文档库 最新最全的文档下载
当前位置:文档库 › 第一章 物理习题解答

第一章 物理习题解答

第一章 物理习题解答
第一章 物理习题解答

[习题解答]

1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。

解汽车行驶的总路程为

汽车的总位移的大小为

r =

位移的方向沿东北方向,与方向一致。

1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等?为什么?

解与在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。

1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 2t 3 ,r和t 的单位分别是m和s。求:

(1)第二秒内的平均速度;

(2)第三秒末和第四秒末的速度;

(3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。

(1)第二秒内的平均速度

m s1;

(2)第三秒末的速度

因为,将t = 3 s 代入,就求得第三秒末的速度,为

v

= 18 m s1;

3

用同样的方法可以求得第四秒末的速度,为

v

= 48 m s1;

4

(3)第三秒末的加速度

因为,将t = 3 s 代入,就求得第三秒末的加速度,为a

= 24 m s2;

3

用同样的方法可以求得第四秒末的加速度,为

v

= 36 m s2 .

4

1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:

(1) v d v = a d s;

(2)当a为常量时,式v 2 = v02 + 2a (s s0 )成立。

(1)

(2)对上式积分,等号左边为

,

等号右边为

,

于是得

,

.

1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t1)2 (t2),s和t的单位分别是m和s。求:

(1)当质点经过O点时的速度和加速度;

(2)当质点的速度为零时它离开O点的距离;

(3)当质点的加速度为零时它离开O点的距离;

(4)当质点的速度为12 m s 1 时它的加速度。解:取质点沿x轴运动,取坐标原点为定点O。

(1)质点经过O点时,即s = 0,由式

,

可以解得

t = 1.0 s,t = 2.0 s .

当t = 1 s时,

.

当t = 2 s时,

v = 1.0 m s-2,a = 4.0 m s-2 .

(2)质点的速度为零,即

上式可化为

,

解得

t = 1.0 s和t = 1.7 s .

当t= 1 s时,质点正好处于O点,即离开O点的距离为0 m;当t = 5/3 s 时,质点离开O点的距离为0.15 m 。

(3)质点的加速度为零,即

,

上式可化为

3t-4=0 ,

解得

t = 1.3 s .

这时离开O点的距离为0.074 m。

(4)质点的速度为12 m s1,即

,

由此解得

将t值代入加速度的表示式

,

求得的加速度分别为

a = 12.4 m s-2和a = 12.2 m s-2 .

1-8 一质点沿某直线作减速运动,其加速度为a= Cv2,C是常量。若t= 0时质点的速度为v0 ,并处于s0 的位置上,求任意时刻t质点的速度和位置。

解以t = 0时刻质点的位置为坐标原点O,取水平线为x轴,质点就沿x 轴运动。因为是直线运动,矢量可以用带有正负号的标量来表示。

,

于是有

.

两边分别积分,得

.

因为t0 = 0,所以上是变为

,

, (1)

上式就是任意时刻质点的速度表达式。

因为

, d x = v d t ,

将式(1)代入上式,得

,

两边分别积分,得

.

于是,任意时刻质点的位置表达式为

.

1-9 质点作直线运动,初速度为零,初始加速度为a0 ,质点出发后每经过 时间,加速度均匀增加b。求经过t时间后质点的速度和加速度。

解可以把质点运动所沿的直线定为直线L,并设初始时刻质点处于固定点O 上。根据题意,质点运动的加速度应该表示为

.

由速度公式

可以求得经过t时间质点的速度

.

另外,根据位移公式可以求得经过t时间质点的位移

.

1-10 质点沿直线y = 2x + 1 m 运动,某时刻位于x1 = 1.51 m处,经过了1.20 s到达x2 = 3.15 m处。求质点在此过程中的平均速度。

解根据定义,平均速度应表示为

,

其中

.

由已知条件找出 x和 y,就可以求得平均速度。

.

根据直线方程y = 2x + 1,可求得

y

= 2x1 + 1 = 4.02 m,y2 = 2x2 + 1 = 7.31 m .

1

所以

.

平均速度为

.

也可以用下面的方式表示

与x轴的夹角为

.

1-11 质点运动的位置与时间的关系为x= 5 + t 2 ,y= 3 + 5t t 2 ,z= 1+ 2t 2, 求第二秒末质点的速度和加速度,长度和时间的单位分别是米和秒。

解已知质点运动轨道的参量方程为

.

质点任意时刻的速度和加速度分别为

和 .

质点在第二秒末的速度和加速度就是由以上两式求得的。将t = 2 s代入上式,就得到质点在第二秒末的速度和加速度,分别为

和 .

1-12 设质点的位置与时间的关系为x = x(t),y = y(t),在计算质点的速

度和加速度时,如果先求出,然后根据和求得结果;还可以用另一种方法计算:先算出速度和加速度分量,再合成,得到的结果

为v= 和。你认为哪一组结果正确?为什么?

解第二组结果是正确的。而在一般情况下第一组结果不正确,这是因为在一般情况下

.

速度和加速度中的r是质点的位置矢量,不仅有大小而且有方向,微分时,既要对大小微分也要对方向微分。第一组结果的错误就在于,只对位置矢量的大小微分,而没有对位置矢量的方向微分。

1-13 火车以匀加速运动驶离站台。当火车刚开动时,站在第一节车厢前端相对应的站台位置上的静止观察者发现,第一节车厢从其身边驶过的时间是5.0 s。问第九节车厢驶过此观察者身边需要多少时间?

解设火车的加速度为a,每节车厢的长度为l,第一节车厢从观察者身边通过所需时间为t1,t1满足

.(1)

前八节车厢通过观察者身边所需时间为t2,前九节车厢通过观察者身边所需时间为t3,并可列出下面两个方程式

, (2)

(3)

由式(1)得

.

将上式代入式(2)和式(3),分别得到

,

.

第九节车厢通过观察者身边所需时间为

t = t3 t2 =15.00 s 14.14 s = 0.86 s .

1-14 一架开始静止的升降机以加速度1.22 m s 2 上升,当上升速度达到2.44 m s 1 时,有一螺帽自升降机的天花板上落下,天花板与升降机的底面相距2.74 m。计算:

(1)螺帽从天花板落到升降机的底面所需要的时间;

(2)螺帽相对升降机外固定柱子的下降距离。

解设螺帽落到升降机地面所需时间为t,在这段时间内螺帽下落的距离为h

,同时升降机上升的距离为h2。

1

(1)若以螺帽为研究对象,可取y轴竖直向下,t = 0时,螺帽的速度为v0 = 2.24 m s1,加速度为g,则有

(1)

若以升降机为研究对象,可取y轴竖直向上,t = 0时,升降机的速度为v

= 2.44 m s1,加速度为a = 1.22 m s2,这时应有

(2)

显然h = h1 + h2就是升降机的天花板与底面之间的距离,等于2.74 m。于是

(3)

有式(3)解得

.

(2)螺帽相对升降机外固定柱子的下降距离,就是上面所说的h1,将上面所求得的t代入式(1),可以得到

.

1-15 设火箭引信的燃烧时间为6.0 s,今在与水平面成45 角的方向将火箭发射出去,欲使火箭在弹道的最高点爆炸,问必须以多大的初速度发射火箭?

解以火箭发射点为原点、水平向右为x轴、竖直向上为y轴,建立坐标系。设发射火箭的初速度为v0 ,则其竖直向上的分量为

,

竖直向上的速度为

.

火箭到达最高点时,v y= 0,由此可以求得初速度为

.

1-16 倾斜上抛一小球,抛出时初速度与水平面成60 角,1.00秒钟后小球仍然斜向上升,但飞行方向与水平面成45 角。试求:

(1)小球到达最高点的时间;

(2)小球在最高点的速度。

解以抛设点为原点、水平向右为x轴、竖直向上为y轴,建立坐标系。

(1)为求得小球到达最高点的时间,必须先求出它的初速度v0 。因为v0与水平方向成60 角,所以可列出下面的方程式

.

当t = 1 s 时,速度v与水平方向成45 ,必定有,所以

,

由此解得

.

如果小球到达最高点的时间为t,则有

,

由此解得

.

(2)小球到达最高点时的速度是沿水平方向的,其大小为

.

1-17 质点作曲线运动,其角速度 为常量,质点位置的极径与时间的关系

可以表示为,其中 0和 都是常量。求质点的径向速度和径向加速度,横向速度和横向加速度。

解质点的径向速度为

,

横向速度为

.

质点的径向加速度为

,

横向加速度为

.

(计算过程用到了为常量的条件。)

1-18 质点沿任意曲线运动, t时刻质点的极坐标为,,试求此时刻质点的速度、加速度,并写出质点运动的轨道方程。

解t时刻质点的速度为

,

此时刻质点的加速度为

.

题目给出了轨道的参量方程,由参量方程消去参变量t ,就可以得到质点运动的轨道方程。由轨道的参量方程的第二式得

,

将上式代入轨道的参量方程的第一式,得

,

这就是质点运动的轨道方程。

1-19 质点沿半径为R 的圆周运动,角速度为 = ct ,其中c 是常量。试在直角坐标系和平面极坐标系中分别写出质点的位置矢量、速度和加速度的表达式。

解 建立如图1-12所示的坐标系,直角坐标系的原点与极坐标的极点相重合,并且就是质点运动所沿的圆周的圆心。显然直角坐标与极坐标有如下关系

, (1)

式中 = R ,就是圆周的半径。相反的关系可以表示为

. (2)

设t = 0时,质点处于圆周与x 轴的交点上。由题已知

图1-12

,

所以

(3)

将式(3)代入式(1),得

, .

于是质点的位置矢量可以表示为

质点的运动速度可以表示为

;质点的运动加速度可以表示为

在极坐标中质点的位置矢量可以表示为

质点的速度为

质点的加速度为

.

1-20 质点按照s = bt的规律沿半径为R的圆周运动,其中s是质点运动的路程,b、c是常量,并且b2 > cR。问当切向加速度与法向加速度大小相等时,质点运动了多少时间?

解质点运动的速率为

,

切向加速度为

,

切向加速度的大小可以写为a t = c。法向加速度可以表示为

.

切向加速度与法向加速度大小相等,即

,

由此解得

.

讨论:因为

v = b ct ,

所以,当t = 0时,v = b ,当t = b /c 时,v = 0 。这表示在0到b/c 时间内,质点作减速运动。而在t = b /c 之后,质点沿反方向作圆周运动,切向加速度为c ,速率不断增大。可见质点有两个机会满足“切向加速度与法向加速度大小相等”。一个机会是在0到b/c 之间,即

,

为什么t = t 1是处于0到b/c 之间呢?根据已知条件b 2 > cR ,也就是b

>,

所以必定有b /c > t 1 > 0。

另一个机会是在t = b /c 之后,即

.

1-21 质点从倾角为 =30 的斜面上的O 点被抛出,初速度的方向与水平线的夹角为 = 30

, 如图1-13a 所示,初速度的大小为v 0 = 9.8 m s 1 。若忽略空气的阻力,试求:

(1)质点落在斜面上的B 点离开O 点的距离;

(2)在t = 1.5 s 时,质点的速度、切向加速度和法向加速度。 解 建立如图所示的坐标系:以抛射点O 为坐标原点,x 轴沿水平向右,y 轴竖直向上。这时质点的抛体运动可以看作为x 方向的匀速直线运动和y 方向的匀变速直线运动的合成,并且有

,

.

图1-13a

(1)设B点到O点的距离为l,则B点的坐标可以表示为

如果质点到达B点的时间为 ,则可以列出下面的方程式

(1)

(2)

以上两式联立,可解得

(3)

将式(3)代入式(1),得

.

(2)设在t = 1.5 s 时质点到达C点,此时

,

.

所以速度的大小为

.

速度与y轴负方向的夹角为

.

现在求C点的切向加速度a t和法向加速度a n 。由图1-13b可见,质点的总加速度就是重力加速度g,方向与v y一致,而a t和a n则是它的两个分矢量。并且由于a t与v的方向一致,所以a t与g之间的夹角就是v 与v y之间的夹角,即 角。于是可以得到

,

.

1-23 用绳子系一物体,使它在竖直平面内作圆周

运动。问物体在什么位置上绳子的张力最大?在什么位

置上张力最小?

解:设物体在任意位置上细绳与竖直方向的夹角

为 ,如图1-14所示。这时物体受到两个力的作用,

即绳子的张力T和重力m g,并且下面的关系成立

.

所以可把绳子张力的大小表示为

.

1-13b

图1-14

大学物理第一章质点运动学习题解(详细、完整)

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 解:匀速率;直线;匀速直线;匀速圆周。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。 解:此沟的宽度为 m 345m 10 60sin 302sin 220=??==g R θv 1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 解:将s t 1=代入t x 2=,229t y -=得 2=x m ,7=y m s t 1=故时质点的位置矢量为 j i r 72+=(m ) 由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为 m/s 2d d ==t x x v ,m/s 4d d t t x y -==v s t 2=时该质点的瞬时速度为 j i 82-=v (m/s ) 质点在任意时刻的加速度为 0d d ==t a x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2 。

物理学11章习题解答

[物理学11章习题解答] 11-7 在磁感应强度大小为b = 0.50 t的匀强磁场中,有一长度为l = 1.5 m的导体棒垂直于磁场向放置,如图11-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m?s-1 ,试求: (1)导体棒的非静电性电场k; (2)导体棒的静电场e; (3)导体棒的动生电动势ε的大小和向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于()的向沿棒向上,所以上式的积分可取沿棒向上的向,也就是d l的向取沿棒向上的向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒的非静电性电场,为 , 向沿棒由下向上。 图11-11

(2)在不形成电流的情况下,导体棒的静电场与非静电性电场相平衡,即 , 所以,e的向沿棒由上向下,大小为 . (3)上面已经得到 , 向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。 11-8如图11-12所表示,处于匀强磁场中的导体回路abcd,其边ab可以 滑动。若磁感应强度的大小为b = 0.5 t,电阻为r = 0.2 ω,ab边长为l = 0.5 m, ab边向右平移的速率为v = 4 m?s-1 ,求: (1)作用于ab边上的外力; (2)外力所消耗的功率; (3)感应电流消耗在电阻r上的功率。 解 (1)当将ab向右拉动时,ab中会有电流通过,流向为从b到a。ab中一旦出现电流,就将受到安培力f的作用,安培力的向为由右向左。所以,要使ab向右移动,必须对ab施加由左向右的力的作用,这就是外力f外。 图11-12

大学物理复习题(电磁学)

【课后习题】 第12章 一、填空题 1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。 2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。 3、真空环境中正电荷q 均匀地分布在半径为R 的细圆环上,在环环心O 处电场强度为____0________,环心的电势为__R q o πε4/_________。 4、高斯定理表明磁场是 无源 场,而静电场是有源场。任意高斯面上的静电场强度通量积分结果仅仅取决于该高斯面内全部电荷的代数和。现有图1-1所示的三个闭合曲面 S 1、S 2、S 3,通过这些高斯面的电场强度通量计算结果分别为: ???=Φ1 1S S E d , ???=Φ2 2S S E d , ???=Φ3 3S S E d ,则 1=___o q ε/_______;2+3=___o q ε/-_______。 5、静电场的场线只能相交于___电荷或无穷远________。 6、两个平行的无限大均匀带电平面,其电荷面密度分别如图所示,则A 、B 、C 三个区域的电场强度大小分别为:E A =_o εσ/4________;E B =_o εσ/________;E C =__o εσ/4_______。

7、由一根绝缘细线围成的边长为l的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E=____0____________. 8、初速度为零的正电荷在电场力的作用下,总是从__高____电势处向_低____电势处运动。 9、静电场中场强环流为零,这表明静电力是__保守力_________。 10、如图所示,在电荷为q的点电荷的静电场中,将一电荷为q0的试验电荷从a点经任意路径移动到b点,外力所作的功 W=___?? ? ? ? ? - 1 2 1 1 4r r Qq πε ___________. 11、真空中有一半径为R的均匀带电半园环,带电量为Q,设无穷远处为电势零点,则圆心 O处的电势为___ R Q 4πε _________;若将一带电量为q的点电荷从无穷远处移到O点,电场 力所作的功为__ R qQ 4πε __________。 12、电场会受到导体或电介质的影响,通常情况下,导体内部的电场强度__处处为零 _______;电介质内部电场强度将会减弱,其减弱的程度与电介质的种类相关, ____ ε_________越大,其电场场强越小。 13、导体在__电场_______作用下产生电荷重新分布的现象叫做__静电感应___________;而电介质在外电场作用下产生极化面电荷的现象叫做__电介质的极化_________。 14、在静电场中有一实心立方均匀导体,边长为a.已知立方导体中心O处的电势为U0,则 立方体顶点A的电势为____ U________.

大学物理学第二版第章习题解答精编

大学物理学 习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2)平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不 变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v =及a =你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速 度也一定为零.”这种说法正确吗? (9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解:

大学物理第一章 习题

第一章 质点运动学 1–1 描写质点运动状态的物理量是 。 1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。 1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m /s 102=g 。 1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。 1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m /s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。 1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。则当t =2s 时,质点的角位置为________;角速度为_________;角加速度为_________;切向加速度为__________;法向加速度为__________。 1–7 下列各种情况中,说法错误的是[ ]。 A .一物体具有恒定的速率,但仍有变化的速度 B .一物体具有恒定的速度,但仍有变化的速率 C .一物体具有加速度,而其速度可以为零 D .一物体速率减小,但其加速度可以增大 1–8 一个质点作圆周运动时,下列说法中正确的是[ ]。 A .切向加速度一定改变,法向加速度也改变 B .切向加速度可能不变,法向加速度一定改变 C .切向加速度可能不变,法向加速度不变 D .切向加速度一定改变,法向加速度不变 1–9 一运动质点某瞬时位于位置矢量),(y x r 的端点处,对其速度大小有四种意见: (1)t r d d (2)t d d r (3)t s d d (4)2 2d d d d ?? ? ??+??? ??t y t x 下述判断正确的是[ ]。 A .只有(1),(2)正确 B .只有(2),(3)正确 C .只有(3),(4)正确 D .只有(1),(3)正确 1–10 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at +=(其中a 、b 为常量),则该质点作[ ]。 A .匀速直线运动 B .变速直线运动 C .抛物线运动 D .一般曲线运动 1–11 一小球沿斜面向上运动,其运动方程为S =5+4t –t 2(SI ),则小球运动到最高点的时刻是[ ]。

大学物理电磁学练习题及答案

大学物理电磁学练习题 球壳,内半径为R 。在腔内离球心的距离为d 处(d R <),固定一点电荷q +,如图所示。用导线把球壳接地后,再把地线撤 去。选无穷远处为电势零点,则球心O 处的电势为[ D ] (A) 0 (B) 04πq d ε (C) 04πq R ε- (D) 01 1 () 4πq d R ε- 2. 一个平行板电容器, 充电后与电源断开, 当用绝缘手柄将电容器两极板的距离拉大, 则两极板间的电势差12U 、电场强度的大小E 、电场能量W 将发生如下变化:[ C ] (A) 12U 减小,E 减小,W 减小; (B) 12U 增大,E 增大,W 增大; (C) 12U 增大,E 不变,W 增大; (D) 12U 减小,E 不变,W 不变. 3.如图,在一圆形电流I 所在的平面内, 选一个同心圆形闭合回路L (A) ?=?L l B 0d ,且环路上任意一点0B = (B) ?=?L l B 0d ,且环路上 任意一点0B ≠ (C) ?≠?L l B 0d ,且环路上任意一点0B ≠ (D) ?≠?L l B 0d ,且环路上任意一点B = 常量. [ B ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感应强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示。现测得导体上下两面电势差为V ,则此导体的霍尔系数等于[ C ] (A) IB V D S (B) B V S ID (C) V D IB (D) IV S B D 5.如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为 l 。当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a 、 c 两点间的电势差a c U U -为 [ B ] (A)2 0,a c U U B l εω=-= (B) 2 0,/2a c U U B l εω=-=- (C)22 ,/2a c B l U U B l εωω=-= (D)2 2 ,a c B l U U B l εωω=-= 6. 对位移电流,有下述四种说法,请指出哪一种说法正确 [ A ] (A) 位移电流是由变化的电场产生的; (B) 位移电流是由线性变化的磁场产生的; (C) 位移电流的热效应服从焦耳——楞次定律; (D) 位移电流的磁效应不服从安培环路定理.

《新编基础物理学》第一章习题解答和分析

新编基础物理学王少杰顾牡主编上册 第一章课后习题答案 QQ:970629600 习题一 1-1.质点运动学方程为:cos()sin(),r a t i a t j btk ωω=++ 其中a ,b ,ω均为正常数,求质 点速度和加速度与时间的关系式。 分析:由速度、加速度的定义,将运动方程()r t 对时间t 求一阶导数和二阶导数,可得到速度和加速度的表达式。 解:/sin()cos()==-++ v dr dt a t i a t j bk ωωωω 2 /cos()sin()a dv dt a t i t j ωωω??==-+?? 1-2. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离 时的速度为 0K x v v e -= 。 其中0v 是发动机关闭时的速度。 分析:要求()v v x =可通过积分变量替换dx dv v dt dv a ==,积分即可求得。 证: 2 d d d d d d d d v x v v t x x v t v K -==? = d K dx v =-v ?? -=x x K 0d d 10 v v v v , Kx -=0 ln v v 0K x v v e -= 1-3.一质点在xOy 平面内运动,运动函数为2 2,48x t y t ==-。(1)求质点的轨道方程并画出轨道曲线;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程。写出质点的运 动学方程)(t r 表达式。对运动学方程求一阶导、二阶导得()v t 和()a t ,把时间代入可得某时刻 质点的位置、速度、加速度。 解:(1)由2,x t =得:,2 x t =代入2 48y t =- 可得:2 8y x =-,即轨道曲线。 画图略 (2)质点的位置可表示为:2 2(48)r ti t j =+- 由/v dr dt = 则速度:28v i tj =+ 由/a dv dt = 则加速度:8a j = 则:当t=1s 时,有24,28,8r i j v i j a j =-=+= 当t=2s 时,有48,216,8r i j v i j a j =+=+= 1-4.一质点的运动学方程为2 2 (1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位。(1)求

大学物理 第一章练习及答案

一、判断题 1. 在自然界中,可以找到实际的质点. ···················································································· [×] 2. 同一物体的运动,如果选取的参考系不同,对它的运动描述也不同. ···························· [√] 3. 运动物体在某段时间内的平均速度大小等于该段时间内的平均速率. ···························· [×] 4. 质点作圆周运动时的加速度指向圆心. ················································································ [×] 5. 圆周运动满足条件d 0d r t =,而d 0d r t ≠ . · ··············································································· [√] 6. 只有切向加速度的运动一定是直线运动. ············································································ [√] 7. 只有法向加速度的运动一定是圆周运动. ············································································ [×] 8. 曲线运动的物体,其法向加速度一定不等于零. ································································ [×] 9. 质点在两个相对作匀速直线运动的参考系中的加速度是相同的. ···································· [√] 10. 牛顿定律只有在惯性系中才成立. ························································································ [√] 二、选择题 11. 一运动质点在某时刻位于矢径(),r x y 的端点处,其速度大小为:( C ) A. d d r t B. d d r t C. d d r t D. 12. 一小球沿斜面向上运动,其运动方程为2 54SI S t t =+-() ,则小球运动到最高点的时刻是: ( B ) A. 4s t = B. 2s t = C. 8s t = D. 5s t = 13. 一质点在平面上运动,已知其位置矢量的表达式为22 r at i bt j =+ (其中a 、b 为常量)则 该质点作:( B ) A. 匀速直线运动 B. 变速直线运动 C. 抛物线运动 D. 一般曲线运动 14. 某物体的运动规律为2d d v kv t t =-,式中的k 为大于0的常数。当0t =时,初速为0v ,则速 度v 与时间t 的关系是:( C ) A. 0221v kt v += B. 022 1 v kt v +-= C. 021211v kt v += D. 0 21211v kt v +-= 15. 在相对地面静止的坐标系中,A 、B 二船都以2m/s 的速率匀速行驶,A 沿x 轴正方向,B

大学物理-电磁学部分-试卷及答案word版本

学习资料 大学物理试卷 (考试时间 120分钟 考试形式闭卷) 年级专业层次 姓名 学号 一.选择题:(共30分 每小题3分) 1.如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间,距离轴线为r 的P 点处的场强大小E 为: (A )r 012πελ. (B )r 0212πελλ+. (C ))(2202r R -πελ. (D )) (2101R r -πελ. 2.如图所示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功 (A ) A < 0且为有限常量.(B ) A > 0且为有限常量. (C ) A =∞.(D ) A = 0. 3.一带电体可作为点电荷处理的条件是 (A )电荷必须呈球形分布. (B )带电体的线度很小. (C )带电体的线度与其它有关长度相比可忽略不计. (D )电量很小. 4.下列几个说法中哪一个是正确的? (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.

学习资料 (C )场强方向可由q F E /ρρ=定出,其中q 为试探电荷的电量,q 可正、可负,F ρ 为试探 电荷所受的电场力. (D )以上说法都不正确. 5.在图(a )和(b )中各有一半径相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,P 1、P 2为两圆形回路上的对应点,则: (A )212 1 ,d d P P L L B B l B l B =?=???ρρρρ (B )212 1 ,d d P P L L B B l B l B =?≠???ρ ρρρ (C )212 1 ,d d P P L L B B l B l B ≠?=???ρρρρ (D )212 1 ,d d P P L L B B l B l B ≠?≠???ρ ρρρ 6.电场强度为E ρ的均匀电场,E ρ 的方向与X 轴正向平行,如图所示.则通过图中一半径 为R 的半球面的电场强度通量为 (A )E R 2π.(B )E R 22 1 π. (C )E R 22π. (D )0 7.在静电场中,有关静电场的电场强度与电势之间的关系,下列说法中正确的是: (A )场强大的地方电势一定高. (B )场强相等的各点电势一定相等. (C )场强为零的点电势不一定为零. (D )场强为零的点电势必定是零. 8.正方形的两对角上,各置点电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为 (A )q Q 22-=. (B )q Q 2-=. (C )q Q 4-=. (D )q Q 2-=. 9.在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 (A )向下偏. (B )向上偏. (C )向纸外偏. (D )向纸内偏.

《新编基础物理学》第1章习题解答和分析

第1章 质点运动学 1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3 -6t (m ),试计算质点 (1) 在最初2s 内的平均速度,2s 末的瞬时速度; (2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ?=?v 和d d x t =v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t ?= ?v 和d d a t =v 求得. 解:(1) 在最初2s 内的平均速度为 31(2)(0)(8262)0 26(m s )2 x x x t t -?-?-?-====???v 2s 末质点的瞬时速度为 212d 24690(m s )d x t t -= =-=?v (2) 1s 末到3s 末的平均加速度为 22(3)(1)(2436)(246)96(m s )2 a t t -?-?---====???v v v 3s 末的瞬时加速度 23d 48144(m s )d a t t -= ==?v 1-2.一质点在xOy 平面内运动,运动方程为2 2(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线; (2)求=1 s =2 s t t 和时质点的位置、速度和加速度. 分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r 表达式.对运动学方程求一阶导、二阶导得()t v 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度. 解:(1) 由2,x t = 得:,2 x t = 代入248y t =- 可得:2 8y x =-,即轨道方程. 画图略

大学物理学-第1章习题解答

大学物理简明教程(上册)习题选解 第1章 质点运动学 1-1 一质点在平面上运动,其坐标由下式给出)m 0.40.3(2 t t x -=,m )0.6(3 2 t t y +-=。求:(1)在s 0.3=t 时质点的位置矢量; (2)从0=t 到s 0.3=t 时质点的位移;(3)前3s 内质点的平均速度;(4)在s 0.3=t 时质点的瞬时速度; (5)前3s 内质点的平均加速度;(6)在s 0.3=t 时质点的瞬时加速度。 解:(1)m )0.6()0.40.3(322j i r t t t t +-+-= 将s 0.3=t 代入,即可得到 )m (273j i r +-= (2)03r r r -=?,代入数据即可。 (3)注意:0 30 3--=r r v =)m/s 99(j i +- (4)dt d r =v =)m/s 921(j i +-。 (5)注意:0 30 3--=v v a =2)m/s 38(j i +- (6)dt d v a ==2)m/s 68(j -i -,代入数据而得。 1-2 某物体的速度为)25125(0j i +=v m/s ,3.0s 以后它的速度为)5100(j 7-i =v m/s 。 在这段时间内它的平均加速度是多少? 解:0 30 3--= v v a =2)m/s 3.3333.8(j i +- 1-3 质点的运动方程为) 4(2k j i r t t ++=m 。(1)写出其速度作为时间的函数;(2)加速度作为时间的函数; (3)质点的轨道参数方程。 解:(1)dt d r =v =)m/s 8(k j +t (2)dt d v a = =2m/s 8j ; (3)1=x ;2 4z y =。 1-4 质点的运动方程为t x 2=,22t y -=(所有物理量均采用国际单位制)。求:(1)质点的运动轨迹;(2)从0=t 到2=t s 时间间隔内质点的位移r ?及位矢的径向增量。 解:(1)由t x 2=,得2 x t = ,代入22t y -=,得质点的运动轨道方程为 225.00.2x y -=; (2)位移 02r r r -=?=)m (4j i - 位矢的径向增量 02r r r -=?=2.47m 。 (3)删除。 1-6 一质点做平面运动,已知其运动学方程为t πcos 3=x ,t πsin =y 。试求: (1)运动方程的矢量表示式;(2)运动轨道方程;(3)质点的速度与加速度。 解:(1)j i r t t πsin πcos 3+=; (2)19 2 =+y x (3)j i t t πcos πsin 3π+-=v ; )πsin πcos 3(π2j i t t a +-= *1-6 质点A 以恒 定的速率m/s 0.3=v 沿 直线m 0.30=y 朝x +方 向运动。在质点A 通过y 轴的瞬间,质点B 以恒 定的加速度从坐标原点 出发,已知加速度2m/s 400.a =,其初速度为零。试求:欲使这两个质点相遇,a 与y 轴的夹角θ应为多大? 解:提示:两质点相遇时有,B A x x =,B A y y =。因此只要求出质点A 、B 的运动学方程即可。或根据 222)2 1 (at y =+2(vt)可解得: 60=θ。 1-77 质点做半径为R 的圆周运动,运动方程为 2021 bt t s -=v ,其中,s 为弧长,0v 为初速度,b 为正 的常数。求:(1)任意时刻质点的法向加速度、切向加速度和总加速度;(2)当t 为何值时,质点的总加速度在数值上等于b ?这时质点已沿圆周运行了多少圈? 题1-6图

大学物理”力学和电磁学“练习题附答案

部分力学和电磁学练习题(供参考) 一、选择题 1. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间, 圆盘的角速度ω (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. [ C ] 2. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ A ] 3. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 0 12εq . (C) 024εq . (D) 0 48εq . [ C ] 4. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板 的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为 (A) d S q q 0212ε+. (B) d S q q 02 14ε+. (C) d S q q 021 2ε-. (D) d S q q 02 14ε-. [ C ] 5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ D ] 6. 均匀磁场的磁感强度B ? 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B . (C) 0. (D) 无法确定的量. [ B ] 7. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上, 稳恒电流I 从a 端流入而从d 端流出,则磁感强度B ? 沿图中闭合路径L 的积 分??L l B ? ?d 等于 (A) I 0μ. (B) I 03 1 μ. (C) 4/0I μ. (D) 3/20I μ. [ D ] O M m m - P 0 A b c q d A S q 1q 2 C B A I I a b c d 120°

物理学7章习题解答

[物理学7章习题解答] 7-3 已知s'系相对于s系以-0.80c的速度沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。现在s'系中有一闪光装置,位于x'= 10.0 km,y'= 2.5 km,z'= 1.6 km处,在t'= 4.5?10-5 s时发出闪光。求此闪光在s系的时空坐标。 解已知闪光信号发生在s'系的时空坐标,求在s系中的时空坐标,所以应该将洛伦兹正变换公式中带撇量换成不带撇量,不带撇量换成带撇量,而成为下面的形式 , , , . 将 、 和代入以上各式,就可以求得闪光信号在s 系中的时空坐标: , , , . 7-4 已知s'系相对于s系以0.60c的速率沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。s系中的观察者测得光信号a的时空坐标为x = 56 m,t = 2.1?10-7 s,s '系的观察者测得光信号b的时空坐标为x'= 31 m,t'= 2.0?10-7 s。试计算这两个光信号分别由观察者s、s '测出的时间间隔和空间间隔。

解在s系中: , 空间间隔为 . , 时间间隔为 . 在s 系中: , 空间间隔为 . , 时间间隔为 . 7-5 以0.80c的速率相对于地球飞行的火箭,向正前方发射一束光子,试分别按照经典理论和狭义相

对论计算光子相对于地球的运动速率。 解按照经典理论,光子相对于地球的运动速率为 . 按照狭义相对论,光子相对于地球的运动速率为 . 7-6航天飞机以0.60c的速率相对于地球飞行,驾驶员忽然从仪器中发现一火箭正从后方射来,并从仪器中测得火箭接近自己的速率为0.50c。试求: (1)火箭相对于地球的速率; (2)航天飞机相对于火箭的速率。 解 (1)火箭相对于地球的速率 . (2)航天飞机相对于火箭的速率为 0.50c。 7-7 在以0.50c相对于地球飞行的宇宙飞船上进行某实验,实验时仪器向飞船的正前方发射电子束,同时又向飞船的正后方发射光子束。已知电子相对于飞船的速率为0.70c。试求: (1)电子相对于地球的速率; (2)光子相对于地球的速率; (3)从地球上看电子相对于飞船的速率;

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 ?r = 位移的方向沿东北方向,与 方向一致。 1-4 现有一矢量R是时间t的函数,问 与 在一般情况下是否相等?为什么? 解 与 在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导, 表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m?s-1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = - 18 m?s-1; 用同样的方法可以求得第四秒末的速度,为 v4 = - 48 m?s-1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = - 24 m?s-2; 用同样的方法可以求得第四秒末的加速度,为 v4 = - 36 m?s-2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

物理学8章习题解答

[物理学8章习题解答] 8-3 已知s'系相对于s系以-0.80c的速度沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。现在s'系中有一闪光装置,位于x'= 10.0 km,y'= 2.5 km,z'= 1.6 km处,在t'= 4.5?10-5 s时发出闪光。求此闪光在s系的时空坐标。 解已知闪光信号发生在s'系的时空坐标,求在s系中的时空坐标,所以应该将洛伦兹正变换公式中带撇量换成不带撇量,不带撇量换成带撇量,而成为下面的形式 , , , . 将、和代入以上各式,就可以求得闪光信号在s系中的时空坐标: , , , . 8-4 已知s'系相对于s系以0.60c的速率沿公共轴x、x'运动,以两坐标原点相重合时为计时零点。s系中的观察者测得光信号a的时空坐标为x = 56 m,t = 2.1?10-7 s,s '系的观察者测得光信号b的时空坐标为x'= 31 m,t'= 2.0?10-7 s。试计算这两个光信号分别由观察者s、s '测出的时间间隔和空间间隔。 解在s系中: , 空间间隔为 . ,

时间间隔为 . 在s'系中: , 空间间隔为 . , 时间间隔为 . 8-5 以0.80c的速率相对于地球飞行的火箭,向正前方发射一束光子,试分别按照经典理论和狭义相对论计算光子相对于地球的运动速率。 解按照经典理论,光子相对于地球的运动速率为 . 按照狭义相对论,光子相对于地球的运动速率为 . 8-6航天飞机以0.60c的速率相对于地球飞行,驾驶员忽然从仪器中发现一火箭正从后方射来,并从仪器中测得火箭接近自己的速率为0.50c。试求: (1)火箭相对于地球的速率; (2)航天飞机相对于火箭的速率。 解 (1)火箭相对于地球的速率 . (2)航天飞机相对于火箭的速率为-0.50c。 8-7 在以0.50c相对于地球飞行的宇宙飞船上进行某实验,实验时仪器向飞船的正前方发射电子束,同时又向飞船的正后方发射光子束。已知电子相对于飞船的速率为0.70c。试求: (1)电子相对于地球的速率; (2)光子相对于地球的速率; (3)从地球上看电子相对于飞船的速率;

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

物理学12章习题解答

[物理学12章习题解答] 12-7 在磁感应强度大小为b = 0.50 t 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图12-11所示。如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。若棒的运动速率v = 4.0 m s 1 ,试求: (1)导体棒内的非静电性电场k ; (2)导体棒内的静电场e ; (3)导体棒内的动生电动势 的大小和方向; (4)导体棒两端的电势差。 解 (1)根据动生电动势的表达式 , 由于( )的方向沿棒向上,所以上式的积分可取沿棒向 上的方向,也就是d l 的方向取沿棒向上的方向。于是可得 . 另外,动生电动势可以用非静电性电场表示为 . 以上两式联立可解得导体棒内的非静电性电场,为 , 方向沿棒由下向上。 (2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即 , 所以,e 的方向沿棒由上向下,大小为 . (3)上面已经得到 , 方向沿棒由下向上。 (4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即 , 棒的上端为正,下端为负。 图12-11

12-8 如图12-12所表示,处于匀强磁场中的导体回路 abcd ,其边ab 可以滑动。若磁感应强度的大小为b = 0.5 t ,电阻为r = 0.2 ,ab 边长为 l = 0.5 m ,ab 边向右平移的速率为v = 4 m s 1 ,求: (1)作用于ab 边上的外力; (2)外力所消耗的功率; (3)感应电流消耗在电阻r 上的功率。 解 (1)当将ab 向右拉动时,ab 中会有电流通过,流向为从b 到a 。ab 中一旦出现电流,就将受到安培力f 的作用,安培力的方向为由右向左。所以,要使ab 向右移动,必须对ab 施加由左向右的力的作用,这就是外力f 外 。 在被拉动时,ab 中产生的动生电动势为 , 电流为 . ab 所受安培力的大小为 , 安培力的方向为由右向左。外力的大小为 , 外力的方向为由左向右。 (2)外力所消耗的功率为 . (3)感应电流消耗在电阻r 上的功率为 . 可见,外力对电路消耗的能量全部以热能的方式释放出来。 12-9 有一半径为r 的金属圆环,电阻为r ,置于磁感应强度为b 的匀强磁场中。初始时刻环面与b 垂直,后将圆环以匀角速度 绕通过环心并处于环面内的轴线旋转 / 2。求: (1)在旋转过程中环内通过的电量; (2)环中的电流; (3)外力所作的功。 图12-12

大学物理电磁学部分练习题讲解

大学物理电磁学部分练习题 1.在静电场中,下列说法中哪一个是正确的?(D ) (A )带正电荷的导体,其电势一定是正值. (B )等势面上各点的场强一定相等. (C )场强为零处,电势也一定为零. (D )场强相等处,电势梯度矢量一定相等. 2.当一个带电导体达到静电平衡时:D (A )表面上电荷密度较大处电势较高. (B )表面曲率较大处电势较高. (C )导体内部的电势比导体表面的电势高. (D )导体内任一点与其表面上任一点的电势差等于零. 3. 一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布 为(r 表示从球心引出的矢径): ( 0 r r R 3 02εσ) =)(r E )(R r <, =)(r E )(R r >. 4.电量分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = )22(813210q q q R ++πε 5.两个点电荷,电量分别为+q 和-3q ,相距为d ,试求: (l )在它们的连线上电场强度0=E 的点与电荷量为+q 的点电荷相距多远? (2)若选无穷远处电势为零,两点电荷之间电势U = 0的点与电荷量为+q 的点电荷相距多远? .解:设点电荷q 所在处为坐标原点O ,X 轴沿两点电荷的连线. (l )设0=E 的点的坐标为x ′,则 d q +q 3-

0)'(43'42 02 0=-- = i d x q i x q E πεπε 可得 0'2'222=-+d dx x 解出 d x )31(21'1+-=和 d x )13(21' 2-= 其中'1x 符合题意,'2x 不符合题意,舍去. (2)设坐标x 处 U = 0,则 ) (43400x d q x q U -- = πεπε 0]) (4[40 =--= x d x x d q πε 得 4/04d x x d ==- 6.一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小. 解答:将半球面分成由一系列不同半径的带电圆环组成,带电半球面在圆心O 点处的电场就是所有这些带电圆环在O 点的电场的叠加。 今取一半径为r ,宽度为Rd θ的带电细圆环。 带电圆环在P 点的场强为:() 3222 01 ?4qx E r a x πε= + 在本题中,cos x h R θ==,a r = 所以可得:() 33 222 0044hdq hdq dE R r h πεπε= = + 上式中()222sin dq r Rd R d σπθπσθθ== 即:33 00 2sin cos sin cos 42R d dE d R σπθθθσ θθθπεε== 整个半球面为:2000sin cos 24E dE d π σ σθθθεε===????,方向沿半径向外 7. 电荷q 均匀地分布在一半径为R 的圆环上。计算在圆环的轴线上任一给定点 P 的场强。

相关文档
相关文档 最新文档