文档库 最新最全的文档下载
当前位置:文档库 › 水泥罐基础检算书

水泥罐基础检算书

水泥罐基础检算书
水泥罐基础检算书

水泥罐基础检算书

一、编制依据

1、长沙市轨道交通1号线一期工程土建施工8标施工设计图纸等设计资料;

2、施工现场总平面布置图;

3、水泥罐总示意及基础图参数(厂家提供);

4、《建筑结构荷载规范》GB50009-2001。

二、工程概况

长沙轨道交通1号线一期工程8标盾构工区浆液拌合站设置于省政府站盾构始发端地面上(即车站基坑北侧地面上),为保证盾构浆液生产,配备2个80T 水泥罐,在主机侧面并排布置。

三、水泥罐基础及承台设计

1、本水泥罐基础根据现场实际地质情况,采用天然基础;

2、基础承台设计为:承台砼为C25、承台尺寸为3800×3800×1000mm ;其水泥罐的地脚螺栓根据厂家说明书配置。

四、水泥罐基础、承台计算

1、基础竖向承载力验算:根据设计资料,本基础位置的地基持力层为1-2-2素填土,其该层土的承载力特征值为100kPa 。

900V KN =, 3.8 3.81 2.5361G KN =???=,23.8 3.814.44A m =?=

22()/(361900)/14.4487.33/=100/G V A KN m KN m σσ=+=+=

地地 所以,满足要求。

其中式中:

V ——为水泥罐满载时总重量90T ,取水泥罐说明书;

G ——为基础承台重量;

A ——为基础承台接触面积。

2、基础抗倾覆验算:

00.43k z s z w w βμμ==

k w ——风荷载标准值(kN/m 2

); z β——高度z 处的风振系数,查《建筑结构荷载规范》取2.5;

附件二

s μ——风荷载体形系数,查《建筑结构荷载规范》取0.8;

z μ——风压高度变化系数,查《建筑结构荷载规范》取0.62;

0w ——基本风压(kN/m 2

,查《建筑结构荷载规范》风压按50年一遇,取0.35。

只需计算水泥罐空载情况下抗倾覆即可: 361/(3.8/2)190/M kN m ==稳

0.4339.8=88.5/M kN m =???倾()7

2.15 1.5M M =>稳倾 满足抗倾覆要求。 为了提高储料罐的抗倾覆能力,在水泥罐三

面接设缆风绳的措施。

五、基础承台配筋 基础承台底部采用Φ12螺纹钢,间距200mm ,纵横向布置,保护层50mm 。

图1 基础承台配筋图

七、注意事项:

1、水泥罐的安装必须以厂家提供的底座尺寸及地脚螺栓为准,如机型有所变更时,本方案的定位尺寸须重新进行调整。

2、水泥罐基础砼强度必须达到90%后方可投入安装及使用。

3、基础土质要求承载力必须达到100kPa ,当开挖基础土质不能达到承载力要求时,应挖除不合格土层并采用碎石土进行换填或掺入水泥或粉煤灰对土体进行改良,夯实后经现场试验达到要求时,方可进行基础承台施工。

0.43kN/m 2

4、水泥罐应设有避雷针接地和保护接地措施。

混凝土搅拌站财务处理流程

商品混凝土公司(搅拌站)财务处理流程 商品混凝土公司,也称为混凝土搅拌站行业,拌站总体来说属于产品生产。 有关成本核算的会计科目主要有: 1、生产成本; 2、原材料; 3、固定资产折旧; 4、应付职工薪酬等。 会计核算基本过程: 1、购入水泥、沙子、石子、矿粉、粉煤灰、外加剂(防冻剂、防水剂、缩水剂等) 借:原材料—水泥、沙子、石子、矿粉、粉煤灰、外加剂(防冻剂、防水剂、缩水剂等)(税务处理省略) 贷:银行存款、应付账款 2、生产领用原材料 借:生产成本—基本生产成本-材料费 贷:原材料 3、生产工人工资 借:生产成本—基本生产成本-人工费 贷:应付职工薪酬 4、生产设备折旧

借:生产成本—基本生产成本-机械费 贷:累计折旧 5、化验室费用 借:生产成本—辅助生产成本-间接费 贷:制造费用 6、生产使用的电力、柴油等 借:生产成本—辅助生产成本-间接费 贷:制造费用 7、销售商品砼 借:应收账款、银行存款 贷:主营业务收入(税务处理省略) 借:主营业务成本 贷:生产成本(因商品砼直接运输给客户,不用再有入库的核算) 8、企业如有砼运输(包括垂直运输)可将运输费用加在生产成本中。

经营混泥土搅拌站在纳税上属于缴纳什么税种?帐务该怎样处理?(以下内容仅供参考:经营混泥土搅拌站属于什么税种?) 一、涉及的税种:增值税(或营业税)、城建税、教育费附加、印花税、个人所得税、房产税、土地使用税、所得税等。(注:如果你单位经营范围属于生产、加工、销售混泥土,征收“增值税”) 二、账务处理 1、生产混泥土的账务处理 (1)购进材料时 借:原材料 应交税金--增值税(进项税额) 贷:银行存款等 (2)生产混泥土发生的材料费、人工费等 借:生产成本 贷:原材料、应付工资等 (3)生产完工时 借:产成品 贷:生产成本 (4)销售混泥土时

水泥罐基础计算书

水泥罐及粉煤灰罐基础计算书 1、千灯湖站地层情况 自上而下分布如下:杂填土:0~;粉细砂层:0~;粉砂岩:0~。 该地层经过了φ550@400 深约14m的深层搅拌桩加固。 2、荷载分析 静荷载:支架;水泥罐装水泥60t; 粉煤灰可装40T。 动荷载:施工不考虑; 风荷载:根据气象资料,按10级台风计算。 3、水泥罐及粉煤灰罐基础设计 承台砼为C30,承台尺寸为:8900mm×4400mm×600mm。 4、受力及变形验算 (1)基础竖向承载力验算 静荷载: V=405+1000=1405kN G =×××25= 式中 V—为水泥罐自重 水泥罐空壳及支架自重,水泥罐可装60T水泥,粉煤灰可装40T; G—为基础重量; 深层搅拌桩复合地基承载力: f——复合地基承载力特征值(kPa) spk m——面积置换率,桩的截面积除以设计要求每一根桩所承担的处理面积;

a R ——单桩竖向承载力特征值(KN ) p A ——桩的截面积(2m ) β——桩间土承载力折减系数,当桩端土未经修正的承载力特征值大于桩周土的承载力特征值的平均值时,可取~,差值大时取低值;当桩端土未经修正的承载力特征值小于或等于桩周土的承载力特征值的平均值时,可取~,差值大时或设置褥垫层时均取高值; 桩竖向承载力特征值a R 可按下列二式进行估算,由水泥强度确定的a R 宜大于地基抗力所提供的a R 。 1P n a p si i p i R u q l q A α==+∑ ① a cu P R f A η= ② 式中: p u ——桩的周长(m ); n ——桩长范围内的土层数; si q ——桩周第i 层土的侧阻力特征值,淤泥可取4~7kpa ;淤泥质土可取6~ 12kpa ;软塑状的黏性土可取10~15kpa ;对可塑状的黏性土、稍密 中粗砂可取12~18kpa ;对稍密粉土和稍密的粉细砂可取8~15kpa ; p q ——桩端地基土未经修正的承载力特征值(kpa ),可按现行广东省标准《建 筑地基基础设计规范》DBJ-15-31有关规定取值; i l ——第i 层土层的厚度(m ); α——桩端天然地基土的承载力折减系数,可取~;承载力高时取低值; η——桩身水泥土强度折减系数; cu f ——桩身水泥标准抗压强度;

混凝土搅拌站水泥罐基础设计

混凝土搅拌站水泥罐基础设计

————————————————————————————————作者:————————————————————————————————日期:

100t 水泥罐基础设计计算书 一、工程概况 某大型工程混凝土搅拌站采用100t 水泥罐,水泥罐直径2.7m ,顶面高度20m 。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为4.2m ×0.5m+3.2m ×1.0m 。 基础立面图 5200 5006451909645500 320 1000 500500 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t ;满仓时水泥重量为100t 。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=0.3kN/㎡, 风荷载标准值: ωk =βz μs μz ω0 其中:βz =1.05,μz =1.25,μs =0.8,则:

ωk=βzμsμz ω0=1.05×0.8×1.25×0.3=0.315 kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN 混凝土基础自重荷载:G ck=(3.2×3.2×1.0+4.2×3.2×0.5)×24=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m,直径 2.7m。 F wk=0.315×15×2.7=12.8kN 风荷载对基底产生弯矩:M wk=12.8×(12.5+2)=185.6kN·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 407+1080 4.2×3.2+ 185.6 9.408=130.6kPa。 2、基础配筋验算(1) 基础配筋验算

搅拌站基础计算书

拌合站基础计算书 第2混凝土拌合站,配备HZS120拌和机两套,每套搅拌楼设有6个储料罐,单个罐在装满材料时均按照150吨计算。对应新建线路里程桩号DK224+700。经过现场开挖检查,在地表往下0.5~3米均为粉质砂土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.55 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6v2 W —风荷载强度Pa,W=V2/1600 v—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑

根据厂家提供的拌和站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为7.75m圆的1/4的范围,宽6.25m,基础浇注厚度为0.6m。基底处理方式为:压路机碾压两遍,填筑30cm山皮石并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为1.5米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=1500KN,水泥罐整体基础受力面积为78m2,基础浇注C25混凝土,自重P’=1170KN,承载力计算示意见下图: P=9000KN 0.6m 基础 6.25m 粉质砂土

搅拌站水泥罐基础承载力检算

搅拌站水泥罐基础承载力检算 一、地基基础现场情况 地质报告表明反映持力层地基承载力为65 Kpa,回填土重度取15KN/m3。 二、水泥罐基础尺寸 根据罐体确定为22×5.5×1.5m,由于实际需要基础扇型布置。按照此尺寸检算地基承载力。 1、竖向荷载计算(外力) 作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。 荷载计算: F K=G罐+G水泥=20t+600t=620t=6200KN G 罐 ——罐体重量 G 水泥 ——罐储存水泥重量 最大应力:6200/121=51.24KPa G K =基础自重+回填土重量=453.75+60.5t =514.25t=5142.5KN 最大应力:5142.5/121=42.5Kpa 应力合计5 1.24Kpa+42.5Kpa=93.7 Kpa 修正后地基承载力特征值f a =65+0*(5.5-3)+5142.5/121=107.5KPa 计算结果f K =93.7KPa≤f a =107.5KPa 承载力满足要求 2、抗台风计算 本地台风多,罐体必须考虑风力影响,罐体纵、横向受风力影响

很大,假设罐体高19米,圆形直径按照平面4.5米宽度计算,风力系数1.12考虑。 =1.5×1×1.12=1.68KN 则 罐体板基础风力W 风 罐体板基础弯矩M=1.68KN×(1.5/2)=1.26 KN·M =19×4.5×1.12=95.76KN 罐体风力W 风 罐体弯矩M=95.76KN×(3/2)=63.84 KN·M 合计风力p=1.68KN+95.76KN=97.44KN 合计弯矩M=1.26 +63.84 =65.1 KN·M 搅拌站基础受静止荷载,无冲击荷载影响,只考虑风力产生的滑移影响,基础风力(按照台风力)产生的荷载97.44KN。采取基础增加人工挖孔桩埋置设置,相当于罐体基础增加缆风绳加固。 根据基础地质情况,挖孔桩直径Φ1.5m设计,深度5m,C30混凝土浇注。罐体承台基础C30混凝土,为增加基础的增体受力,采取整体基础浇注,同时增加基底拉应力,上下层布置钢筋网片。 桩基重量G桩=1.767×5=8.8t×9=79.5t 风力p=9.744t≤G桩=79.5t 满足抗台风影响

水泥罐基础验算

水泥罐基础验算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

集料拌和站基础及立柱设计计算书 汉十铁路客运专线HSSG-6标段一工区砼拌和站设置两台HZS-180型拌合机,每台拌合机配备6个罐,共4个水泥罐,每个拌和站的两个水泥罐基础联体设置。 一、设计资料 (1)每个水泥罐自重8t,装满水泥重100t,合计108t;水泥罐直径。水泥罐基础采用C25钢筋砼条形承台基础满足两个水泥罐同时安装。6个罐放置在圆环形基础上,圆环内径7米,外径米,基础高,外露。基础采用φ18@300mm×300mm上下两层钢筋网片,架立筋采用φ18@450mm×450mm钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。 (2)水泥罐总高米,罐高米,罐径米,柱高5m,柱子为4根正方形布置,柱子间距为米,柱子材料为厚度8mm的钢管柱。 施工前先对地基进行处理,处理后现场检测,测得地基承载力超过350kpa。 二、水泥罐基础计算书 1、计算基本参数 水泥罐自重8t,装满水泥共重108t。 水泥罐总高米,罐高米,柱高5m。 2、地基承载力计算 水泥罐基础要求的承载力

1)砼基础面积:S=; 砼体积:V=×=; 底座自重:Gd=×2500×=(砼自重按2500kg/m3); 2)装满水泥的水泥罐自重:Gsz=6×108×=; 3)总自重为:Gz=Gd+Gsz=+=; 4)基底承载力:P=Gz/S==102kpa; 5) 基底经处理后检测的承载力P’≥140kpa; 6) P≤P’ 经验算,地基承载力满足要求。 水泥罐基础满足地基承载力要求,则主机也同时满足承载力要求。 3、抗倾覆计算 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 由于水泥搅拌机属于受风敏感且筒体高度较大,为确保筒体和施工人员的安全,根据《高耸结构设计规范》(GBJ135-2006以下简称高规),应考虑风荷载对结构的影响。 1)风荷载强度计算:跟全国风压表,枣阳地区最大风荷载取值为㎡。 2)风力计算: 平均作用高度为:H=2+5=; 单根水泥罐的风力大小为F=A×W=××=; 1个水泥罐的叠加倾覆力矩

搅拌站基础计算

搅拌站基础计算

目录 肇花三标东岸搅拌站基础设计及验算 (2) 1.筒仓基础设计及验算 (2) 1.1抗拔及承压工况计算 (3) 1.2钢管桩入土深度计算 (4) 2.主机架基础设计及验算 (8) 3.送料系统基础设计及验算 (8) 4.操作室基础设计及验算 (9) 5.配料系统基础设计及验算 (9)

搅拌站基础设计及验算 **项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。 1.筒仓基础设计及验算 根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。 图1.1 筒仓基础结构 混凝土扩大基础拟采用□3.5m×3.5m×0.5m的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。 将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。

1.1抗拔及承压工况计算 根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载: 如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取1.3kPa : kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=; 风荷载产生弯矩:m kN FH M ?=?==15.8131521.54; 另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0 对钢管桩产生附加荷载F ?的计算: 0='++=∑M M M M e ,Fd M ?='; 风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和 m d 76.22=。 故,kN m m kN d M M d M F e 6.21395.1215.83322111=??=+='= ?; kN m m kN d M M d M F e 9.30176.215.833222=?=+='= ?; 所以,钢管桩承载力: 每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ kN g m R m 7.6919.3018.394max =++= ,kN g m R k 1.2128.394 9.301min =--=(方向向上)。

100t水泥罐基础设计计算

3.8m*3.8m*120k n/m 2 =1732.8kn J01 地面标高3.5m ① 素填土 0.88m J02 地面标高3.5m ① 素填土 0.44m J03 地面标高3.5m ① 素填土 0.41m ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 ③ 淤泥质粉质粘土 -5.79m 粉土 loot 水泥罐基础设计计算 1、 水泥罐自重 G1: 200kn (20t)估 2、 水泥自重 G2: 1000kn (100t) 3、 基础承台自重 G3: 3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2 (分项系数)=1981.2kn 、受力分析 1、承台地基承载力:按12t/m 2估算,承台地基承载力为 2、桩承载力需达到 1981.2k n-1732.8k n=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 -1.72m -4.76m ④ 粉土 粉土 根据上述柱状图,打入桩范围内平均层厚:素填土 2.92m 、淤泥质粉质粘土 4.67m 、 荷载

粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范围内(9m) 土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30) /9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*( U* a *H* T)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U ----- 桩周长, a——震动沉桩影响系数,锤击沉桩取1.0 H——桩入土深度,9.0m T -----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径 273钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T) =1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61 根,取3 根, 布置如图: 3.8m ②如采用直径 630钢管桩,则单桩的 容许承载力为:[P]=1/1.5* ( U* a *H* T)

搅拌站基础计算(1)

搅拌站基础设计及验算 汕湛高速揭博项目T13标项目拟采用HZS150搅拌站两台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,扩大基础设置在全风化粉砂岩上,地基承载力为250kPa。 1.筒仓基础设计及验算 根据搅拌站选址地质情况,水泥罐基础拟采用扩大基础作为承载基础,基础底采用片石砼换填处理,换填高度约2.5m。 图1.1 筒仓基础结构

混凝土扩大基础拟采用3.75m ×5.89m ×1.8m 的混凝土结构,开挖深度为4.5m 。根据搅拌站勘探资料,表面土层为素填土,混凝土基础置于全风化粉砂岩上,允许承载力为250kPa ,水泥罐满载为100吨,空罐为10吨,两个水泥罐安放在同一个基础上。 1、竖向荷载计算(外力) 作用在基础顶面的荷载有竖向力、水平剪力、弯矩,统一按照中心受压基础检算。 荷载计算:KN 2640t 264)10001(2.12G ==+?=+=X G F k 水泥罐 粉罐压力:KPa 5.11989 .575.32640S F P =?== 最大应力=混凝土基础压力+换填片石砼压力+粉罐压力 KPa 8.2288.1265.2255.119P =?++=X

150吨水泥罐基础设计计算书教案资料

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 水泥罐平面位置示意图

二、水泥罐基础计算书 1、计算基本参数 水泥罐自重约20t ,水泥满装150t ,共重170t 。 水泥罐支腿高3m ,罐身高18m ,共高21m 。 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1= 21700 +0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为:

混凝土搅拌站水泥罐基础设计

100t水泥罐基础设计计算书一、工程概况 某大型工程混凝土搅拌站采用100t水泥罐,水泥罐直径,顶面高度20m。水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为×+×。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001) 2、《混凝土结构设计规范》(GB50010-2010) 3、《建筑地基基础设计规范》(GB50007-2011) 4、《钢结构设计规范》(GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:ω0=㎡, 风荷载标准值: ωk=βzμsμz ω0 其中:βz=,μz=,μs=,则: ωk=βzμsμz ω0=×××= kN/㎡ 四、水泥罐基础计算 1、地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN

混凝土基础自重荷载:G ck=(××+××)×24=407kN 风荷载:风荷载作用点高度离地面,罐身高度15m,直径。 F wk=×15×= 风荷载对基底产生弯矩:M wk=×(+2)=·m 基础底面最大应力: p k,max= G ck+G k bh+ M wk W= 错误!+ 错误!=。 2、基础配筋验算 (1) 基础配筋验算 混凝土基础底部配置Φ16钢筋网片,钢筋间距250mm,按照简支梁验算。 混凝土基础承受弯矩:M max=×(1 8×207××=362kN 按照单筋梁验算: αs= M max f c bh02= 362×106 ×3200×8502= ξ=1-1-2αs=1-错误!=<ξb= A s=f c bξh0 f y= 错误!=1403mm 2 在基础顶部及底部均配筋13Φ16,A s 实=13×201=2613mm 2 > A s=1403mm2,基础配筋满足要求。 (2) 基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力:

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

混凝土搅拌站水泥罐基础设计

1 0 0 t 水泥罐基础设、r 、 计计、工程概况 某大型工程混凝土搅拌站采用100t 水泥罐,水泥罐直径,顶面高度20m水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺 寸为X +X。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-200D 2、《混凝土结构设计规范》 ( GB50010-2010) 3、《建筑地基基础设计规范》 ( GB50007-2011) 4、《钢结构设计规范》( GB50017-2003)。 三、荷载计算 1 、水泥罐自重:8t ;满仓时水泥重量为100t 。 2、风荷载计算: 宜昌市50年一遇基本风压:3 0=^, 风荷载标准值:3k=p z a s a z 3 0 其中:P z二,a z二,a s=,贝y: 3 k=3 z a s a z 3 0=xxx = kN/ m' 四、水泥罐基础计算 1 、地基承载力验算考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G k =1000+80=1080kN 混凝土基础自重荷载:G ck=(XX +XX)X24=407kN

风荷载:风荷载作用点高度离地面,罐身高度 15m 直径。 |=wk =x 15x = 风荷载对基底产生弯矩:M Wk =X( +2) = ?m 基础底面最大应力: 2、基础配筋验算 (1)基础配筋验算 按照单筋梁验算: M Lax 362 X 106 fy 2 2 f c bh 。 X3200X 850 E =1-寸 1- 2 as =1-错误!二<E b = A=fcb ?h =错误!=1403mm 在基础顶部及底部均配筋13①16, A 实=13x 201=2613mn> A^=1403mrg 基础配筋满足要求。 (2)基础顶部承压验算 考虑水泥罐满仓时自重荷载和风荷载作用。 迎风面立柱柱脚受力: F 1k = G - y = 号0 - 错误! =270-69=276kN 4 Z 4 P k , ma. 晋+ W 错误!+错误!=。 bh W 混凝土基础底部配置① 16钢筋网片,钢筋间距250mm 按照简支梁验 算。 混凝土基础承受弯矩: ML=x(8 x 207XX = 362kN

HZS120Q搅拌站基础承载力计算

2xHZS120Q搅拌站承载力计算, 以下计算只考虑垂直静载荷,单台站参数如下:1、骨料配料机(4x20m3)每支腿的承载力: 20m3砂石料重约:G=32t 取安全系数为1.5 单支腿的垂直静载荷:N=GX4X1.5X10/10 =192KN 取200KN 2、150t水泥仓支腿承载力: 仓体自重约G3=10t 水泥重G4=150t 水泥仓共有4条支腿 取安全系数为1.5 每支腿的垂直静载荷:N2=(G3+G4)X1.5X10/4 =(10+150)X1.5X10/4 =600KN 取600KN 3、搅拌站主楼支腿承载力: 站主体自重G5=25t 搅拌混凝土重约G6=10t 主机震动载荷G7=5t 搅拌站共有4条支腿 取安全系数为2

每支腿的垂直静载荷:N3=(G5+G6+G7)X2X10/4 =200KN 取200KN 4、斜皮带机承载力: 斜皮带机自重约G8=20t 震动载荷G9=5t 斜皮带机主要受力共有7条支腿 取安全系数为5 每支腿的垂直静载荷:N3=(G8+G9)X5X10/7 ≈179KN 取200KN 5、单机水泥仓地基承载力验算 θ=60° L=3.14×2×20×60/360=20.9m A=20.9×6=125.4m2 单机配置3个150t水泥仓,2个100t掺合料仓,仓自重10t,地基承载力120kPa。 150×3+100×2+50=700t 基础混凝土自重: (0.6×6+1×5)20.9×2.3+0.6×0.7×0.7×20×2.3=426.9t 总重:700+426.9=1126.9t 11269/125.4=89.8kPa 符合要求。

吨水泥罐基础设计计算书

一、水泥罐基础设计 盾构区间砂浆拌合站投入一个100t 型和一个150t 型两个水泥罐,100t 型水泥罐直径3m ,支腿邻边间距2.05m ;150t 型水泥罐直径3.3m ,支腿邻边间距2.2m 。根据以往盾构区间砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用C30钢筋砼条形承台基础满足两个水泥罐同时安装。基础尺寸8m (长)×4m (宽)×0.8m (高),基础埋深0.6m ,外漏0.2m ,承台基础采用Φ16@150mm ×150mm 上下两层钢筋网片,架立筋采用450mm ×450mm φ12钢筋双排双向布置,基础顶预埋地脚钢板与水泥罐支腿满焊。具体布置见下图: . 1 单支基础4m ×4m ×0.8m 钢筋砼。 2、地基承载力计算 计算时按单个水泥罐计算 单个水泥罐基础要求的地基承载力为: δ1=21700+0.825106.3+20126.3k /m 0.1344 N MPa ?===? 根据资料可知:原设计路面按汽一超20级设计,汽一超 20级后轴标准荷载为130KN,单轴轮胎和路面接触面积为:460mm ×200mm ,通过受力计算,其地基承载力为: 水泥罐平面位置示意图

δ2= ()1301000 1.413460200MPa ???=????? 因δ1≤δ2,即地基承载力复核要求。 3、抗倾覆计算 武汉地区按特大级风荷载考虑,风力水平 荷载为500N/m 2, 抗倾覆计算以空罐计算,空罐计算满足则 抗倾覆满足。 水平风荷载产生的弯矩为: 0.5 3.3182+3=356.4KN M =???÷(18)?M 水泥罐空罐自重20t ,则基础及水泥罐总重为: 抗倾覆极限比较: 即水泥罐的抗倾覆满足要求,水泥罐是安全的。 4、基础配筋 基础配筋属于构造配筋,配筋率必须满足§≥ 0.15%,经计算断面配筋, @150Φ16钢筋满足要求。

混凝土搅拌站水泥罐基础设计

1 0 0 t 水泥罐基础设计计算书 一、工程概况 某大型工程混凝土搅拌站采用loot水泥罐,水泥罐直径2.7m,顶面高度20m 水泥罐基础采用C25钢筋混凝土整体式扩大基础,基础断面尺寸为 4.2mx 0.5m+3.2m x 1.0m。 二、设计依据: 1、《建筑结构荷载规范(2006版)》(GB50009-2001 2、《混凝土结构设计规范》 ( GB50010-2010) 3、《建筑地基基础设计规范》 (GB50007-2011) 4、《钢结构设计规范》 (GB50017-2003)。 三、荷载计算 1、水泥罐自重:8t ;满仓时水泥重量为100t。 2、风荷载计算: 宜昌市50年一遇基本风压:①°=0.3kN/ m2, 风荷载标准值:3 k= B z [1 s卩z 3 0 其中:B z=1.05 , 1 z=1.25 , 1 s=0.8,贝U:

3k=B z1s1z 30=1.05x0.8x1.25x0.3=0.315 kN/ m 四、水泥罐基础计算 1地基承载力验算 考虑水泥罐满仓时自重荷载和风荷载作用。 水泥罐满仓时自重荷载:G =1000+80=1080kN 混凝土基础自重荷载:G Ck= (3.2 X3.2 X 1. 0+4.2 X3.2 X 0.5 )X2 4=407kN 风荷载:风荷载作用点高度离地面12.5m,罐身高度15m直径2.7m。 F wk=0.315 X 15X 2.7=12.8kN 风荷载对基底产生弯矩:M Wk=12.8 X( 12.5+2 ) =185.6kN ?m 基础底面最大应力: G k+G M Wk 407+1080 185.6 i bh W 4.2 X3.2 9.408 2、基础配筋验算 (1)基础配筋验算 混凝土基础底部配置①16钢筋网片,钢筋间距250mm按照简支梁验算。 1 2 混凝土基础承受弯矩:ML=1.2 X( X 207X3.2 X 1.9 12)=362kN 8

水泥罐基础方案

.. . .. . . 一、编制依据 (2) 二、工程概况 (2) 三、基础设计 (3) 一)、基础 (3) 二)、防雷接地 (4) 四、土方开挖、基础施工 (5) 五、基础计算书 (6) 一)、荷载计算 (6) 二)、基础验算 (7) 三)、基础配筋验算 (11) S. . . . . ..

水泥罐基础方案 一、编制依据 《建筑地基基础设计规》(GB50007-2011); 《建筑结构荷载规》(GB 50009-2012); 《混凝土结构设计规》(GB 50010-2010); 省《建筑地基基础设计规》(DBJ 15-31-2003); XXXXXXX场地岩土工程详细勘察报告; 参《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 水泥罐厂家提供资料 二、工程概况 拟建XXXXXXX工程场地位于市金湾区红旗镇红旗中学北面,场地南侧为白藤二路,西侧为“美景新村”住宅小区。三期工程场地围共布置建筑物14栋,分为A、B区。A区拟建6栋7F建筑(22-27栋)和4栋17F建筑(36-39栋),B区拟建4栋33F建筑(50-53栋)。 其中基坑支护工程采用钻孔灌注桩(支护桩)、双管旋喷桩、水泥土搅拌桩、冠梁及支撑、喷砼护面等支护方式。双管旋喷桩、水泥土搅拌桩加固材料为pc32.5、pc42.5硅酸盐水泥,拟在现场设5-6个水泥灰罐安放场地,确保覆盖全场周围,具体位置见详施工现场平面布置图。 每个安放场地设1个50-60T的散装水泥罐,水泥罐四角部位长宽为 2.7M*2.7M,高约8.2m,按厂家提供的尺寸定位图设计基础图。

三、基础设计 查阅地质勘察报告,水泥灰罐选址所参考的勘探孔为ZK2、ZK19、ZK38、ZK67、ZK89,地表以下有层厚5.8~7.9m的人工填土,因场地开挖平整,后测取填土平均值为4.8m。 地质勘察资料中各土层特性指标建议值如下表 根据详勘报告柱状表中显示,填土下为淤泥,但结合整个场地地质特点,验算时需按有软弱下卧层考虑。 注 的影响。 2)抗剪强度为直接快剪指标 水泥罐定位时,已现场查看,尽量避开回填区。在开挖基础时,若发现地质松软或有垃圾等杂物时要求换填石粉,并用机械分层夯实,每层厚度不大于400㎜。 一)、基础 结合本公司以往项目的成功经验,及厂家提供的相关数据,水泥罐顶离地面高度为8.2米,拟采用筏板基础,基础尺寸为4米x 4米,基础布置拟采用2排

100t水泥罐基础设计计算

100t水泥罐基础设计计算 一、荷载 1、水泥罐自重G1:200kn(20t)估 2、水泥自重G2:1000kn(100t) 3、基础承台自重G3:3.8m*3.8m*1.2m*26=451kn 4、荷载组合:(G1+G2+G3)*1.2(分项系数)=1981.2kn 二、受力分析 1、承台地基承载力:按12t/m2估算,承台地基承载力为3.8m*3.8m*120kn/m2=1732.8kn 2、桩承载力需达到1981.2kn-1732.8kn=248.4kn 三、单桩承载力计算 1、土层极限侧摩阻力系数 J01 J02 J03地面标高3.5m 地面标高3.5m 地面标高3.5m ①素填土①素填土①素填土 0.44m 0.41m 0.88m ③淤泥质粉质粘土③淤泥质粉质粘土③淤泥质粉质粘土 -1.72m -4.76m ④粉土-5.79m ④粉土④粉土 根据上述柱状图,打入桩范围内平均层厚:素填土2.92m、淤泥质粉质粘土4.67m、粉土1.41m。打入桩的极限侧摩阻力标准值为:20Kpa、14Kpa、30Kpa,故打入桩桩身范

围内(9m)土层平均极限侧摩阻力为:(2.92m*20+4.67m*14+1.41m*30)/9m=18.45Kpa 2、单根桩承载力计算 单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)(不计桩端承载力) 式中:[P]------沉桩容许承载力 U--------桩周长, а-----震动沉桩影响系数,锤击沉桩取1.0 H------桩入土深度,9.0m τ-----桩侧土的极限摩阻力,取18.45Kpa; ①如采用直径273钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.273*3.14*1.0*9*18.45=94.89kn,需打入的根数为248.4kn/94.89kn=2.61根,取3根,布置如图: 3.8m 0.650m 2.5m 0.650m 3.8m ②如采用直径630钢管桩,则单桩的容许承载力为:[P]=1/1.5*(U*а*H*τ)=1/1.5*0.63*3.14*1.0*9*18.45=218.99kn,需打入的根数为248.4kn/218.99kn=1.1根,取2根。

水泥罐基础方案

水泥罐基础方案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

一、工程概况 建设单位:广州市东建实业集团有限公司 勘察单位:广东省华南工程物探技术开发总公司 设计单位:广州珠江外资建筑设计院有限公司 监理单位:广州市东建工程建设监理有限公司 施工单位:广州市住宅建设发展有限公司 广州市菠萝山保障性住房项目工程施工总承包二标(即中区)属“广州市菠萝山保障性住房项目工程”的一部分,位于广州市天河区沐陂西路以北,科韵路以东,岑村龙船头菠萝山地段。 本工程由7栋公租房(G-1至G-7)、7栋廉租房(L-1a至L-7a),公租房(G-1至G-7)负一层地下室,C-8垃圾房及部分公建组成。总建筑面积175771.9平方米,其中地下:16509.5平方米,地上:159262.4平方米。 G1-G3栋现场需要安装两个水泥罐储备水泥。水泥罐安装位置如附图,水泥罐容量为50吨,空载时毛重2吨,满载时52吨。水泥罐全罐露出地面高9米,直径 2.5米,卸料口离地面0.8米。 二、水泥罐基础做法

水泥罐基础采用C30混凝土,基础平面尺寸为2.6m×2.6m,基础底板厚度300mm,配筋为双层双向φ12@200。水泥罐基础放在地下室顶板面上,对地下室顶板用方法进行回顶加固。 基础周边做好排水措施,避免积水。 水泥罐四个柱脚采用埋件预埋螺栓在基础内,水泥罐吊装定位后将螺栓收紧,每个柱脚螺栓采用4φ25,如附图。 螺栓安装前请与水泥罐提供厂家的图纸核对确认无误方可安装埋件。 砼强度达到75%方可安装水泥罐,并及时做好防雷接地(≤4欧)施工和验收。 三、基础计算书 水泥罐可满载50吨水泥,因水泥罐基础位置为地下室顶板面上,承载力较好,基础按水泥罐装载水泥50吨进行验算。 计算相关数据: 水泥罐空载时重量:2吨 水泥罐满载时重量:2+50=52吨 水泥罐高度:9米 水泥罐卸料口高度:0.8米

搅拌站粉罐基础设计

目录 1、工程概况 (1) 2、编制依据 (1) 3、设计说明 (1) 3.1、地质条件 (1) 3.2、结构形式 (2) 3.3、设计荷载 (2) 3.4、材料性能指标 (2) 4、地基承载力验算 (2) 4.1、基础尺寸选择 (2) 4.2、地基承载力验算 (3) 5、筏板基础在集中荷载下的冲切计算 (6) 6、筏板基础在集中荷载下的局部承压计算 (6) 7、风荷载影响 (6) 7.1、抗倾覆验算 (6) 7.2、抗拔计算 (8) 8、筏式基础受力分析 (10)

搅拌站粉罐基础设计 1、工程概况 京津城际轨道交通线是环渤海京津冀地区城际轨道交通网的重要组成部分,也是沟通北京、天津两大直辖市的便捷通道,本线由北京南站东端引出,沿京津塘高速公路通道至杨村,后沿京山线至天津站,全长115.4km。本标段包含跨北京环线特大桥和凉水河特大桥两座特大桥的预制梁工程,设置三个简支箱梁预制场,分别为跨北京环线特大桥制梁场(1号梁场)、凉水河特大桥1#制梁场(2号梁场)、凉水河特大桥2#制梁场(3号梁场)。 本标段由中铁大桥局股份有限公司、中铁四局集团有限公司、中铁六局集团有限公司组成的联合体中标。我公司承担的是凉水河特大桥1#制梁场的制梁任务(2#梁场),起讫里程为DK21+457至DK32+665,共340孔双线箱梁。梁场位于张家湾镇高营村,中心里程在线路DK27+697处。预制场设置五个区:生活办公区、混凝土拌和区、箱梁生产区、横移存梁区、箱梁提升区,生产区布置布置32m箱梁制梁台座8个,32m兼24m制梁台座3个,梁场可存32m箱梁64孔,32m兼24m箱梁24孔。2、编制依据 (1)、《建筑地基基础设计规范》(GB50007-2002); (2)、《建筑桩基设计规范》(JGJ94-94); (3)、《混凝土结构设计规范》(GB50010-2002); (4)、福建南方路面机械公司提供的HZS120搅拌站图纸 (5)、《建筑结构荷载规范》GB50009-2001 (6)、浙江有色建设工程有限公司提供的《岩土工程勘察报告》 中华人民共和国、铁道部、地方政府及有关部门颁发的相关现行法规、规范、标准及办法。 3、设计说明 3.1、地质条件 勘探资料显示:场地基本平整,为河陆相沉积地貌;土质结构为粉质粘土与粉

水泥罐混凝土桩基础设计计算书-30m

水泥罐桩基础计算书 1.水泥罐基础设计 拌合站投入8个200t 型水泥罐,水泥罐直径4.8m ,支腿临边间距3.395m ,每4个为一组,见图附1。根据以往砂浆拌合站施工经验、现场地质条件以及基础受力验算,水泥罐基础采用8根C30混凝土灌注桩桩基础,钢筋笼见附图4。桩直径1.2m ,桩长30m ,平面布置见附图1。基础承台厚0.8m ,采用C30混凝土浇筑。承台采用Φ14200mm ×200mm 上下两层钢筋网片。架立筋采用2000mm ×2000mm φ14钢筋双排双向布置,平面图见附图2,立面图见附图3。基础顶预埋地脚钢板与水泥罐支腿满焊。 承台及单桩工程量见附图5。 2.计算基本参数 单个水泥罐自重约20t ,水泥满装200t ,共重220t 。 桩直径1.2m ,桩长30m 。 水泥罐罐身高18.6m ,总高21m 。 基础承台0.8m (高)。 3.单桩轴向受压承载力容许值计算 单桩轴向受压承载力容许值为: q A l q r p i n 1i ik μ21R + =∑=a 上式中q r 为桩端处土的承载力容许值 [] []kPa 5.478)330(195.118072.07.0)(=-??+??=-+=3h λγK f m q 2 2a0 r u ---桩身周长(m ); A p ---桩端截面积(m 2); n ---土的层数 l i ---承台底面以下各土层的厚度(m ); q ik ---与l i 层对应的各土层与桩侧的侧摩阻力标准值(kPa ); q r ---桩端处土的承载力容许值; [f a0] ---桩端处土的承载力基本容许值(kPa ); h ---桩端的埋置深度(m ),h>40时按40计算;

相关文档