文档库 最新最全的文档下载
当前位置:文档库 › 激光钻孔工艺介绍

激光钻孔工艺介绍

激光钻孔工艺介绍
激光钻孔工艺介绍

随着微电子技术的飞速发展,大规模和超大规模集成电路的广泛应用,微组装技术的进步,使印制电路板的制造向着积层化、多功能化方向发展,使印制电路图形导线细、微孔化窄间距化,加工中所采用的机械方式钻孔工艺技术已不能满足要求而迅速发展起来的一种新型的微孔加工方式即激光钻孔技术。

一激光成孔的原理

激光是当“射线”受到外来的刺激而增加能量下所激发的一种强力光束,其中红外光和可见光具有热能,紫外光另具有光学能。此种类型的光射到工件的表面时会发生三种现象即反射、吸收和穿透。

透过光学另件击打在基材上激光光点,其组成有多种模式,与被照点会产生三种反应。

激光钻孔的主要作用就是能够很快地除去所要加工的基板材料,它主要靠光热烧蚀和光化学烧蚀或称之谓切除。

(1)光热烧蚀:指被加工的材料吸收高能量的激光,在极短的时间加热到熔化并被蒸发掉的成孔原理。此种工艺方法在基板材料受到高能量的作用下,在所形成的孔壁上有烧黑的炭化残渣,孔化前必须进行清理。

(2)光化学烧蚀:是指紫外线区所具有的高光子能量(超过2eV电子伏特)、激光波长超过400纳米的高能量光子起作用的结果。而这种高能量的光子能破坏有机材料的长分子链,成为更小的微粒,而其能量大于原分子,极力从中逸出,在外力的掐吸情况之下,使基板材料被快速除去而形成微孔。因此种类型的工艺方法,不含有热烧,也就不会产生炭化现象。所以,孔化前清理就非常简单。

以上就是激光成孔的基本原理。目前最常用的有两种激光钻孔方式:印制电路板钻孔用的激光器主要有RF激发的CO2气体激光器和UV固态Nd:YAG激光器。

(3)关于基板吸光度:激光成功率的高低与基板材料的吸光率有着直接的关系。印制电路板是由铜箔与玻璃布和树脂组合而成,此三种材料的吸光度也因波长不同有所不同但其中铜箔与玻璃布在紫外光0.3mμ以下区域的吸收率较高,但进入可见光与IR后却大幅度滑落。有机树脂材料则在三段光谱中,都能维持相当高的吸收率。这就是树脂材料所具有的特性,是激光钻孔工艺流行的基础。

二 CO2激光成孔的不同的工艺方法

CO2激光成孔的钻孔方法主要有直接成孔法和敷形掩膜成孔法两种。所谓直接成孔工艺方法就是把激光光束经设备主控系统将光束的直径调制到与被加工印制电路板上的孔直径相同,在没有铜箔的绝缘介质表面上直接进行成孔加工。敷形掩膜工艺方法就是在印制板的表面涂覆一层专用的掩膜,采用常规的工艺方法经曝光/显影/蚀刻工艺去掉孔表面的铜箔面形成的敷形窗口。然后采用大于孔径的激光束照射这些孔,切除暴露的介质层树脂。现分别介绍如下:

(1)开铜窗法:

首先在内层板上复压一层RCC(涂树脂铜箔)通过光化学方法制成窗口,然后进行蚀刻露出树脂,再采用激光烧除窗口内基板材料即形成微盲孔:

当光束经增强后通过光圈到达两组电流计式的微动反射扫描镜,并经一次垂直对正(Fθ透镜)而达到可进行激动的台面的管区,然后再逐一烧成微盲孔。

在一英寸见方的小管区内经电子快束这定位后,对0.15mm的盲孔可连打三枪成孔。其中第一枪的脉冲宽度约为15μs,此时提供能量达到成孔的目的。后再枪则利用来清理孔壁孔底的残渣和修正孔。

激光能量控制良好的0.15mm微盲孔的SEM横断面及45度的全图,此种开窗口的成孔工艺方法,当底垫(靶标盘)不大时又需大排版或二阶盲孔时,其对准度就比较困难。

(2)开大窗口工艺方法:

前一种工艺方法成孔的直径与所开的铜窗口相同,如果操作稍有不慎就会使所开窗口的位置产生偏差,导致成孔的盲孔位置走位致使与底垫中心失准的问题产生。该铜窗口的偏差产生的原因有可能是基板材料涨缩和图像转移所采用的底片变形有关。所以采取开大铜窗口的工艺方法,就是将铜窗口直径扩大到比底垫还大经 0.05mm左右(通常按照孔径的大小来确定,当孔径为0.15mm时,底垫直径应在0.25mm左右,其大窗口直径为0.30mm)然后再进行激光钻孔,即可烧出位置精确对准底垫的微盲孔。其主要特点是选择自由度大,进行激光钻孔时可选择另按内层底垫的程式去成孔。这就有效的避免由于铜窗口直径与成孔直径相同时造成的偏位而使激光点无法对正窗口,使批量大的大拚板面上会出现许多不完整的半孔或残孔的现象。

(3)树脂表面直接成孔工艺方法

采用激光成孔有几种类型的工艺方法进行激光钻孔:

A.基板是采用在内层板上层压涂树脂铜箔,然后将铜箔全部蚀刻去掉,就可采用CO2激光在裸露的树脂表面直接成孔,再继续按照镀覆孔工艺方法进行孔化处理。

B.基板是采用FR-4半固化片和铜箔以代替涂树脂铜箔的相类似制作工艺方法。

C.涂布感光树脂后续层压铜箔的工艺方法制作。

D.采用干膜作介质层与铜箔的压贴工艺方法制作。

E.涂布其它类型的温膜与铜箔覆压的工艺方法来制作。

4)采用超薄铜箔的直接烧蚀的工艺方法

内层芯板两面压贴涂树脂铜箔后,可采用“半蚀方法”将铜箔厚度17m经蚀刻后减薄到5微米,然后进行黑氧化处理,就可采用CO2激光成孔。

其基本原理就是经氧化处理成黑的表面会强烈吸光,就会在提高CO2激光的光束能量的前提下,就可以直接在超薄铜箔与树脂表面成孔。但最困难的就是如何确保“半蚀方法”能否获得厚度均匀一致的铜层,所以制作起来要特别注视。当然可采用背铜式可撕性材料(UTC),

铜箔相当簿约5微米。

根据这种类型的板加工,目前在工艺上主要采取以下几个方面:

这主要对材料供应商提出严格的质量和技术指标,要确保介质层的厚度的差异在510μm 之间。因为只有确保涂树脂铜箔基材的介质厚度的均匀性,在同样的激光能量的作用下,才能确保孔型的准确性和孔底部的干净。同时还需要在后续工序中,采用最佳的除钻污工艺条件,确保激光成孔后盲孔底部的干净无残留物。对盲孔化学镀和电镀层的质量会产生良好的作用。

三Nd:YAG激光钻孔工艺方法

Nd: YAG是钕和钇铝柘榴石。两种固态晶体共同激发出的UV激光。最近多采用的二极管脉冲激励的激光束,它可以制成有效的激光密封系统,不需要水冷。这种激光三次谐波波长为355纳米(nm)、四次谐波波长为266纳米(nm),波长是由光学晶体调制的。

这种类型的激光钻孔的最大特点是属于紫外光(UV)谱区,而覆铜箔层压板所组成的铜箔与玻璃纤维在紫外光区域内吸光度很强,加上此类激光的光点小能量大,故能强力的穿透铜箔与玻璃布而直接成孔。由于上种类型的激光热量较小,不会象CO2激光钻孔后生成炭渣,对孔壁后续工序提供了很好的处理表面。

Nd:YAG激光技术在很多种材料上进行徽盲孔与通孔的加工。其中在聚酰亚胺覆铜箔层压板上钻导通孔,最小孔径是25微米。从制作成本分析,最经济的所采用的直径是25125微米。钻孔速度为10000孔/分。可采用直接激光冲孔工艺方法,孔径最大50微米。其成型的孔内表干净无碳化,很容易进行电镀。同样也可在聚四氟乙烯覆铜箔层压板钻导通孔,最小孔径为25微米,最经济的所采用的直径为25125微米。钻孔速度为4500孔/分。不需预蚀刻出窗口。所成孔很干净,不需要附加特别的处理工艺要求。还有其它材料成型孔加工等。具体加工中可采用以下几种工艺方法:

(1)根据两类激光钻孔的速度采取两种并用的工艺方法

基本作业方法就是先用YAG把孔位上表面的铜箔烧蚀,然后再采用速度比YAG钻孔快的CO2激光直接烧蚀树脂后成孔。

四实际生产中产生的质量问题

激光钻孔过程中,产生的质量问题比较多,不准备全面讲述,只将最易出现的质量问题提出供同行参考。

(1)开铜窗法的CO2激光钻孔位置与底靶标位置之间失准

在激光钻孔中,光束定位系统对于孔径成型的准确性极关重要。尽管采用光束定位系统的精确定位,但由于其它因素的影响往往会产生孔形变形的缺焰。生产过程中产生的质量问题,其原因分析如下:

1.制作内层芯板焊盘与导线图形的底片,与涂树脂铜箔(RCC)增层后开窗口用的底片,由于两者都会因为湿度与温度的影响尺寸增大与缩小的潜在因素。

2.芯板制作导线焊盘图形时基材本身的尺寸的涨缩,以及高温压贴涂树脂铜箔(RCC)增层后,内外层基板材料又出现尺寸的涨缩因素存在所至。

3.蚀刻所开铜窗口尺寸大小与位置也都会产生误差。

4.激光机本身的光点与台面位移之间的所造成的误差。

5.二阶盲孔对准度难度就更大,更易引起位置误差。

根据上述原因分析,根据生产所掌握的有关技术资料与实际运作过程的经验,主要采取的工艺对策有以下几个方面:

1.采取缩小排版尺寸,多数厂家制作多层板排版采取450×600或525×600(mm)。但对于加工导线宽度为0.10mm与盲孔孔径为0.15mm的手机板,最好采用排版尺寸为350×450(mm)上限。

2.加大激光直径:目的就是增加对铜窗口被罩住的范围。其具体的做法采取“光束直径=孔直径+90~100μm。能量密度不足时可多打一两枪加以解决。

3.采取开大铜窗口工艺方法:这时只是铜窗口尺寸变大而孔径却未改动,因此激光成孔的直径已不再完全由窗口位置来决定,使得孔位可直接根据芯板的上的底垫靶标位置去烧孔。

4.由光化学成像与蚀刻开窗口改成YAG激光开窗法:就是采用YAG激光光点按芯板的基准孔首先开窗口,然后再用CO2激光就其窗位去烧出孔来,解决成像所造成的误差。

5.积层两次再制作二阶微盲孔法:当芯板两面各积层一层涂树脂铜箔(RCC)后,若还需再积层一次RCC与制作出二阶盲孔(即积二)者,其“积二”的盲孔的对位,就必须按照瞄准“积一”去成孔。而无法再利用芯板的原始靶标。也就是当“积一”成孔与成垫时,其板边也会制作出靶标。所以,“积二”的RCC压贴上后,即可通过X射线机对“积一”上的靶标而另钻出“积二”的四个机械基准孔,然后再成孔成线,采取此法可使“积二”尽量对准“积一”。

2.孔型不正确

根据多次生产经验积累,主要因为所采用的基材成型所存在的质量问题,其主要质量问题是涂树脂铜箔经压贴后介质层的厚度难免有差异,在相同钻孔的能量下,对介质层较薄的部分的底垫不但要承受较多的能量,也会反射较多的能量,因而将孔壁打成向外扩张的壶形。这将对积层多层板层间的电气互连品质产生较大的影响。

由于孔型不正确,对积层多层印制电路板的高密度互连结构的可靠性会带来一系列的技术问题。

所以,必须采用工艺措施加以控制和解决。主要采用以下几种工艺方法:

(1)严格控制涂树脂铜箔压贴时介质层厚度差异在510μm之间。

(2)改变激光的能量密度与脉冲数(枪数),可通过试验方法找出批量生产的工艺条件。

(3)孔底胶渣与孔壁的破渣的清除不良。

这类质量问题最容易发生,这是由于稍为控制不当就会产生此种关型的问题。特别是对于处理大拚版上多孔类型的积层板,不可能百分之百保证无质量问题。这是因为所加工的大

排板上的微盲孔数量太多(平均约6~9万个孔),介质层厚度不同,采取同一能量的激光钻孔时,底垫上所残留下的胶渣的厚薄也就不相同。经除钻污处理就不可能确保全部残留物彻底干净,再加上检查手段比较差,一旦有缺陷时,常会造成后续镀铜层与底垫与孔壁的结合力。

激光打孔技术在印制电路板上的应用

一激光成孔的原理 激光是当“射线”受到外来的刺激而增加能量下所激发的一种强力光束,其中红外光和可见光具有热能,紫外光另具有光学能。此种类型的光射到工件的表面时会发生三种现象即反射、吸收和穿透。 图示:透过光学另件击打在基材上激光光点,其组成有多种模式,与被照点会产生三种反应。 激光钻孔的主要作用就是能够很快地除去所要加工的基板材料,它主要靠光热烧蚀和光化学烧蚀或称之谓切除。 (1)光热烧蚀:指被加工的材料吸收高能量的激光,在极短的时间加热到熔化并被蒸发掉的成孔原理。此种工艺方法在基板材料受到高能量的作用下,在所形成的孔壁上有烧黑的炭化残渣,孔化前必须进行清理。 (2)光化学烧蚀:是指紫外线区所具有的高光子能量(超过2eV电子伏特)、激光波长超过400纳米的高能量光子起作用的结果。而这种高能量的光子能破坏有机材料的长分子链,成为更小的微粒,而其能量大于原分子,极力从中逸出,在外力的掐吸情况之下,使基板材料被快速除去而形成微孔。因此种类型的工艺方法,不含有热烧,也就不会产生炭化现象。所以,孔化前清理就非常简单。 以上就是激光成孔的基本原理。目前最常用的有两种激光钻孔方式:印制电路板钻孔用的激光器主要有RF激发的CO2气体激光器和UV固态Nd:YAG激光器。 (3)关于基板吸光度:激光成功率的高低与基板材料的吸光率有着直接的关系。印制电路板是由铜箔与玻璃布和树脂组合而成,此三种材料的吸光度也因波长不同有所不同但其中铜箔与玻璃布在紫外光0.3mμ以下区域的吸收率较高,但进入可见光与IR后却大幅度滑落。有机树脂材料则在三段光谱中,都能维持相当高的吸收率。这就是树脂材料所具有的特性,是激光钻孔工艺流行的基础。 二CO2激光成孔的不同的工艺方法 CO2激光成孔的钻孔方法主要有直接成孔法和敷形掩膜成孔法两种。所谓直接成孔工艺方法就是把激光光束经设备主控系统将光束的直径调制到与被加工印制电路板上的孔直径相同,在没有铜箔的绝缘介质表面上直接进行成孔加工。敷形掩膜工艺方法就是在印制板的表面涂覆一层专用的掩膜,采用常规的工艺方法经曝光/显影/蚀刻工艺去掉孔表面的铜箔面形成的敷形窗口。然后采用大于孔径的激光束照射这些孔,切除暴露的介质层树脂。现分别介绍如下:

钻孔施工方案

乐雅高速公路TJ2合同段冷山互通C匝道三号大桥 钻孔灌注桩施工组织设计 一、工程概况 乐山—雅安段公路作为成渝地区环线列入国家高速公路网中,该段东连乐山—宜宾高速公路,西接成都—雅安高速公路,路线起自乐山市张徐坝,止于名山县水碾坝,主线全长101.422Km。本项目为TJ2合同段,起止桩号为(K8+180~K17+820),路线主线全长9.64Km。 乐雅路TJ2合同段共计18座大、中小桥,桩基施工工艺基本相同。其中双福河大桥主要是为跨越河流而设, 19#、20#、21#墩桩基在泥河内,根据设计图纸19#、20#、21#墩地面标高分别为387.49m、386.34m、386.4m,而泥河设计水位为388.4,基础施工受河水影响较大。施工前必须采取措施已保证基础的正常施工,采用不透水粘土筑岛,推土机摊平,压路机碾压。筑岛顶标高389.4m,比测时水位高2.9m,筑岛底标高386.0m,粘土填筑厚度约3.4m。单排筑岛尺寸为10m×30m,同时为增强筑岛抗冲刷、抗渗透能力,将筑岛上游侧加宽2.0m。为满足钻孔设备能运望现场,必须填筑一条施工便道来满足设备和人员的通行,便道设计宽度6.0m,填筑时按1:1收坡。整个筑岛和便道填筑数量为4200m3。 二、基础施工 1.方案概述 根据桥梁墩位处地质、水文状况、设计要求以及本工程的施工工期要求,本项目跨越公路或在陆地上的桥梁基础采用挖孔灌注施工,人工挖孔设备简单,可以全面开工,加快施工进度。跨越河流桥梁桩基础在河中或渗水量过大的地方采用人工无法挖进时,采用机械冲孔。砼由拌和站提供,罐车运输至桩基施工部位进行浇筑。

2.施工前准备 施工前要求做到三通一平,即通水、通电、通便道,平整施工场地。 3.基础施工 3.1.施工方案选择 按设计文件及现场地质水文情况,钻孔灌注桩分布如下: 表1:TJ2合同段钻孔灌注桩分布

激光钻孔HDI板品质检查要求规范

文件撰写及修订履历

1.0 目的 规激光钻孔HDI板的各流程检验标准和运作流程。保证HDI板各流程的品质。 2.0 围: 适用于崇达多层线路板的激光钻孔板的品质控制和检验。 3.0 职责: 3.1 研发部负责编制并修改该文件。本文为《盲埋孔(HDI)板制作能力及设计规手册》的次级文件, 如存在冲突,则以《盲埋孔(HDI)板制作能力及设计规手册》容为准。 3.2 品质部负责执行并监控该规的使用 3.3 生产部负责按照此规的规定进行作业 3.4 文控负责该文件的编号并进行归档 4.0 作业容: 4.1 CAM资料/菲林检查 4.1.1 检查规定 4.1.2 检查标准 4.1.2.1 层有激光钻孔对位标靶标,与该激光钻孔对位标靶点对应的其他层位置要掏空; 4.1.2.2 标靶必须距离最后一次外围粗锣板边6mm以上; 4.1.2.3 层要做激光盲孔检查矩阵PAD,PAD比激光盲孔直径大0.15mm(不含补偿); 4.1.2.4 激光盲孔底PAD比激光盲孔直径通常大0.25-0.30mm,最小0.15mm(但需评审); 4.1.2.5 底铜H oz板的盲孔开窗,蚀刻盲孔开窗直径比激光盲孔的直径大0.10mm,公差为+/-0.01mm, MI中需要注明; 4.1.2.6 底铜1 oz板的盲孔开窗,蚀刻盲孔开窗直径比激光盲孔的直径大0.15mm,公差为+/-0.02mm, MI中需要注明; 4.1.2.7 除绿油工序以外,、外层所有菲林需要做CCD菲林; 4.1.2.8 有盘中孔的板,原则上要做填孔电镀;客户要求做填平工艺的板,要做填孔电镀;如不明确,则 问客确认是否需填孔电镀填平。

激光钻孔的设备原理【深度解析】

激光钻孔的设备原理【深度剖析】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D 打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。可透过振镜进行程式化编程控制图形输出。 激光打孔指激光经聚焦后作为高强度热源对材料进行加热,使激光作用区内材料融化或气化继而蒸发,而形成孔洞的激光加工过程。激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩小10的5次方~10的15次方W/cm2的激光功率密度。如此高的功率密度几乎可对任何材料进行激光打孔。例如,在高熔点的钼板上加工微米量级的孔,在硬质合金(碳化钨)上加工几十微米量级的小孔,在红蓝宝石商人加工几百微米量级的深孔,金刚石拉丝模,化学纤维喷丝头等。 激光打孔是早早达到实用化的激光加工技术,也是激光加工的重要应用领域之一。激光打孔主要用于金属材料钢、铂、钼、钽、镁、锗、硅,轻金属材料铜、锌、铝、不锈钢、耐热合金、镍基质合金、钛金、白金,普通硬质合金磁性材料以及非金属材料中的陶瓷基片、人工宝石、金刚石膜、陶瓷、橡胶、塑料、玻璃等。 如此高的功率密度几乎可以在任何材料实行激光打孔,而且与其它方法如机械钻孔、电火花加工等常规打孔手段相比,具有以下显著的优点: (1)激光打孔速度快,效率高,经济效益好。|

钻孔桩施工工艺[详细]

钻孔桩施工工艺 第1章钻孔前的准备工作 钻孔前的准备工作主要包括桩位放样,整理平整场地,布设施工便道,设置供电及供水系统,制作和埋设护筒,制作钻孔架,泥浆的制备和准备钻孔机具等. 第1节场地整理 施工前,施工场地按不同情况进行处理.对于处在水中的钻孔桩基础都必须搭设施工平台,桩基处在旱地时,清除杂物后夯压密实即可. 第2节说明 本标段钻孔桩均使用钢护筒,采用3米米-5米米钢板制作.为保证其刚度,防止变形,在护筒上、下端和中部外侧各焊一道加劲肋.本合同段的钻孔桩直径为ф120厘米和100厘米.根据钻孔桩直径,我们所做的护筒直径为145厘米和125厘米.护筒埋设时,其轴线对准测量所标出的桩位中心,护筒周围和护筒底接触紧密,保证其位置偏差不大于5厘米,倾斜度不大于1%. 第3节泥浆的制作 制浆前,先把粘土尽量打碎,使其在搅拌中容易成浆,缩短成浆时间,提高泥浆质量.制浆时,可将打碎的粘土直接投入护筒内,使用冲击锥冲击制浆,待粘土已冲搅成泥浆时,即可进行钻孔.多余的泥浆用管子导入钻孔外泥浆池贮存,以便随时补充孔内泥浆. 第4节钻机就位 埋设好护筒后,即可进行钻机就位,本标段使用的钻机为卷扬机牵引式冲击钻和冲抓钻.就位时,只要使钻锥中心对准测量放样时所测设的桩位即可,其对中误差不得大于5厘米. 第2章钻孔工艺 第1节冲击钻钻孔工艺 A. 开钻前应注意的事项

开钻前,在护筒内多加一些粘土.地表土层松疏时,还要混和加入一定数量的小片石,然后注入泥浆和清水,借助钻头的冲击把泥膏、石块挤向孔壁,以加固护筒角.为防止冲击振动使邻孔坍塌或影响邻孔已灌注砼的凝固,必须等邻孔砼灌注完毕并达到一定的强度后方 可开始钻孔.冲击钻孔时宜用小冲程,当孔底在护筒脚下3-4米后,可根据实际情况适当加大冲程.在钻孔桩上部淤泥段,考虑采用冲抓钻:一方面可防止坍孔,另一方面可以适当加快施工进度. B. 钻机安装处事先整平夯实,以免在钻孔过程中钻机发生倾斜和下陷而影响成孔的质量.钻机必须固定牢固,严禁在钻孔过程中钻机移位.钻孔时,随时察看钢丝绳的回弹情况,耳听钻锥的冲击声,以判别孔底情况,掌握勤松动,少量松绳的原则;孔内水泥浆水平面须高出护筒脚至少0.5米以上,以免泥浆面荡漾损坏护筒脚孔壁,但比护筒顶面低0.3米,防止泥浆溢出;冲击过程中勤抽碴,勤检查钢丝绳和钻头的磨损情况,预防安全质量事故的发生. C. 抽碴时应注意的几个问题 (1)及时向孔内补浆或补水,如向孔内投放粘土自行造浆,在抽碴后随着冲击投放粘土,不宜一次倒进很多,防止粘结. (2)抽碴筒放到孔底后,要在孔底上、下提放几次,使用权其多进些钻碴,然后提出. (3)钻头刃口在钻井中不断磨损,直径磨耗不得超过1.5厘米,每班开钻前检查钻头直径、及时补焊,不宜中途修补,以免卡钻.准备备用钻头,轮换使用和修补. 第2节回转钻钻孔工艺 A. 初钻 先启动泥浆泵和转盘,使之空转一段时间,待泥浆输进一定数量后,方可开始钻进.接、卸钻杆的动作要迅速、安全,争取在尽快时间内完成,以免停钻时间过长,增加孔底沉淀. B. 钻进时操作要点 a. 开始钻进时,进尺应适当控制,在护筒刃脚处,应低档慢速钻进,使刃脚处有坚固的泥皮护壁.钻至刃脚下1米后,可按土质以正常速度钻进.如护筒土质松软发现漏浆时,可提起钻锥,向孔中倒入粘土,再放下钻锥倒转,使胶泥挤入孔壁堵住漏浆孔隙,稳住泥浆继续钻进. b. 在粘土中钻进,由于泥浆粘性大,钻锥所受阻力也大,易糊钻.易选用尖底钻锥、中等转速、大泵量、稀泥浆钻进. c. 在砂土或软土层钻进时,易坍空孔.易选用平底钻锥,控制进尺,轻压,低档慢速,大泵量,稠泥浆钻进. d. 在轻亚粘土或亚粘土夹卵、砾石层中钻进时,因土层太硬,会引起钻锥跳动和钻杆摆动加大及钻锥偏斜等现象,易使钻机超负荷损坏.宜采用低档慢速,优质泥浆,大泵量,两级钻进的方法钻进. e. 钻进过程中,每进尺2~3米,应检查钻孔直径和竖直度,检查工具可用圆钢筋笼(外径D 等于设计桩径,高度3~5米)吊入孔内,使钢筋笼中心与钻孔中心重合,如上下各处均无挂阻,则说明钻孔直径和竖直度符合要求. 第3节检测孔深、倾斜度、直径和 钻孔完成后,必须检测孔深、直径和倾斜度,其中孔径和孔深须达到设计要求,倾斜度不得大于

HDI镭射成孔技术与讨论

雷射成孔技术介绍与讨论 雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil 的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste) 4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 1.雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1.1 光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑),需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 1.2 光化裂蚀Photochemical Ablation 是指紫外领域所具有的高光子能量(Photon Energy),可将长键状高分子有机物的化学键(Chemical Bond)予以打断,於是在众多碎粒造成体积增大与外力抽吸之下,使板材被快速移除而成孔。本反应是不含熟烧的“冷作”(Cold Process),故孔壁上不至产生炭化残渣。 1.3 板材吸光度 由上可知雷射成孔效率的高低,与板材的吸光率有直接关系。电路板板材中铜皮、玻织布与树脂三者的吸收度,民因波长而有所不同。前二者在UV 0.3mu以下区域的吸收率颇高,但进入可见光与IR后即大幅滑落。至於有机树脂则在三段光谱中,都能维持於相当不错的高吸收率。 1.4 脉冲能量 实用的雷射成孔技术,是利用断续式(Q-switch)光束而进行的加工,让每一段光敕(以微秒us计量)以其式(Pulse)能量打击板材,此等每个Pulse(可俗称为一枪)所拥有的能量,又有多种模式(Mode),如单光束所成光点的GEMOO单束光点的能量较易聚焦集中故多用於钻孔。多束光点不但还需均匀化且又不易集中成为小光点,一般常用於雷射直接成像技术(LDI)或密贴光罩(Contact Mask)等制程。 1.5 精确定位系统 1.5.1 小管区式定位 以“日立微孔机械”公司(Hitachi via Machine,最近由“日立精工”而改名)之RF/CO2钻孔机为例,其定位法是采“电流计式反射镜”(Galvanometer and Mirro)本身的X.Y.定位,加上机种台之XY台面(XY Table)定位等两种系统合作而成。后者是将大板面划分成许多小“管区”(最大为50mm见方,一般为精确起见多采用30mm见方),工作中可XY移动台面以交换管区。前者是在单一管区内,以两具Galvanometer的XY微动,将光点打到板面上所欲对准的靶位而成孔。当管区内的微孔全部钻妥后,即快速移往下一个管区再继续钻孔。

旋挖钻机钻孔施工方案

A002 施工组织设计/(专项)施工方案报审表工程名称:瑞和.滨江壹号1~12号楼及相应地下室建筑工程

四川省建设厅制 目录 第一节工程概况 第二节旋挖钻机施工工艺原理 第三节旋挖钻机施工工艺 第四节人员、机械配置 第五节施工进度计划 第六节旋挖钻机施工操作注意事项及要点 第七节旋挖钻机施工中出现在的问题分析及处理措施

第八节旋挖钻机施工安全及环保措施 第一节工程概况 瑞和滨江壹号1~7#楼工程因工期短,场地地质大部分为砂夹石,积水多,采用人工挖孔桩工期相对较长,且安全隐患大,为了加快工程进度,确保工程保质按期完成,经与建设单位、监理单位、地勘单位及设计单位商议采取旋挖钻机进行钻孔施工。 第二节旋挖钻机施工工艺原理 旋挖钻机是一种多功能、高效率的灌注桩桩孔的成孔设备,可以实现桅杆垂直的自动调节和钻孔深度的计量;旋挖钻孔施工是利用钻杆和钻头的旋转,以钻头自重并加液压作为钻进压力,使渣土装满钻斗后提升钻斗出土

石。通过钻斗的旋转、钻进、提升、卸渣,反复循环而成孔。其特点是工作效率高、施工质量好、尘土污染少。旋挖钻机依靠钻杆和钻头自重及钻杆旋转时斗齿切入土石层,斜向斗齿在钻头回转时切下土石块并向斗内推进而完成钻取土。若遇岩石可通过加压油缸对钻杆加压,强行将斗齿切入岩石中,将岩石击碎。钻斗装满后,由起重机提升钻杆及钻斗至地面,钻斗内的渣土在旋转摆动钻

斗时排出钻斗。钻杆向下放关好斗门,再回转到孔内进行下一循环作业。本工程因地质条件复杂,钻孔主要针对土层、岩层、地下水及溶洞进行考虑。 第三节旋挖钻机施工工艺 一、旋挖钻机施工工艺流程 二、旋挖钻机施工操作步骤 1 、钻机进场通道及钻机作业场地平整 先平整场地、清除杂物、换出软土、夯打密实,钻机底座不宜直接置于不坚实的填土上,以免产生不均匀沉陷。确保3m 宽进出通道,用于运输进出及架安吊车。 2 、钻孔定位 首先对设计图纸提供的坐标、高程等有关数据进行认真复核,确认无误后采用全站仪进行桩位放样,桩中心放样完毕后,沿桩中心拉十字线至1.5m 以外并作好桩标记。 3 、开孔:

UV激光基板钻孔新工艺讲解

UV激光基板钻孔新工艺 目前,UV激光钻孔设备只占全球市场的15%,但该类设备市场需求的增长要比新型的CO2激光钻孔设备的需求高3倍。孔的直径甚至小于50μm,1~2的多层导通孔和较小的通孔也是当前竞争的焦点,UV激光为当前的竞争提出了解决方案;除此之外,它还是一种用于精确地剥离阻焊膜以及生成精密的电路图形的工具。本文概述了目前UV激光钻孔和绘图系统的特性和柔性。还给出了各种材料的不同类型导通孔的质量和产量结果以及在各种蚀刻阻膜上的绘图结果。本文通过展望今后的发展,讨论了UV激光的局限性。 本文还对UV激光工具和CO2激光工具进行了比较,阐明了二者在哪些方面是可以竞争的,在哪些方面是不可竞争的,以及在哪些方面二者可以综合应用作为 互补的工具。 UV与CO2的对比 UV激光工具不仅与CO2的波长不同,而且各自在加工材料,如像PCB和基板,也是两种不同的工具。光点尺寸小于10倍,较短的脉冲宽度和极高频使得在一般的钻孔应用中不得不使用不同的操作方法,并且为不同的应用开辟了其它的 窗口。 表1给出了目前激光系统中通常采用的两种激光装置的最主要技术特性的比 较。 表1:CO2激光与UV激光钻孔技术特性比较 UV在极小的脉冲宽度内具有高频和极大的峰值功率。工作面上光点尺寸决定了能量密度。CO2能量密度达到50~70J/cm2,而UV激光由于光点尺寸小得多,所 以能量密度可达50~200J/cm2。

由于UV光点尺寸比目标孔直径还要小,激光光束以一种所谓的套孔方式聚焦 于孔的目标直径内。 图1给出了套孔方式。 图1 套孔方式示意图 对于UV激光,钻一个完整的孔所需的脉冲数在30到120之间,而CO2激光则只需2到10个脉冲。UV激光的频率要比CO2的高5到15倍。在去除了顶部铜层后,可使用第二步,通过扩大的光点清理孔中的灰色区域。 当然还可使用UV激光进行冲压,不过光点的大小决定了能量密度,且不同材料的烧蚀极限值决定了所需的最小能量密度。这样根据不同材料的烧蚀极限就可 导出UV冲压方式使用和最大光点尺寸。 由于UV激光所具有的能量,目前仅将冲压方式用于孔直径小于75im、烧蚀极限极低的软材料如TCD,或用于小焊盘开口的阻焊膜烧蚀。 通过套孔方式将必要的能量带进孔内的时间在很大程度上取决于孔自身尺寸,孔直径越小,UV激光工具就钻的越快。CO2与UV激光之间的切换点为75到50im 的孔直径之间。 CO2激光的三种局限性: 第一:由于10im光波在孔边缘的绕射,需要考虑最小的孔尺寸。 第二:在铜上该波长的反射。 第三:厚度达波长1/2的底层铜上的残留物。 波长短得多的且在铜上有较高吸收率的UV激光就不存在上述三种局限性,因此,UV激光就成为一种理想的工具,它可用来在涂覆了任意一种铜材料的高档PCB 和基板即高密度互连技术(HDI)上钻小孔。 HDI一瞥

脉冲宽度对激光打孔的影响分析

脉冲宽度对激光打孔的影响分析 采用不同脉宽的激光打孔,产生的现象和打孔原理有很大的区别,不仅如此,即使采用自由震荡的中等功率脉冲激光打孔,对打孔的尺寸和孔的质量也有非常大的影响。从计算公式中得到的孔深、孔径与激光脉宽无关,只与激光束的脉冲能量及聚焦情况有关,这是由于采用准稳定破坏模型忽略了材料的飞溅物对激光的屏蔽作用,使用这样推到的公式描述孔的形成过程是比较粗糙的。通过试验分析表明,在激光脉冲能量恒定时,激光脉宽的变化不仅带来 采用不同脉宽的激光打孔,产生的现象和打孔原理有很大的区别,不仅如此,即使采用自由震荡的中等功率脉冲激光打孔,对打孔的尺寸和孔的质量也有非常大的影响。从计算公式中得到的孔深、孔径与激光脉宽无关,只与激光束的脉冲能量及聚焦情况有关,这是由于采用准稳定破坏模型忽略了材料的飞溅物对激光的屏蔽作用,使用这样推到的公式描述孔的形成过程是比较粗糙的。通过试验分析表明,在激光脉冲能量恒定时,激光脉宽的变化不仅带来打孔尺寸的变化,而且对孔壁表面的质量也有很大的影响,表1给出在激光能量近似相等时,改变脉宽对打孔尺寸的影响情况: 能量/J 脉宽/ms孔径/mm 孔深/mm 深径比 5.4 0.25 0.42 1.2 2.9 5.1 0.35 0.39 1.3 3.3 5.9 0.55 0.38 1.5 3.9 5.7 0.75 0.36 1.6 4.4 5.4 0.85 0.30 1.8 6.0 5.0 1.15 0.26 1.6 6.1 表1:在激光能量近似相等时,改变脉宽对打孔尺寸的影响 一般采用脉宽在0.2~1.2ms之间的自由震荡运转的激光器打孔。现假定激光的能量不变,当采用长脉宽打孔时,因为时间拉长,光通量密度降低,材料的蒸发减弱,熔化的比例居上,因此材料去除就减少。一旦光照结束,熔化的材料又重新凝固,形成再筑层,使孔径、孔深都减小。而再筑层使孔内壁质量也较差,波纹度增加,而且有积瘤,严重的会赌孔。 如果选用脉宽小于0.1ms打孔,同时光能量密度较小(针对自由震荡激光器而言)就会因为激光作用时间太短,还未进入准稳定蒸发状态,激光照射就已经结束,因而打不出孔来。 由表1可以看出,在激光束的脉冲能量基本稳定的情况下,当脉宽由0.25ms增加到0.85ms时,孔深增加了50%,孔径减小了30%,因而深径比增加了一倍左右。孔深增加是因为保持一定的能量而加大脉宽时,必须减小泵浦速率,这样激光束的高阶横模不容易起振,光束发散角较小,从而减小了材料汽化的比率,液相多而不易被排走,故使孔径减小。 脉宽的选择是由孔的要求而定的:打深而小的孔,宜选用较长的脉冲宽度;打打大而浅的孔,则宜选用较短的脉冲宽度。 在加工高质量孔的时候,宜选用较短的脉冲宽度,因为这样可以避免孔壁堆积熔融物,却会降低打孔的重复稳定性。另外由于短脉冲打孔,材料汽化剧烈,被排出的材料蒸汽较浓,因而加剧了对后面光束的屏蔽及散射作用,同样也会降低高重复稳定性。因此选用0.3~0.6ms脉宽对大多数情况下都是适宜的。 从材料受热变形及产生热应力裂纹的角度考虑:脉宽增大,会使较多的热作用于材料的非破坏性加热,使材料变形大,热应力大,易出现裂纹。因此对于导热性差的材料打孔尽量采用短脉宽。

激光钻孔原理讲解

雷射成孔的商用机器,市场上大体可分为:紫外线的Nd :YAG雷射机(主要供应者为美商ESI公司;红外线的C02雷射机(最先为Lumonics,现有日立、三菱、住友等;以及兼具UV/IR之变头机种(如Eecellon之2002型等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask 之下,能同时烧掉铜箔与基材而成孔,一般常用在各式’对装载板” (Package Substrste 4mil以下的微孔,若用於手机板的4~6mil 微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 、雷射成孔的原理 雷射光是当:射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction吸收(Absorption及穿透(Transmission等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1、光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑,需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 2、光化裂蚀Photochemical Ablation

钻孔工艺大全

钻孔工艺大全 钻头作为孔加工中最为常见的刀具,被广泛应用于机械制造中,特别是对于冷却装置、发电设备的管板和蒸汽发生器等零件孔的加工等,应用面尤为广泛和重要。 一、钻削的特点 钻头通常有两个主切削刃,加工时,钻头在回转的同时进行切削。钻头的前角由中心轴线至外缘越来越大,越接近外圆部分钻头的切削速度越高,向中心切削速度递减,钻头的旋转中心切削速度为零。钻头的横刃位于回转中心轴线附近,横刃的副前角较大,无容屑空间,切削速度低,因而会产生较大的轴向抗力。 如果将横刃刃口修磨成DIN1414中的A型或C型,中心轴线附近的切削刃为正前角,则可减小切削抗力,显著提高切削性能。 根据工件形状、材料、结构、功能等的不同,钻头可分为很多种类,例如高速钢钻头(麻花钻、群钻、扁钻)、整体硬质合金钻头、可转位浅孔钻、深孔钻、套料钻和可换头钻头等。 二、断屑与排屑 钻头的切削是在空间狭窄的孔中进行,切屑必须经钻头刃沟排出,因此切屑形状对钻头的切削性能影响很大。常见的切屑形状有片状屑、管状屑、针状屑、锥形螺旋屑、带状屑、扇形屑、粉状屑等。 钻削加工的关键--切屑控制 当切屑形状不适当时,将产生以下问题: ①细微切屑阻塞刃沟,影响钻孔精度,降低钻头寿命,甚至使钻头折断(如粉状屑、扇形屑等); ②长切屑缠绕钻头,妨碍作业,引起钻头折损或阻碍切削液进入孔内(如螺旋屑、带状屑等)。如何解决切屑形状不适当的问题: ①可分别或联合采用增大进给量、断续进给、修磨横刃、装断屑器等方法改善断屑和排屑效果,消除因切屑引起的问题。 ②可使用专业的断屑钻头打孔。例如:在钻头的沟槽中增加设计的断屑刃将切屑打断成为更容易清除的碎屑。碎屑顺畅地沿着沟槽排除,不会发生在沟槽内堵塞的现象。因而新型断屑钻获得了比传统钻头流畅许多的切削效果。

激光钻孔原理

雷射成孔的商用机器,市场上大体可分为:紫外线的Nd:YAG雷射机(主要供应者为美商ESI公司);红外线的CO2雷射机(最先为Lumonics,现有日立、三菱、住友等);以及兼具UV/IR之变头机种(如Eecellon之2002型)等三类。前者对3mil以下的微孔很有利,但成孔速度却较慢。次者对4~8mil的微盲孔制作最方便,量产速度约为YAG机的十倍,后者是先用YAG头烧掉全数孔位的铜皮,再用CO2头烧掉基材而成孔。若就行动电话的机手机板而言,CO2雷射对欲烧制4~6mil的微盲孔最为适合,症均量产每分钟单面可烧出6000孔左右。至於速度较的YAG雷射机,因UV光束之能量强且又集中故可直接打穿铜箔,在无需“开铜窗”(Conformal Mask)之下,能同时烧掉铜箔与基材而成孔,一般常用在各式“对装载板”(Package Substrste)4mil以下的微孔,若用於手机板的4~6mil微孔似乎就不太经济了。以下即就雷射成孔做进一进步的介绍与讨论。 一、雷射成孔的原理 雷射光是当:“射线”受到外来的刺激,而增大能量下所激发的一种强力光束,其中红外光或可见光者拥有热能,紫外光则另具有化学能。射到工作物表面时会发生反射(Refliction)吸收(Absorption)及穿透(Transmission)等三种现象,其中只有被吸收者才会发生作用。而其对板材所产生的作用又分为热与光化两种不同的反应,现分述於下: 1、光热烧蚀Photothermal Ablation 是指某雷射光束在其红外光与可见光中所夹帮的热能,被板材吸收后出现熔融、气化与气浆等分解物,而将之去除成孔的原理,称为“光热烧蚀”。此烧蚀的副作用是在孔壁上的有被烧黑的炭化残渣渣(甚至孔缘铜箔上也会出现一圈高熟造成的黑氧化铜屑),需经后制程Desmear清除,才可完成牢固的盲孔铜壁。 2、光化裂蚀Photochemical Ablation 是指紫外领域所具有的高光子能量(Photon Energy),可将长键状高分子有机物的化学键(Chemical Bond)予以打断,於是在众多碎粒造成体积增大与外力抽吸之下,使板材

正循环钻孔施工方案样本

目录 1 编制依据.................................. 错误!未定义书签。 2 适用范围.................................. 错误!未定义书签。 3 施工方法及工艺要求........................ 错误!未定义书签。3.1 施工准备............................... 错误!未定义书签。 3.2 埋设护筒................................ 错误!未定义书签。 3.3 钻机就位及钻孔.......................... 错误!未定义书签。 3.4 清孔.................................... 错误!未定义书签。 3.5 钢筋笼骨架的制作安装.................... 错误!未定义书签。 3.6 导管安装................................ 错误!未定义书签。 3.7 灌注水下混凝土.......................... 错误!未定义书签。 4 质量检测.................................. 错误!未定义书签。 5 钻孔桩常见事故的预防及处理................ 错误!未定义书签。 5.1 钢筋笼上浮.............................. 错误!未定义书签。 5.2 坍孔.................................... 错误!未定义书签。 5.3 钻孔偏斜................................ 错误!未定义书签。 5.4 扩孔和缩孔.............................. 错误!未定义书签。 5.5钻孔漏浆............................... 错误!未定义书签。 6 钻孔桩断桩常见事故及处理.................. 错误!未定义书签。 6.1 首批混凝土封底失败...................... 错误!未定义书签。 6.2 供料和设备故障使灌注停工................ 错误!未定义书签。 6.3 灌注过程中坍孔.......................... 错误!未定义书签。

冲击钻钻孔施工方案

一、编制依据及目的 1、《公路工程技术标准》JTG B01-2003 2、《公路桥涵施工技术规范》JTG/T F50-2001 3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 4、《公路工程质量检验评定标准》JTG F80/1—2004 5、《施工图设计文件》 二、工程概况 古(雷港区)武(平)高速公路是海西经济区高速公路网“三纵八横”中第八横的重要组成部分,也是龙岩市高速公路网的重要组成部分。古武高速是漳州古雷港区经龙岩通往内陆省份的一条快速通道,也是扩大海峡两岸交流合作最主要的通道之一。 本标段是古武高速十方至东留段的一部分,位于龙岩市武平县中山镇,地处闽、粤、赣三省交界处。本工程设计为双向四车道高速公路,路基宽为24.5米,设计行车速度80km/h。本标段起讫里程为K19+400~K26+100,全长6.691公里。全线共有桥梁1871.1m/6座,其中大桥1774.6m/5座,中桥96.5m/1座。桥梁上部结构为预应力混凝土连续T梁和连续刚构箱梁,下部结构为桩基础、扩大基础,墩身采用柱式墩、空心墩和双肢实体薄壁墩三种形式。全线共有桩基297根,共计7409延米。

三、施工工序 钻孔灌注桩施工工艺流程框图

四、施工方法及工艺要求 本标段内冲击成孔的,在每个墩设置泥浆沉淀池,采用泥浆车运至指定弃渣场,钢筋笼统一在钢筋加工场加工成型,运至现场拼接、吊机下放钢筋笼,导管法连续灌注水下砼。在同一墩位连续钻孔时,保证施工的钻孔中心距离5m以内任何桩的混凝土都已浇筑24h以后,方可开钻。 4.1 施工准备 1、进行场地勘探调查,对既有架空电线、地下电缆、给排水管道等设施,如果妨碍施工或对安全操作有影响,采取清除、移位、保护等措施妥善处理。 2、平整场地,以便钻机安装和移位。对不利于施工机械运行的松散场地,采取硬化、加固等措施,场地采取有效的排水措施。 3、架设电力线路,配备适合的变压器或柴油机。 4、确定科学合理的钻孔方法和设备。 4.2 钢护筒埋设 平整场地后,由测量人员准确定出钻孔中心位置。桩位放样完成后,现场技术员应及时用钢尺符合桩位,工班在桩的前后左右距中心2m处分别设置护桩,交角不小于60度。钻孔前设置坚固、不漏水的孔口护筒。护筒采用5mm厚钢板卷制,内径应大于钻头直径20~40cm,拟采用2.5m高。钢护筒分节加工,顶部和底部各1m范围作加强箍。每节护筒连接采用坡口焊。钢护筒的埋设必须认真进行,护筒底部及四周应用粘土填筑,并分层夯实处理,护筒顶高出地面0.3m左右,

激光打孔(论文)

激光打孔技术 班级:XX 作者:周欣指导老师:XX 摘要: 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求, 而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 关键词: 激光打孔 一.激光打孔的原理 激光束打孔机一般由固体激光器、电气系统、光学系统和三坐标移动工作台等四大部分组成。 1)固体激光器工作原理 当激光工作物质钇铝石榴石受到光泵(激励脉冲氙灯)的激发后,吸收具有特 定波长的光,在一定条件下可导致工作物质中的亚稳态粒子数大于低能级粒 子数,这种现象称为粒子数反转。 一旦有少量激发粒子产生受激辐射跃迁,就会造成光放大,再通过谐振腔内 的全反射镜和部分反射镜的反馈作用产生振荡,最后由谐振腔的一端输出激 光。激光通过透镜聚焦形成高能光束照射在工件表面上,即可进行加工。2)电气系统包括对激光器供给能量的电源和控制激光输出方式(脉冲式或连续 式等)的控制系统。在后者中有时还包括根据加工要求驱动工作台的自动控制 装置。 3)光学系统的功能是将激光束精确地聚焦到工件的加工部位上。为此,它至少含有激光聚焦装置和观察瞄准装置两个部分。 4)投影系统用来显示工件背面情况,在比较完善的激光束打孔机中配备。

5)工作台由人工控制或采用数控装置控制,在三坐标方向移动,方便又准确地 调整工件位置。 工作台上加工区的台面用玻璃制成,因为不透光的金属台面会给检测带来不 便,而且台面会在工件被打穿后遭受破坏。工作台上方的聚焦物镜下设有吸、 吹气装置,以保持工作表面和聚焦物镜的清洁。 二、激光打孔的特点 激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺需求。例如,在高熔点金属钼板上加工微米量级孔径,在硬质碳化钨上加工几十微米的小孔;在红、蓝宝石上加工几十微米的深孔以及金刚石拉丝模具、化学纤维的喷丝头等。这一类的加工任务用常规的机械加工方法很难,有时甚至是不可能的,而用激光打孔则不难实现。激光束在空间和时间上的高度集中,可以将光斑直径缩小到微米级从而获得很高的功率密度,几乎可以对任何材料进行激光打孔。 激光打孔技术与机械钻孔、电火花加工等常孔打孔手段相比,具有显著的优点:(1)激光打孔速度快,效率高,经济效益好 由于激光打孔是利用功率密度为l07-109W/cm2的高能激光束对材料进行瞬时作用,作用时间只有0.001-0.00001s,因此激光打孔速度非常快。将高效能激光器与高精度的机床及控制系统配合,通过微处理机进行程序控制,可以实现高效率打孔。在不同的工件上激光打孔与电火花打孔及机械钻孔相比,效率提高l0-1000倍。 (2)激光打孔可获得大的深径比 小孔加工中,深径比是衡量小孔加工难度的-个重要指标。对于用激光束打孔来说,激光束参数较其它打孔方法草便于优化,所以可获得比电火花打孔及机械钻孔大得多的深径比。一般情况下,机械钻孔和电火花打孔所获得的深径比值不超过10。 (3)激光打孔可在硬、脆、软等各类材料上进行 高能量激光束打孔不受材料的硬度、刚性、强度和脆性等机械性能限制,它既适于金属材料,也适于一般难以加工的非金属材料,如红宝石、蓝宝石、陶瓷、人造金刚石和天然金刚石等。由于难加工材料大都具有高强度、高硬度、低热导率、加工易硬化、化学亲和力强等性质,因此在切削加工中阻力大、温度高、工具寿命短,表面粗糙度差、倾斜面上打孔等因素使打孔的难度更大。而用激-光在这些难加工材料上打孔,以上问题将得到解决。我国钟表行业所用的宝石轴承几乎全部是激光打孔。人造金刚石和天然金刚石的激光打孔应用也非常普遍。用YAG激光在厚度为5.5mm的硬质合金上打孔,深径比高达l4:1,而在1l.5mm 厚的65Mn上可打出深径比为l9:1的小孔。在l0mm厚的坚硬的氮化硅陶瓷上可容易地打出直径为0.6mm的小孔,这都是常规打孔手段无法办到的。特别是在弹性材料上,由于弹性材料易变形,很难用一般方法打孔。

激光打孔加工

金属激光打孔加工 激光打孔加工产品图 精密激光打孔产品图和激光打孔加工设备介绍,激光打孔加工速度快,无毛刺,激光打孔加工产品可实现自动化生产 1.喷油嘴细孔--激光打孔加工 2.不锈钢精密细孔--激光打孔加工

3.平板电脑喇叭孔--激光打孔加工 4.不锈钢圆管花洒水平面垂直孔---激光打孔加工

激光打孔主要进行金属非接触打孔,最小孔径可达到0.01mm,适合普通金属及合金(铁、铜、铝、镁、锌等所有金属),稀有金属及合金(金、银、钛)等材料的打孔。 根据小孔的尺寸范围划分为六档: 小孔:1.00~3.00(mm) 次小孔:0.40~1.00(mm) 超小孔:0.1~0.40(mm) 微孔:0.01~0.10(mm) 次微孔:0.001~0.01(mm) 超微孔:<0.001(mm) 要了解设备的可以找我,橙色数字(王经理)专业激光打孔/割切/焊接加工设备厂家,也可承接激光加工. 2.激光打孔设备介绍 (1)激光打孔的机理 激光束是一种在时间上和空间上高度集中的光子流束,其发散角极小、聚焦性能良好,采用光学聚焦系统,可以将激光束会聚到微米量级的极小范围内,其功率密度可高达,当这种微细的高能激光束照射到工件上时,由于这种高强热源对材料加热的结果,可使得照射区内的温度瞬时上升到一万度以上,从而引起被照射区内的材料瞬时熔化并大量汽化蒸发,气压急剧上升,高速气流猛烈向外喷射,在

照射点上立即形成一个小阻坑。随着激光能量的不断输入,阻坑内的汽化程度加剧,蒸气量急剧增多气压骤然上升,对阻坑的四周产生强烈的冲击波作用,致使高压蒸气带着溶液,从凹坑底部高速向外喷射,火花飞溅,如同产生一种局部微型爆炸那样,利用辅助气体吹走激光熔化的范围,在工件上迅速打出孔来. (2)激光打孔设备组件 激光打孔设备主要由激光器、电源、光学传输系统,聚焦系统、观察对准系统、工作台,检控装置等部分组成。激光打孔用的激光器有固体激光器和气体激光器两大类。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

相关文档