文档库 最新最全的文档下载
当前位置:文档库 › 2017研究前沿--化学与材料科学

2017研究前沿--化学与材料科学

2017研究前沿--化学与材料科学
2017研究前沿--化学与材料科学

2017 研究前沿

中国科学院科技战略咨询研究院

中国科学院文献情报中心

科睿唯安

七、化学与材料科学

1. 热点前沿及重点热点前沿解读

1.1 化学与材料科学Top 10 热点前沿发展态势

化学与材料科学领域Top10热点前沿主要分布在太阳能电池、有机合成、纳米技术、超级电容器、自由基聚合、上转换发光等领域。与2013-2016 年相比,2017年Top10热点前沿既有延续又有发展。在太阳能电池领域,关于钙钛矿太阳能电池和聚合物太阳能电池的研究连年入选热点前沿或新兴前沿。在今年的Top10热点前沿中,聚合物太阳能电池延续了去年对非富勒烯受体(小分子和聚合物)的关注,钙钛矿太阳能电池则侧重空穴传输材料研究。在有机合成领域,碳氢键的活化反应也是连年入选,往年侧重在钌、铑等贵金属的催化转化,今年是非贵金属钴的催化转化,另外今年还突出了间位碳氢键的活化。在纳米技术领域,不仅继续有具体的前沿研究入选,而且首次出现宏观的研究概念――纳米组装学。在超级电容器领域,基于纳米孔碳电极(2014年)、纳米二氧化锰电极材料(2016年)的超级电容器曾经入选热点前沿或新兴前沿,今年入选的是基于NiCo2S4电极材料的超级电容器。在自由基聚合领域,继2014年入选新兴前沿后,光引发的聚合反应今年成为热点前沿。在上转换发光领域,“三重态-三重态湮灭上转换”入选热点前沿。

1.2 重点热点前沿——三价钴催化的碳氢键活化反应

传统的合成化学基于活性官能团的相互转化,通常需要繁琐的预官能团化步骤。而碳氢键的直接化学转化可以避免这一过程,大大提高反应的原子经济性和步骤经济性,因而受到广泛关注并取得蓬勃发展。近十年来,过渡金属催化的碳氢键直接官能团化反应已成为重要的合成工具,特别是贵金属(铑、钌、铱、铂、金、银等)催化成果显著。然而,高昂的成本以及对环境可能造成的不利影响限制了贵金属催化的大规模应用。因此,越来越多的研究人员将目光转向储量丰富、成本低廉的第一行过渡金属(锰、铁、钴、镍、铜等)。这点在《研究前沿》系列报告中也得以体现:在2013年和2014年的报告中,“钌、铑催化的碳氢键活化反应”进入化学领域Top10热点前沿,本年度则是“钴催化的碳氢键活化反应”入选。钴催化的碳氢键活化反应可分为低价钴(CoⅡ)催化和高价钴(CoⅢ)催化两类。本研究前沿是高价钴催化的碳氢键活化反应。2013年,日本东京大学金井求(Motomu Kanai)教授和川岛茂裕(Shigehiro Kawashima)博士报道了Cp*CoⅢ(Cp*= 五甲基环戊二烯)络合物催化的2-苯基吡啶碳氢键活化直接加成到亚胺、烯酮上的反应。此后,研究人员不断扩大Cp*CoⅢ催化剂的应用范围并研究其催化机理。与其替代对象Cp*RhⅢ相比,Cp*CoⅢ不仅可用于前者催化的反应,而且由于反应活性差异,导致可能采取不同的反应路线从而生成不同的产物。

如表31所示,在本研究前沿中,德国、日本、美国、韩国以及中国等国家或地区发表了多篇核心论文。日本东京大学、德国哥廷根大学、明斯特大学、美国耶鲁大学、韩国基础科学研究院等研究机构在该领域做出了突出贡献。浙江大学、北京大学、中科院大连化物所等研究机构的工作也比较突出。

在施引论文方面(表32),中国的论文数量最多,表现出对该热点前沿的积极跟进。印度表现抢眼,在施引论文数量方面与德国并驾齐驱。此外,美国、韩国、日本等国家或地区也继续保持研究热度。在施引论文Top10机构中,中国科学院、浙江大学、德国哥廷根大学、明斯特大学、韩国基础科学研究院、科学技术研究院、日本东京大学等表 2 中的机构继续榜上有名,中国科学院发表的施引论文最多。此外,中国南京大学、兰州大学、韩国成均馆大学、印度理工学院等研究机构也发表了多篇施引论文。

1.3 重点热点前沿——纳米组装学

“纳米组装学”(nanoarchitectonics)这个概念最早由时任日本理化学研究所首席科学家的Masakazu Aono教授(现在日本国立物质材料研究所工作)于2000年在第一届纳米组装学国际研讨会上提出。Masakazu Aono教授认为,纳米技术不是微米技术在尺度上的简单延伸,两者存在重大不同但又容易混淆,因此有必要创造一个新的名词来反映研究范式上的变化。作为材料科学和技术在纳米尺度的研究范式,纳米组装学是指将纳米尺度结构单元(原子、分子、功能组件)组装成所需纳米结构的技术体系,通过控制协调纳米结构内各种相互作用,使产生的结构具有新的功能。从2003年第一次出现在论文题目中到现在,纳米组装学已经扩散到多个领域并得到了广泛认可。从纳米结构组装、超分子自组装、杂化材料,到仿生酶、传感器、药物缓释等,纳米组装学在器件制造、能源和环境科学、生物和医学等领域得到广泛应用。2016年,Advanced Materials杂志组织了一期纳米组装学专刊,邀请日本、中国、美国、德国、法国、荷兰等国研究人员综述纳米组装学的研究和应用进展。

核心论文的Top产出国家和地区中,日本贡献了16篇核心论文,占该前沿所有核心论文的64%。中国、捷克、德国等国家或地区的研究人员对该前沿也做出了积极贡献(表33)。在发展纳米组装学的过程中,日本国立物质材料研究所有贺克彦(Katsuhiko Ariga)教授做出了突出贡献,日本的16篇核心论文全部来自其课题组及合作者,涉及层层自组装技术、Langmuir-Blodgett膜技术等自组装技术、纳米结构组装、界面化学等多个方面。

在施引论文方面,如表34 所示,来自中国、日本、印度、韩国、美国等国家或地区的研究人员发表了大量施引论文,其中中国的施引论文数量最多,其次是日本。在施引论文Top10 机构中,日本国立物质材料研究所论文数量最多,中国科学院排在第2 位。此外,日本早稻田大学、中国吉林大学、中国台湾大学等研究机构也发表了多篇施引论文。

2.新兴前沿及重点新兴前沿解读

2.1新兴前沿概述

在化学与材料科学领域共有16项研究入选新兴前沿,主要涉及钙钦矿太阳能电池及发光材料、金属催化的化学反应、纳米材料及器件的制备、光化学等研究。本年度该领域新兴

前沿的研究主题有两大亮点:钙钦矿型材料研究及金属催化的化学反应研究。前者主要涉及发光材料、无机吸光层太阳能电池及环保型太阳能电池吸光材料研究等3个研究方向,且该研究主题从2014年开始就一直是化学和材料领域的新兴前沿,只是研究方向发生了变化。另一亮点为金属催化的化学反应研究,约三分之一的新兴前沿与此相关,针对非贵金属的催化反应就有两个方向入选。关于框架化合物及柱芳烃的研究继2016年之后再次成为今年的新兴前沿。纳米材料方面有二维纳米片、稀土纳米温度计及无机铅卤钙钦矿纳米晶发光材料等三个方向入选。

2.2 重点新兴前沿——基于非贵金属的双功能电解水催化剂

利用电化学催化方法分解水产氢是可再生能源存储的一种有效方法,同时也被认为是可以解决当前能源危机最安全有效的技术。电解水包括阳极析氧和阴极析氢两个半反应,参与析氢反应的催化剂(一般是过渡金属)在酸性环境下效率最高,参与析氧反应的催化剂(一般是贵金属)却需要在碱性环境中才能表现出优越的催化性能。要在一种电解液中将水完全分解同时获得氢气和氧气需要将两种催化剂结合,而这样就会使催化剂的催化性能大打折扣。因此,非常有必要开发能在一种环境中对析氢和析氧反应都具有很高活性的非贵金属催化剂,在降低生产成本的同时,提高催化性能。所以,基于非贵金属的双功能电解水催化剂成为现

阶段电水解领域的重点研究方向,同时也成为电解水制氢领域获得巨大突破的希望所在。

电解水制氢是一个古老的话题,近些年对非贵金属电解水催化剂的研究也一直保持较高研究热度:非贵金属电解水催化剂入选2015年化学与材料科学的新兴前沿,2016 年具有纳米结构的非贵金属电解水入选当年的热点前沿。本年度的新兴前沿中关于非贵金属电解水的关注点转移到了既能析出氢气又能同时析出氧气的双功能非贵金属电解水催化剂上。目前针对这类催化剂的研究主要集中在对过渡金属(主要是Ⅷ族)钴、镍的磷化物或者两者合金的氧化物及硫化物等物质上,而且由于碱性电解液可以获得高的离子电导率和低的过电势,所以关于该领域的研究多在强碱性电解液中进行。美国犹他州立大学在此领域表现突出,美国6 篇核心论文有4篇出自该大学,其中在铜箔上采用电沉积的方法制备Co-P膜一文被引频次最高,已经接近200次,后续研究者从Co的其他复合物、其他磷基化合物及其他膜类双功能非贵金属催化剂等方向入手对其工作进行了改进。中国科学院在该前沿也有优异表现,中国5篇核心论文中有3篇来自中国科学院。

(整理)化学未来的发展趋势.

白春礼:对化学未来的发展趋势的阐述以及对于广大化学工作 者的期望 发布时间:2011-06-07 【字 号:小中大】谈一下化学未来的发展,有四点趋势。化学将向更广度、更深层次的方向延伸;新工具的不断创造和应用促进化学创新发展;绿色化学将引起化学化工生产方式的变革;化学在解决战略性,全局性,前瞻性重大问题当中将继续发挥更大的作用。 化学向更广更深的层次延伸体现在几个方面,对原子,分子的认识将更为深入,多层次分子研究更为系统,创造新分子,新材料的基础上更加注重功能性。超分子是一个分子结构与宏观性能的关键纽带,是产生更高级结构的基础。如何设计超分子结构和材料,对复杂生命体系的理解和模拟及调控都是前沿的课题。这是化学向更深层次,更复杂拓展的延伸。 新工具的创造和应用会促进化学的发展,随着技术能力和仪器设备的不断进步,空前准确和灵敏的仪器不断被创造和应用,科学家不仅能在原子,分子甚至电子层次观察并研究微观世界的性质,而且能够对其物质结构和能量过程进行操控。1981年,人类实现了观察单个原子的愿望,实现了移动单个原子和单个分子,促进了化学的创新和发展。同步辐射及各种实验方法和技术的改进,使同步辐射光源在化学研究领域中发挥重要的作用,比如真空紫外辐射光可以在量的水平上观察化学共振态。原位气固反应X射线吸收精细结构谱实验新方法,各种应用促进了化学向更深层次的发展。 绿色化学将促进化学化工生产方式的变革,绿色化学不仅是对现有过程的改进和新过程的研究,未来化学的研究将更加注重绿色产品设计的理念。绿色化学将注重经济,高效,制备与人类生活相关的物质,绿色化学不仅是创造可持续的化学产品,也需要变废为宝,将今天的废弃物变为明天有用的资源,将引起化学化工的变革。美国在1995年设立了总统绿色化学挑战奖,07年通过了绿色化学研究和发展法案。日本在上世纪90年代旨在防止全球气候变暖,在21世纪重建绿色地球的新阳光计划开始实施,主要内容为能源和环境技术研究开发。97年德国提出为环境而研究的计划。化学家开发了大量的化学合成反应,制备人类息息相关的物质,超过80%的化学生产需要催化剂,70%以上的化学化工过程使用溶剂。我们现在考虑如果从合成方法学来讲,原子经济学,计算化学,绿色化学结合,合成方法学的角度上进行绿色化学的研究。80%化学品的生产需要催化剂,如何通过发展新型的高效催化剂高稳定性,并且在制造的过程中对环境是无害,使用的过程可以回收再利用,使催化剂不污染环境这也是一个非常重要的方面。70%以上的化学化工过程要使用溶剂,我们要采用绿色的溶剂,二氧化碳做溶剂,离子液体,聚乙二醇等等使之更加清洁和可持续。绿色化学还需要变废为宝,把引起气候变暖的二氧化碳转化利用,通过开发新的技术进行转化应用。前不久我们曾经在宝钢与新西兰研究一个新的技术,利用钢厂的尾气对二氧化碳进行转化研究。秸秆,树木,藻类转化为燃料,重要化学品核材料,木质素,纤维素为原料的新化学反应,粘土等天然无毒原料在材料科学中的应用,不仅是创造新一代的可持续的化学产品,还要考虑如何变废为宝,这是下一步发展的重要方面。 第四方面,化学在解决全局性,前瞻性,战略性的重大问题中会发挥重要的作用,社会的发展不断对化学发展提出新的需求,比如能源危机要求我们如何像光合作用那样高效的利用太阳能。前不久有仿造树叶的光合作用来高效利用太阳能。环境保护方面如何控制降解驱除污染,资源利用方面必须做到合理高效的利用资源,最大显著的利用资源,材料方面绿色化及智能化,可再生循环利用,社会安全方面防患于未然,比如易燃品,爆炸品的检查和防护,有很多的工作需要化学家发挥更大的作用。 刚才讲了环境,能源,资源利用等方面,在材料化学方面,要设计铸造分子,生命科学方面不仅是研究生命起源,调控机制,疾病发生机制和药物的作用机制,在脑科学和认知科学方面,如何在生物分子的水平上认识结构,化学都有十分重要的作用。

材料科学前沿论文

智能材料的结构及应用 学院:班级: 姓名:学号: 摘要:材料的智能化代表了材料科学发展的最新方向,智能材料是一种能通过系统协调材料内部各种功能并对时间、地点和环境作出反应和发挥功能作用的材料。且能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。本文旨在简要介绍智能材料的结构的基础之上,介绍一些它在当今社会不同领域的应用。 关键词:智能材料、结构、应用 材料的发展从之前的单一型、复合型和杂化型,发展为异种材料间的不分界的整体式融合型材料。而近几年所兴起的智能材料更是不同于以往的传统材料,它的仿生系统具有传感、处理和响应功能,而且与机敏材料相比更接近于生命系统。它能够根据外界环境条件的变化程度实现非线性响应从而达到最佳适应的效果。对于智能材料我结合自己听课的内容、书籍及网上资料的查阅写下对智能材料的认识。 智能材料不同于传统的结构材料和功能材料,它模糊了两者之间的界限并加上了信息科学的内容,实现了结构功能化功能智能化。一般来说智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。即: (1)基体材料:基体材料担负着承载的作用,一般宜选用轻质材料。一般基体材料首选高分子材料,因为其重量轻、耐腐蚀,尤其具有粘弹性的非线性特征。其次也可选用金属材料,以轻质有色合金为主。 (2)敏感材料:敏感材料担负着传感的任务,其主要作用是感知环境变化(包括压力、应力、温度、电磁场、PH值等)。常用敏感材料如形状记忆材料、压电材料、光纤材料、磁致伸缩材料、电致变色材料、电流变体、磁流变体和液晶材料等。 (3)驱动材料:因为在一定条件下驱动材料可产生较大的应变和应力,所以它担负着响应和控制的任务。常用有效驱动材料如形状记忆材料、压电材料、电流变体和磁致伸缩材料等。可以看出,这些材料既是驱动材料又是敏感材料,显然起到了身兼二职的作用,这也是智能材料设计时可采用的一种思路。 (4)其它功能材料:包括导电材料、磁性材料、光纤和半导体材料等。

材料科学与工程前沿中期论文

稀土材料 姓名:牛刚学号:S2******* 稀土被称为工业“味精”,在材料的结构与功能改性方面具有非常重要的意义。稀土元素的4f轨道电子数目是稀土元素之间最明显的差异,正是4f轨道电子数目的差异引发了稀土材料之间的性能差异。纳米材料由于具有表面效应、小尺寸效应和宏观量子隧道效应等具有与其他材料完全不同的许多优良性能。 我国稀土产品主要应用于冶金机械、石油化工和玻璃陶瓷等传统领域,但功能材料在高新技术产业中的应用近年来备受关注,稀土在磁性材料、储氢材料、发光材料、催化材料等领域的应用增长迅速,其应用份额从1990年的13%增长到了2002年的30%。稀土功能材料在高新技术中的应用从70年代开始进入了高速发展阶段,应用和产业化开发的速度愈来愈快,一般以5年左右的周期出现一个震动世界的新成果,并迅速形成了高新技术产业。 1稀土磁性材料 1.1稀土永磁材料稀土永磁材料经历了3个阶段的发展,20世纪60年代发明了RECo5型第一代稀土永磁材料;70年代出现了RE2Co17型第二代稀土永磁材料,其磁能积有了较大提高,特别是温度稳定性好,但由于主要原料是Sm和Co,成本高,一般用于军工等特殊领域;第三代稀土永磁REFeB发明于80年代,是当今磁能积最高的永磁材料。近年来全世界NdFeB产量年均增长率达到25%,2003年我国NdFeB磁体的产量达到15000t左右,位居世界第一。但我国稀土永磁制备技术和磁体性能方面与国外比较还有不少差距,多数厂家的产品因磁体性能较低、一致性难以满足高档用户的要求,因此价格仅为国际市场的1/3~1/2,经济效益不尽人意。随着烧结NdFeB磁体应用领域的不断扩大,对其性能提出了越来越高的要求。因此,近几年来,国内外掀起了一股研发高性能烧结NdFeB磁体的热潮。西方国家大部分采用快冷厚带工艺制备高性能烧结NdFeB磁体。用该工艺生产的磁体磁能积高,性能稳定。国内许多单位都在加速开发此新工艺,北京有色金属研究总院稀土材料国家工程研究中心在国家科技部十五科技攻关项目的支持下,已经开发出了具有自主知识产权的快冷厚带制备工艺,并与设备厂家合作设计制造了一台300kg甩带炉,试运行效果良好,产品已基本达到国外用户要求,近年内将实现规模化生产。近年来,稀土永磁材料的研发主要集中在以下几个方面:(1)制备工艺和设备的改进; (2)通过掺杂Co,Al和稀土Tb等提高矫顽力和改善温度稳定性;(3)通过纳米双相耦合技术提高永磁材料的性能;(4)稀土永磁薄膜材料和新型稀土永磁材料的开发。 据全国稀土永磁材料协作网预测,“十五”期间我国烧结NdFeB磁体总产量将达到50,000t,销售总额达到150亿元。到2010年中国烧结NdFeB磁体产量将达到7万吨,占全球75%,销售额将达到260亿元。在未来10年内,我国将成为世界稀土永磁材料的制造中心。 1.2磁致伸缩材料磁致伸缩材料是在偏磁场和交变磁场同时作用下,发生同频率的机械形变的一种材料。与压电陶瓷(PZT)和传统的磁致伸缩材料Ni,Co相比,稀土超磁致

当代无机化学研究前沿与进展研究

化学前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的 基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温 和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中 占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料 性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。

《自然》《科学》一周(7.9-7.15)材料科学前沿要闻

1. 用于高产率环境稳定单分子层器件的金属纳米粒子接触 材料名称:金属纳米粒子 研究团队:瑞士 IBM 苏黎世实验室 Gabriel Puebla-Hellmann 研究组 原标题:Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices 想要实现用于电子应用、光发射或感测的分子的固有功能,需要与这些分子的可靠电接触。自组装的由单层(SAM)组成的夹层结构是有利于技术应用的,但是需要非破坏性的顶部接触制造方法。已有的各种方法,包含从直接金属蒸发到聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)或石墨烯夹层到金属转移印刷。然而,在不损害薄膜完整性、内在功能或大规模制造兼容性的情况下,尚不可能制造基于 SAM 的器件。Puebla-Hellmann 等人开发了一种基于 SAM 的器件的顶部接触方法,通过利用金属纳米粒子可以为各个分子提供可靠的电接触这一事实,同时解决了所有问题。该制造步骤首先包括将一层金属纳米颗粒直接共形和非破坏性地沉积在 SAM 上(其本身横向约束在介电基质中的圆形孔内,直径范围为 60 纳米至 70 微米),然后通过直接金属蒸发对顶部接触进行加固。该方法能够制造数千个相同的、环境稳定的金属-分子-金属器件。SAM 组成的系统变化表明,固有的分子特性不受纳米颗粒层和后来的顶部金属化的影响。Puebla-Hellmann 等人提出的这一概念通常针对配有两个锚定基团的密集分子层,并为分子化合物大规模整合到固态器件提供了一条途径(可以缩小到单分子水平)。(Nature DOI: 10.1038/s41586-018-0275-z)

物理化学-化学前沿与进展资料

砷钼酸盐化学研究进展与展望 巩培军104753140807 物理化学 摘要:多金属氧酸盐以其丰富多彩的结构及其自身的优良分子特性,包括极性、氧化还原电位、表面电荷分布、形态及酸性,使其在很多领域,尤其是材料、催化、药物等方面具有潜在应用前景,因而受到人们的广泛关注。本文选择目前报道尚少的砷钼杂多化合物为研究重点。 Abstract: Polyoxometalates (POMs), a fascinating class of metal–oxygen cluster compounds with a unique structural variety and interesting physicochemical properties, have been found to be extremely versatile inorganic building blocks in view of their potential applications in catalysis, medicine, and materials. In this paper, the main work has been focused on the rare reported arsenomolybdates. Keywords: polyoxometalates; physicochemical properties; applications 1 多酸概述 多金属氧酸盐化学至今已有近二百年的历史,它是无机化学中的一个重要研究领域[1-3]。早期的多酸化学研究者认为无机含氧酸经缩合可形成缩合酸:同种类的含氧酸根离子缩合形成同多阴离子,其酸为同多酸;不同种类的含氧酸根离子缩合形成杂多酸阴离子,其酸为杂多酸[4]。现在文献中多用Polyoxometalates (多金属氧酸盐) 及Metal-oxygen clusters (金属氧簇)来代表多酸化合物。 从结构上多酸是由前过渡金属离子通过氧连接而形成的金属氧簇类化合物,它的基本的结构单元主要是八面体和四面体。多面体之间通过共角、共边或共面相互连接。根据多面体的连接方式不同,多金属氧酸盐可划分为不同的结构类型,如Keggin、Dawson、Silvertone、Anderson、Lindqvist 和Waugh 结构等,它们被称为多金属氧酸盐最常见的六种基本结构类型(图1)。(1)Keggin 结构,其阴离子通式可表示为[XM12O40]n– (X = P、Si、Ge、As、B、Al、Fe、Co、Cu 等;M = Mo、W、Nb 等);(2)Wells—Dawson 结构,其阴离子通式可表示为[X2M18O60]n– (X = P、Si、Ge、As 等;M = Mo、W 等);(3)Silverton 结构,其阴离子通式为[XM12O42]n– (X = Ce IV等;M = Mo VI 等);(4)Anderson 结构,其阴离子通式为[XM6O24]n– (X = Al、Cr、Te、I 等;M = Mo 等);(5)Lindqvist 结构,其阴离子的通式为[M6O19]n– (M = Nb V、Ta V、Mo VI、W VI等);(6)Waugh 结构,其阴离子通式为[X2M5O23]n– (X = P V等;M = Mo VI等)。其结构又决定其特殊性质的,如强酸性、氧化性、催化活性、光致变色、电致变色、导电性、磁性等。多金属氧酸盐由于各种确定的结构和特异、优越的物理化学性质,使它们在催化[5]、材料科学[6]、化学及医药学[7]等方面具有重要的应用前景。多金属氧酸盐可根据组成不同分为同多(iso)和杂多(hetero)金属氧酸盐两大类。这种分类方法一直沿用早期化学家的观点:即由同种含氧酸盐缩合形成的称同多酸(盐),由不同种含氧酸盐缩合形成的称为杂多酸(盐)。多酸化学经过近两个世纪的发展,已经成为无机化学的一个重要分支和研究领

《自然》《科学》一周(10.8-10.14)材料科学前沿要闻

1. 由熵驱动的手性单壁碳纳米管的稳定性 材料名称:单壁碳纳米管(SWCNT) 研究团队:法国艾克斯马赛大学 Christophe Bichara 研究组 原标题:Entropy-driven stability of chiral single-walled carbon nanotubes 单壁碳纳米管是空心圆柱的,其可以在边界处催化剂的作用下,通过碳结合而生长达到厘米级长度。其表现出半导体或金属特性,取决于生长过程中形成的手性指数。Magnin 等人为了支持选择性合成,开发了一个热力学模型,该模型将管-催化剂的界面能量、温度与碳纳米管手性联系了起来。并表明了纳米管可以生长手性,因为它们的纳米尺寸边缘的结构熵,从而解释了实验观察到的手性分布的温度演变。通过界面能量考虑催化剂的化学性质,Magnin 等人构建了结构图谱和相图,用于指导催化剂和实验参数的理性选择,以实现更好的选择性。 (Science DOI: https://https://www.wendangku.net/doc/778761816.html,/10.1126/science.aat6228)

2. 亚微米级结构的钙钛矿发光二极管 材料名称:钙钛矿发光二极管 研究团队:西北工业大学黄维和南京工业大学王建浦研究组 原标题:Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures 发光二极管(LED)能够将电转换为光,广泛用于现代社会中如照明、平板显示器、医疗设备和许多其他情况。通常,LED 的效率受到非辐射复合(电荷载流子由此重新组合而不释放光子)和光陷的限制。在诸如有机 LED 的平面 LED 中,从发射器产生的光的大约 70%至 80%被捕获在装置中,为提高效率留下了很大的机会。研究人员们用了许多方法,包括使用衍射光栅、低折射率网格和屈曲图案,来提取被陷在 LED 中的光。然而,这些方法通常涉及复杂的制造工艺并且可能使发光光谱和出光方向发生改变。Cao 等人展示了高效和高亮度电致发光的溶液加工的钙钛矿,其自发形成亚微米级结构,可以有效地从器件中提取光并保持与波长和视角无关的电致发光。这种钙钛矿仅需要在钙钛矿前体溶液中引入氨基酸添加剂便可形成。此外,添加剂可有效钝化钙钛矿表面缺陷并减少非辐射复合。钙钛矿 LED 具有峰值 20.7%的外量子效率(电流密度为 18 mA·cm-2),能量转换效率为 12%(在 100 mA·cm-2的高电流密度下),该值与性能最佳的有机 LED 相接近。 (Nature DOI: https://https://www.wendangku.net/doc/778761816.html,/10.1038/s41586-018-0576-2)

道路材料工程学科前沿综述

道路材料工程学科前沿综述 摘要:近年来,道路材料工程学科各个领域取得了一系列突破性进展,为公路建设提供了大量的理论方法。本文针对当前道路材料工程发展现状,综述了其重要进展,并对我国该学科的发展趋势进行了展望。 关键词:道路材料工程;前沿;综述 0 引言 道路材料工程是一门与材料和道路有关的学科,它以材料科学和道路工程理论为基础,采用材料分析、测试等手段来研究材料,旨在研究和解决工程建养中遇到的相关技术问题。 道路材料工程学研究内容包括水泥路面材料开发、改性及施工工艺研究,沥青路面材料开发、改性及施工工艺研究,土质加固及半刚性路面基层材料研究。 回顾历史,道路工程每一项技术的出现,首先在材料方面有所突破。如路基土的改良与稳定技术,沥青、水泥材料的改性研究等都与材料科学有关。由此可见,道路材料学科的不断发展尤为重要[1]。 1 道路材料工程学科各方向的发展 1.1 路面结构与材料的发展 公路建设的蓬勃发展对路面的使用性能提出了更高的要求,而路面材料的适用性、组成设计等对路面的使用性能起着决定性的作用。 1.1.1 沥青路面与材料 (1)沥青路面材料 沥青路面成为主导路面结构形式的原因在于其表面平整、行车舒适、减振性良好,但若材料组成、施工工艺不当,面层也会出现车辙、低温开裂等不良现象。 近年来,为提高沥青路面的使用性能,从沥青材料性能的改善着手,相继出现了乳化沥青、改性沥青。从材料必须满足环境的角度出发,一些学者开始研发全温度域改性沥青及混合料流变特性与路用性能评价方法,进一步提出改性沥青质量控制技术。从环保角度出发,很多人员对废橡胶粉改性沥青、废塑料改性沥青、硅藻土改性沥青等开始进行深入研究。 (2)环保型道路材料

化学前沿综述

化学前沿综述报告 摘要:催化剂的概念以及在新能源和环境治理中的应用,如:煤燃烧、废水处理。关键字:催化剂煤燃烧废水处理 化学前沿综述课不是一门只是教授书本知识的课程。在这里我学到了很多新鲜、实际的知识,大大拓宽了知识面。从中了解了当前化学各学科大致的发展方向以及如何在实际中将所学到的化学专业知识应用起来。在“化学反应动力学前沿简介”报告中我了解到了固体表面特征、固体表面孔的类型、固体表面力与吸附的关系、以及吸附原理、吸附平衡及其表征方法。在“自组装与光子晶体”报告中我了解了光子晶体是将两种或两种以上介质材料排列成具有光波长量级的一维、二维或三维周期结构的人工晶体。由于光子晶体具有光子带隙,光子局域等特性, 所以它具有巨大的应用前景。在“过渡金属催化的碳氢键活化”报告中我了解了碳氢键活化反应都需要对底物进行卤化或金属化等预活化步骤,因此过渡金属催化的通过碳氢键活化直接构筑碳-碳键的方法就成为构筑碳-碳键的绿色经济的途径。在这门课中也是我对催化剂有了新的了解和认识,催化剂在实际应用是广泛的,如在新能源和环境治理中。 当前新能源问题和环境治理是社会关注的热点,而催化剂在这两个领域将是很有作为的。新能源领域:我国是能源消耗大国,而在我国能源消耗结构中,煤占有重要地位。所以合理有效开发利用煤是一个具有现实意义的课题。环境治理方面:我国和全球都面临着严重的环境问题,其中水污染尤为严重,治理也就尤为迫切。所以利用催化剂在治理水污染具有长远意义。下面就简述一下催化剂的概念和在工业实际中的应用。 催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行反应。催化剂在工业上也称为触媒。化学催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生物化工中,可以说,催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机碱。催化剂对化学反应速率的影响非常大,有的催化剂可以使化学反应速率加快到几百万倍以上。催化剂一般具有选择性,它仅能使某一反应或某

当代无机化学研究前沿与进展

当代无机化学研究前沿与进展 【摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 【关键词】:无机化学;研究前沿;研究进展 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。

2017研究前沿_化学与材料科学

2017 研究前沿 中国科学院科技战略咨询研究院 中国科学院文献情报中心 科睿唯安 七、化学与材料科学 1. 热点前沿及重点热点前沿解读 1.1 化学与材料科学 Top 10 热点前沿发展态势 化学与材料科学领域Top10热点前沿主要分布在太阳能电池、有机合成、纳米技术、超级电容器、自由基聚合、上转换发光等领域。与2013-2016 年相比,2017年 Top10热点前沿既有延续又有发展。在太阳能电池领域,关于钙钛矿太阳能电池和聚合物太阳能电池的研究连年入选热点前沿或新兴前沿。在今年的Top10热点前沿中,聚合物太阳能电池延续了去年对非富勒烯受体(小分子和聚合物)的关注,钙钛矿太阳能电池则侧重空穴传输材料研究。在有机合成领域,碳氢键的活化反应也是连年入选,往年侧重在钌、铑等贵金属的催化转化,今年是非贵金属钴的催化转化,另外今年还突出了间位碳氢键的活化。在纳米技术领域,不仅继续有具体的前沿研究入选,而且首次出现宏观的研究概念――纳米组装学。在超级电容器领域,基于纳米孔碳电极(2014年)、纳米二氧化锰电极材料(2016年)的超级电容器曾经入选热点前沿或新兴前沿,今年入选的是基于NiCo2S4电极材料的超级电容器。在自由基聚合领域,继2014年入选新兴前沿后,光引发的聚合反应今年成为热点前沿。在上转换发光领域,“三重态-三重态湮灭上转换”入选热点前沿。

1.2 重点热点前沿——三价钴催化的碳氢键活化反应 传统的合成化学基于活性官能团的相互转化,通常需要繁琐的预官能团化步骤。而碳氢键的直接化学转化可以避免这一过程,大大提高反应的原子经济性和步骤经济性,因而受到广泛关注并取得蓬勃发展。近十年来,过渡金属催化的碳氢键直接官能团化反应已成为重要的合成工具,特别是贵金属(铑、钌、铱、铂、金、银等)催化成果显著。然而,高昂的成本以及对环境可能造成的不利影响限制了贵金属催化的大规模应用。因此,越来越多的研究人员将目光转向储量丰富、成本低廉的第一行过渡金属(锰、铁、钴、镍、铜等)。这点在《研究前沿》系列报告中也得以体现:在2013年和2014年的报告中,“钌、铑催化的碳氢键活化反应”进入化学领域Top10热点前沿,本年度则是“钴催化的碳氢键活化反应”入选。钴催化的碳氢键活化反应可分为低价钴(CoⅡ)催化和高价钴(CoⅢ)催化两类。本研究前沿是高价钴催化的碳氢键活化反应。2013年,日本东京大学金井求(Motomu Kanai)教授和川岛茂裕(Shigehiro Kawashima)博士报道了Cp*CoⅢ(Cp*= 五甲基环戊二烯)络合物催化的2-苯基吡啶碳氢键活化直接加成到亚胺、烯酮上的反应。此后,研究人员不断扩大Cp*Co Ⅲ催化剂的应用围并研究其催化机理。与其替代对象Cp*RhⅢ相比,Cp*CoⅢ不仅可用于前者催化的反应,而且由于反应活性差异,导致可能采取不同的反应路线从而生成不同的产物。 如表31所示,在本研究前沿中,德国、日本、美国、国以及中国等国家或地区发表了多篇核心论文。日本东京大学、德国哥廷根大学、明斯特大学、美国耶鲁大学、国基础科学研究院等研究机构在该领域做出了突出贡献。大学、大学、中科院化物所等研究机构的工作也比较突出。

应用化学专业前沿应化11-2

应用化学学科前沿 高分子材料

前言: 高分子材料也称聚合物材料,它是以高分子化合物(树脂)为基体,再配以其他添加剂(助剂)所构成的材料。高分子材料包括天然高分子材料,如棉、麻、丝、毛等;由天然高分子原料经过化学加工而成的改性高分子材料,如粘胶纤维、醋酸纤维、改性淀粉等;由小分子化合物通过聚合反应合成的合成高分子材料,如聚丙烯树脂、顺丁橡胶、丙烯酸涂料等。由于高分子材料概括性太大,先介绍几种不同高分子材料的发展现状。

高分子材料是材料领域中的新秀,它的出现带来了材料领域中的重大变革。高分子材料与其他的各种材料(如木材、陶瓷、金属、水泥、棉、毛、丝、皮革、纸张等)并驾齐驱,在各种工业部门得到了广泛的应用,这主要是高分子材料本身具有许多的优良特性,例如塑料质地轻盈、加工成型方便,可以制成各种生活用品;工程材料具有较高强度,可以代替金属,由于高分子材料的相对密度为1.0~1.4,是钢铁相对密度的1/8、铝的1/2,这对于要求减轻自重的应用,有特殊的意义。 从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量, 达到至少1万以上, 或几百万至千万以上, 所以, 人们將其称为高分子、大分子或高聚物. 高分子的种类繁多,随着化学合成工业的发展和新聚合反应和方法的出现,种类不断增加,就要进行分类。可以根据来源、性质、用途、结构等不同的角度进行多种分类。依据材料的性能和用途,可以将聚合物分为塑料、纤维、橡胶、涂料、粘合剂、功能高分子、离子交换树脂等;按应用功能分类可以分为通用高分子如塑料、纤维、橡胶、涂料、粘合剂等,功能高分子如具有光电磁等物理功能的高分子、高分子药物等,特殊功能高分子如耐热、高强度的聚碳酸酯等,仿生高分子如高分子催化剂、模拟酶等。 高分子材料可以人为合成,那是不是代表着人们可以随心所欲的合成自己需要的材料呢?答案当然是否定的。就目前人类的科学发展水平来看,想随心所欲的合成高分子材料是不可能的。先来看看目前高分子材料的发展现状以及发展前景吧。 随着高分子材料合成与加工的技术进步,塑料在各行业得到广泛、深入的应

材料科学前沿思考题1

1.航空器发展对材料的要求有哪些? 答:耐高温、高比强、抗疲劳、耐腐蚀、长寿命和低成本。 2.什么是自然资源,属性是什么?自然资源分为哪几类? 答:(1)人类可以直接从自然界获得并用于生产和生活的物质。(2)属性包括:自然+经济。(3)可分为三类:无穷——空气、风、太阳能;可再生——生物体、水、土壤;非再生,矿物、化石燃料。 3.环境的定义是什么?环境污染的实质是什么?对人类而言环境的作用有哪些? 答:(1)环境是人类周围一切物质、能量和信息的总和。 (2)人类索取超过资源再生+排放废弃物数量超过环境自净能力。 (3)首先,生存的基本条件——物质基础;其次,环境对废物消纳及转化,保证延续;第三,提供精神享受。 4.什么是资源保护?如何提高资源效率减轻环境污染? (1)广义——在维护生态系统及其综合体中,对资源采取的平衡行动;狭义——对资源综合利用,提高资源效率。(2)1》通过技术革新,提高生产效率,减少废物排放;2》保护资源,加强资源综合利用,特别是废弃物的回收。 5.什么是金属间化合物,金属间化合物的特点是什么? 答:指两种金属或金属与类金属组成的具有整数化学计量比的化合物。 特点:密度低、屈服强度随温度升高而提高、比刚度高、熔点高、高温强度好、抗氧化性能优良等。 6.金属间化合物分为哪几类,各自的特点是什么? 答:分类及特点:①正常价化合物:符合化合物原子价规律。键特点: 电子转移和共用电子对。a.金属倾向与345副族元素形成化合物,b.金属正电性越强, B族负电性越强,越易形成,越稳定。 ②电子化合物:a.不符合原子价规则,成分不定b.结构由e浓度决定,超点阵结构。c.金属键。 ③间隙化合物:AR大过渡族金属元素和AR小的C、N、B等元素组成;高熔点;高硬度。 ④复杂化合物:更复杂结构的间隙化合物——渗碳体及碳化物。 7.二元Ti3Al合金的缺点有哪些,其发展思路是什么? 答:缺点:室温断裂韧性、冲击韧性低、O相合金的抗氧化问题、高Nb合金抗氧化性差。发展思路:在Ti-Al-Nb 的基础上,加β相稳定元素,增加塑性第二相,改善室温塑性和加工性能。 8.金属间化合物结构材料脆性原因?其韧化方法有哪些? 答:脆性原因:①结构特性:电负性、结构复杂性②滑移特征:独立滑移系③晶界特征:杂质偏聚④环境影响:氢脆⑤应力状态:缺口敏感性。韧化方法:①偏离化学计量比;②合金化:微合金化法、宏合金化;③改变晶粒形态:细化晶粒、择优取向;④微结构控制:组织优化;制备多相合金、改进制备工艺。 9.Ti3Al(α2)基合金中加入β相稳定元素的目的是什么?不同β相稳定元素含量分别对应什么相组成? 答:通过添加β相稳定元素(如Nb和Mo),增加塑性的第二相,使Ti3Al基合金的室温塑性和加工性能得到改善。 ①第一代β稳定元素含量在10%~14%,显微组织为α2(DO19)+β;②β稳定元素含量在14%~17%之间,该合金具有更高的拉伸强度和蠕变抗力,显微组织取决于热处理,主要为α2、β和O相(第一代O相合金)O相(基于Ti2AlNb,正交结构,可看作α2的畸变结构;③β稳定元素含量在23%以上,如GE公司研制的Ti-24.5Al-23.5Nb和Ti-22Al-27Nb 合金,显微组织为O+β,这类以O相为基的合金比α2合金和超α2合金有更高的高温屈服强度、蠕变抗力和断裂韧性,已经成为近期研究的重点(第二代O相合金)。 10.什么是高温合金?高温合金的服役条件是什么?高温合金的强化方法有哪些?以Ni基高温合金的强化为例讲述高温合金强化原理。 答:高温合金又称热强合金、耐热合金或超合金(Superalloys),是指以Fe、Ni、Co为基,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。服役条件(航空发动机热端部件):①600~1100℃②氧化和燃气腐蚀环境③复杂应力(蠕变,高、低周疲劳,热疲劳等)④长期可靠工作。强化方法:组织:γ/ γ’共格组织,基体:γ,强化相:γ’①固溶强化:γ ②第二相强化:γ’ ③晶界强化:微量元素晶界偏聚④工艺强化:定向或单晶。 借助Mo来提高/ 晶格错配度,增加晶格界面应力场,阻止位错运动,减小合金最小蠕变速率。在蠕变过程中形成稠密的界面位错网络,这些位错网络在稳定的蠕变阶段可以有效阻止相中的滑移位错进入相。提高了Mo 元素的含量,增大了合金高温蠕变过程中TCP相析出的倾向,增加Ru元素降低这一倾向,提高合金稳定性。11.组织工程学的三大要素是什么?对细胞载体材料-支架材料的具体要求是什么? 答:三大要素:①细胞载体材料-支架材料;②细胞的分离和培养;③细胞生长因子。对支架材料的具体要求有:1.多孔且需要高的孔隙率;2.内部均匀分布和相互联通的孔结构;3. 支架材料易于加工成不同的厚度和形状;4. 良好的相容性和一定的机械强度;5. 可以通过生物降解最终消失。

化学学科发展前沿.doc

当代无机化学发展前沿 【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。 当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。 根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述: 一、无机合成与制备化学研究进展 无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面: (一)极端条件合成 在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。 (二)软化学合成 与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。 (三)缺陷与价态控制 缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。 (四)计算机辅助合成 计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、mon te2carlo 优化计算等建立有关的合成反应数

材料学科前沿讲座总结

材料学科前沿讲座总结 生物医用高分子 一.引言 生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。 目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。 二.发展历史 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。 三.基本性能要求 1. 力学性能稳定 在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。 2. 化学性能稳定 作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。 3. 与人体的组织相容性好 医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。

相关文档
相关文档 最新文档