 是一元二次方程x 2-x -1=0的一个根,那么代数式m 2-m 的值等于( ) A .1 B .0 C .-1 D .2 4.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根-b ,则a -b 的值为( ) A .1 B .-1 C .0 D .-2 5.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34 B .m ≥0 C .m ≥1 D .m ≥2 6.方程x 2-3=0的根是( ) A .x =3 B .x 1=3,x 2=-3 C .x = 3 D .x 1=3,x 2=- 3 7.一元二次方程(x +6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( ) A .x -6=-4 B .x -6=4 C .x +6=4 D .x +6=-4 8.方程-4x 2+1=0的解是( ) A .x =12 B .x =-12 C .x =±12 D .x =±2 9.方程(x -4)2=11的根为( ) A .x 1=-4+11,x 2=-4-11 B .x 1=4+11,x 2=4-11 C .x 1=11+4,x 2=11-4 D .x 1=4+11,x 2=-4-11 10.对于形如(x +m )2=n 的方程,它的解的正确表述为( ) A .都能用直接开平方法求解得x =-m ±n B .当n ≥0时,x =m ±n C .当n ≥0时,x =-m ±n D .当n ≥0时,x =±n -m 11.下列方程中,适合用直接开平方法求解的是( ) A .x 2+5x +1=0 B .x 2-6x -4=0 C .(x +3)2=16 D .(x +2)(x -2)=4x 12.方程4x 2-81=0的解为________. 13.解下列方程: (1)16x 2=25; (2)(2x +1)2-1=0.

一元二次方程概念和解法测试题

一元二次方程概念与解法测试题 姓名: 得分: ⑤2 2230x x x +-=;⑥x x 322 +=;⑦231223x x -+= ;是一元二次方程的是 。 1. 把下列一元二次方程化成一般形式,并写出相应的二次项系数、一次项系数、常数项: 3.下列关于x 的方程中,一定是一元二次方程的是( ) A .2(2)210m x x ---= B .2530k x k ++= C 21203x --= D.22 340x x +-= 4、已知关于x 的一元二次方程5)12(2 =+--a x a x 的一个解为1,则a= 。 5.方程22(4)(2)310m x m x m -+-+-=,当m = 时,为一元一次方程; 当m 时,为一元二次方程。 6.已知关于x 的一元二次方程22(2)340m x x m -++-=有一个解是0,则m = 。 8、2 2 ___)(_____6+=++x x x ; 2 2 ____)(_____3-=+-x x x 9、方程0162 =-x 的根是 ; 方程 0)2)(1(=-+x x 的根是 ; 10、如果二次三项式16)122 ++-x m x ( 是一个完全平方式,那么m 的值是_______________. 11、下列方程是关于x 的一元二次方程的是( ); A 、02 =++c bx ax B 、 2112 =+x x C 、122 2-=+x x x D 、)1(2)1(32+=+x x 12、方程()()2 4330x x x -+-=的根为( ); (A )3x = (B )125x = (C )12123,5 x x =-= (D )1212 3,5x x == 13、解下面方程:(1)()2 25x -=(2)2 320x x --=(3)2 60x x +-=,较适当的方法分别为( ) (A )(1)直接开平法方(2)因式分解法(3)配方法(B )(1)因式分解法(2)公式法(3)直接开平方法 (C )(1)公式法(2)直接开平方法(3)因式分解法(D )(1)直接开平方法(2)公式法(3)因式分解法

一元二次方程典型例题整理版

一元二次方程 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法 . 难度训练: 1、如果二次三项式16)122++-x m x ( 是一个完全平方式,那么m 的值是_______________.

一元二次方程及一元二次方程的解法测试题(绝对经典)

. 第二章一元二次方程单元测验 一、选择题:(每小题3分,共36分) 1. 下列方程中是一元二次方程的是 ( ) (A )22)1(2-=-x x (B )01232=+-x x (C )042=-x x (D )02352 =-x x 2. 方程1)14(2 =-x 的根为( ) (A )4121==x x (B )2121==x x (C ),01=x 212=x (D ),2 1 1-=x 02=x 3. 解方程 7(8x + 3)=6(8x + 3)2 的最佳方法应选择( ) (A )因式分解法 (B )直接开平方法 (C )配方法 (D )公式法 4. 下列方程中, 有两个不相等的实数根的方程是( ) (A )x 2 –3x + 4=0 (B )x 2–x –3=0 (C )x 2–12x + 36=0 (D )x 2–2x + 3=0 5、已知m是方程012 =--x x 的一个根,则代数m2 -m的值等于 ( ) A 、1 B 、-1 C 、0 D 、2 6、若方程0152 =--x x 的两根为的值为则 、212111,x x x x +( ) A 、5 B 、51 C 、5- D 、5 1- 7. 以知三角形的两边长分别是2和9, 第三边的长是一元二次方程x 2 –14x + 48=0的解, 则这个三角形 的周长是( )(A )11 (B )17 (C )17或19 (D )19 8. 下列说法中正确的是 ( )(A )方程2 80x -=有两个相等的实数根; (B )方程252x x =-没有实数根;(C )如果一元二次方程20ax bx c ++=有两个实数根,那么0?=; (D )如果a c 、异号,那么方程2 0ax bx c ++=有两个不相等的实数根. 9. 若一元二次方程(1–2k)x 2 + 12x –10=0有实数根, 则K 的最大整数值为( ) (A )1 (B )2 (C )–1 (D )0 10.把方程2x 2 -3x+1=0化为(x+a)2 =b 的形式,正确的是( ) A. 23162x ??- = ???; B.2312416x ??-= ???; C. 2 31416x ? ?-= ? ?? ; D.以上都不对 11、 若方程02 =++q px x 的两个实根中只有一个根为0,那么 ( ) (A )0==q p ; (B )0,0≠=q p ; (C )0,0=≠q p ; (D )0,0≠≠q p . 12、下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A . 若x 2=4,则x =2 B .方程x (2x -1)=2x -1的解为x =1 C .若x 2 +2x +k =0有一根为2,则8=-k D .若分式1 2 32-+-x x x 值为零,则x =1,2 二、填空题:(每小题3分,共30分) 1、方程()()-267-x 5x =+,化为一般形式为 ,其中二次项系数和一次项系数的和为 。 2. 当x =________时,分式1 4 32+--x x x 的值为零。 3. 若关于x 的方程02)1(2 =+--m mx x m 有实数根,则m 的取值范围是______ 4.若方程042 2 =++m x x ,则m= . 5.已知0822 =--x x , 那么=--7632 x x _______________. 6. 若关于x 的一元二次方程02 =++c bx ax (a ≠0)的两根分别为1,—2,则b a -的值为______. 7. 若2 2 2 (3)25a b +-=,则22 a b +=____ 8.若一元二次方程02 =++c bx ax 中,024=+-c b a ,则此方程必有一根为________. 9、若两个连续整数的积是20,则他们的和是________。 10.某企业前年的销售额为500万元,今年上升到720万元,如果这两年平均每年增长率相同,则去年销售额为 11. 如果x x 12、是方程x x 2 720-+=的两个根,那么x x 12+=____________。 13. 已知一元二次方程x x 2 350--=的两根分别为x x 12、,那么x x 12 22 +的值是____。 14. 若方程x x k 2 20-+=的两根的倒数和是 8 3 ,则k =____________。 15.已知关于x 的方程(2k+1)x 2 -kx+3=0,当k______时,?方程为一元二次方程,? 当k______时,方程为一元一次方程,其根为______.

一元二次方程经典考题难题

一元二次方程经典考题难题 用适当的方法解下列方程 16)5(42=-x 0)12(532=++x x 04222=-+x x 22)3(4)12(+=-x x 9)32(4)32(122++=+x x 11.02.02=+x x 0)2(2)2)(1(3)1(222=---+++x x x x 6)53)(43(22=++++x x x x x x x 9)1(22=- 20)7)(5)(3)(1(=++++x x x x

1、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac 4b 2 -=△和完全平方式2)2(b at M +=的关系式() A △=M B △>M C △<M D 大小关系不能确定 2、若关于x 的一元二次方程02=++c bx ax 中a,b,c 满足9a-3b+c=0,则该方程有一根是______ 3、已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______ 4、在实数范围内因式分解:=--742x x __________________ 5、已知03442=+--x x ,则=-+31232x x __________________ 6、m mx x ++24是一个完全平方式,则m=________________________ 7、已知,)2 1(822m x a x ax ++=++则a 和m 的值分别是__________________ 8、当k=_________时,方程012)3(2=++--k x x k 是关于x 的一元二次方程? 9、关于x 的方程032)4()16(2 2=++++-m x m x m 当m______时,是一元一次方程:当m______时,是一元一次方程。 10、已知012=--x x ,则2009223++-x x 的值为__________ 11、已知012)()(22222=-+++y x y x ,则22y x +=_______ 12、试证明关于x 的方程012)208(22=+++-ax x a a ,无论a 取何值,该方程都是一元二次方程

小专题(一)-一元二次方程的解法

专题(一)一元二次方程的解法 1.用直接开平方法解下列方程: (1)x2-16=0;(2)3x2-27=0; (3)(x-2)2=9;(4)(2y-3)2=16. 2.用配方法解下列方程: (1)x2-4x-1=0; (2)2x2-4x-8=0; (3)3x2-6x+4=0; (4)2x2+7x+3=0.

3.用公式法解下列方程: (1)x2-23x+3=0; (2)-3x2+5x+2=0; (3)4x2+3x-2=0; (4)3x=2(x+1)(x-1). 4.用因式分解法解下列方程: (1)x2-3x=0; (2)(x-3)2-9=0;

(3)(3x-2)2+(2-3x)=0; (4)2(t-1)2+8t=0; (5)3x+15=-2x2-10x; (6)x2-3x=(2-x)(x-3). 5.用合适的方法解下列方程: (1)4(x-3)2-25(x-2)2=0; (2)5(x-3)2=x2-9;

(3)t 2-22t +18=0. 参考答案 1.(1)移项,得x 2=16,根据平方根的定义,得x =±4,即x 1=4,x 2=-4. (2)移项,得3x 2=27,两边同除以3,得x 2=9,根据平方根的定义,得x =±3,即x 1=3,x 2=-3. (3)根据平方根的定义,得x -2=±3,即x 1=5,x 2=-1. (4)根据平方根的定义,得2y -3=±4,即y 1=72,y 2=-12. 2.(1)移项,得x 2-4x =1.配方,得x 2-4x +22=1+4,即(x -2)2=5.直接开平方,得x -2=±5,∴x 1=2+5,x 2=2- 5. (2)移项,得2x 2-4x =8.两边都除以2,得x 2-2x =4.配方,得x 2-2x +1=4+1.∴(x -1)2=5.∴x -1=± 5.∴x 1=1+5,x 2=1- 5. (3)移项,得3x 2-6x =-4.二次项系数化为1,得x 2-2x =-43.配方,得x 2-2x +12=-43+12,即(x -1)2=-13.∵ 实数的平方不可能是负数,∴原方程无实数根. (4)移项,得2x 2+7x =-3.方程两边同除以2,得x 2+72x =-32.配方,得x 2+72x +(74)2=-32+(74)2,即(x +74)2=2516. 直接开平方,得x +74=±54.∴x 1=-12,x 2=-3. 3.(1)∵a =1,b =-23,c =3,b 2-4ac =(-23)2-4×1×3=0,∴x =-(-23)±02×1 = 3.∴x 1=x 2= 3. (2)方程的两边同乘-1,得3x 2-5x -2=0.∵a =3,b =-5,c =-2,b 2-4ac =(-5)2-4×3×(-2)=49>0,∴x =-(-5)±492×3=5±76,∴x 1=2,x 2=-13. (3)a =4,b =3,c =--4ac =32-4×4×(-2)=41>=-3±412×4=-3±418.∴x 1=-3+418,x 2=-3-418 . (4)将原方程化为一般形式,得2x 2-3x -2=0.∵a =2,b =-3,c =-2,b 2-4ac =(-3)2-4×2×(- 2)=11>0,∴x =3±1122 =6±224.∴x 1=6+224,x 2=6-224.

一元二次方程经典例题集锦有答案

一元二次方程经典例题集锦 一、一元二次方程的解法 1.开平方法解下列方程: (1)012552=-x (2)289)3(1692=-x (3)03612=+y (5,521-==x x ) (13 22,135621== x x ) (5)(4)0)31(2 =-m (6) 85 )13(22 =+x (021==m m ) (3521±-=x ) 2.配方法解方程: (3)(1)0522=-+x x (2)0152=++y y (3)3422-=-y y (61±-=x ) (2215±-= x ) (2101±=y ) 3.公式法解下列方程: (1)2632-=x x (2)p p 3232=+ (3)y y 1172= (333±= x ) (321==p p ) (0,71121==y y ) (4)2592-=n n (5)3)12)(2(2---=+x x x (2 153±= x ) 4.因式分解法解下列方程:

(1)094 12=-x (2)04542=-+y y (3)031082=-+x x (6±=x ) (5,921=-=y y ) (23,4121-== x x ) (4)02172=-x x (5)6223362-=-x x x (3,021==x x ) (32,2321== x x ) (6)1)5(2)5(2--=-x x (7)08)3(2)3(222=-+-+x x x (621==x x ) (1,4,1,24321=-=-=-=x x x x ) 5.解法的灵活运用(用适当方法解下列方程): (1)128)72(22=-x (2)222)2(212m m m m -=+- (3))3)(2()2(6+-=-x x x x (227±=x ) (262±=m ) (5 3,221==x x ) (4)3 )13(2)23(332-+-=+y y y y y (5)22)3(144)52(81-=-x x (2,2321==y y ) (2 3,102721==x x ) 6.解含有字母系数的方程(解关于x 的方程): (1)02222=-+-n m mx x (2)124322+-=+a ax a x

(精品)一元二次方程典型例题整理版

一元二次方程典型例题整理版 专题一:一元二次方程的定义 典例分析: 例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132 +=+x x B 02112=-+x x C 02=++c bx ax D 1222+=+x x x 2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( ) A .2±=m B .m=2 C .2-≠m D .2±≠m 3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。则a 的值为( ) A 、 1 B 、-l C 、 1 或-1 D 、 1 2 4、若方程()112=?+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。 5、关于x 的方程0)2(2 2=++-+b ax x a a 是一元二次方程的条件是( ) A 、a ≠1 B 、a ≠-2 C 、a ≠1且a ≠-2 D 、a ≠1或a ≠-2 专题二:一元二次方程的解 典例分析: 1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。 2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。 3、已知a 是0132=+-x x 的根,则=-a a 622 。

4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。 5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a - 课堂练习: 1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为 2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根. 3、已知322-+y y 的值为2,则1242++y y 的值为 。 4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。 专题三:一元二次方程的求解方法 典例分析: 一、直接开平方法 ();0912=--x 二、配方法

专题:一元二次方程的八种解法(后附答案)【精品】

专题:一元二次方程的八种解法 方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤: (1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式; (2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式; (3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解. 1.用直接开平方法解下列方程: (1)x2-25=0; (2)4x2=1; (3)81x2-25=0; (4)(2y-3)2-64=0; (5)3(x+1)2=1 3 ; (6)(3x+2)2=25; (7)(x+1)2-4=0; (8)(2-x)2-9=0.

方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法” (1)移项:使方程的左边为二次项和一次项,右边为常数项. (2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1. (3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式. (4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解. (5)求解:解所得到的一元一次方程,求出原方程的解. 2.用配方法解下列方程: (1)x2-2x-2=0; (2)x2-10x+29=0; (3)x2+2x=2; (4)x2-6x+1=2x-15;

3.用配方法解下列方程: (1)3x 2 +6x -5=0; (2)12 x 2-6x -7=0. (3)x 2 +16x -13=0; (4)2x 2-3x -6=0; 方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解 用因式分解法解一元二次方程的“四步法” (“右化零,左分解,两因式,各求解”) 4.用因式分解法解下列方程: (1)x 2-8x =0; (2)5x 2+20x +20=0;

一元二次方程解法(知识点和经典例题)

一元二次方程 知识要点 1 ?方程中只含有 _个未知数,并且整理后未知数的最高次数是这样的__________ 方程叫做一元二次方程。 通常可写成如下的一般形式(a 、b、c、为常数,a_」。 2.一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的__________ 的平方,而另一边是一个 ________ 时,可以根据 ________ 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程ax2 bx c o a 0的一般步骤是: ①化二次项系数为 ____ ,即方程两边同时除以二次项系数; ②移项,使方程左边为 ______ 项和_______ 项,右边为______ 项; ③配方,即方程两边都加上 _________________ 的平方; ④化原方程为(x m)2 n的形式, 如果n是非负数,即n 0,就可以用_____________ 法求出方程的解。 如果n v O,则原方程_______ 。 (3)公式法:方程ax2 bx c 0(a ______________ 0),当b2 4ac 0 时,x = (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: ①将方程的右边化为_______ ; ②将方程的左边化成两个_____ 的乘积; ③令每个因式都等于______ ,得到两个_________ 方程; ④解这两个方程,它们的解就是原方程的解。 3. 一元二次方程的根的判别式 (1) b24ac >0 一兀二次方程ax2 bx c0 a 0有两个的实数根 即x,x2 (2) b24ac =0 一兀二次方程有两个的实数根,即xi X2 , (3) b24ac <0 一兀二次方程ax2 bx c0 a 0 实数根。 4.元 —二次方程根与系数的关系 ( 韦达定理) 如果一元二次方程ax2 bx c 0(a0)的两根为X i,X2,则% x2,x-i x2

一元二次方程经典练习题及答案

练习一 一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( ) A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2 2.下列方程:①x2=0,② 中, 一元二次方程的个数是( ) A.1个 D.4个 3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0 4.方程x2=6x的根是( ) A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=0 5.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( ) C. D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( ) A.-x2=2x-1 B.4x2 C. D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分) 9.________,它的一次项系数是______. 10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________. 13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______. 15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______. 16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分) 17.用适当的方法解下列一元二次方程.(每小题5分,共15分) (1)5x(x-3)=6-2x; (2)3y2(3)(x-a)2=1-2a+a2(a是常数)

相关文档
相关文档 最新文档