文档库 最新最全的文档下载
当前位置:文档库 › 变压器的故障与事故处理

变压器的故障与事故处理

变压器的故障与事故处理
变压器的故障与事故处理

变压器的故障与事故处理

变压器故障主要发生在绕组、铁芯、套管、分接开关和油箱等部位,最常发生的故障是绕组故障。其中,以绝缘老化和层间绝缘损坏最为多见,其次是套管,分接开关失灵,绝缘油劣化,铁芯和其他零部件的故障较少。

一、绝缘老化

变压器绕组一般是A级绝缘。在正常负荷下,其绝缘材料可以使用20年以上。如果超负荷运行,其绝缘将加速老化。绝缘老化后绝缘材料会变黑,并失去原有弹性而变得焦脆。在这种情况下,只要绕组稍微受到振动或略受摩擦绝缘即可能完全损坏,导致匝间短路或层间短路。绝缘老化后绝缘性能也明显下降,遇过电压时容易击穿。

为了防止和减缓绝缘老化,必须严格控制和掌握变压器的负荷,严格控制上层油温和温升。

二、绝缘油劣化

变压器内的绝缘油在正常情况时,它有很好的电气绝缘性能和合适的黏度。它能增加绕组层间、相间、绕组与铁芯之间以及绕组与油箱外壳之间的绝缘强度;同时,还能够充满变压器内的所有空隙,排除空气,避免各部件与空气接触受潮而降低绝缘性能。

变压器内的绝缘油还可以通过其循环,把变压器损耗转换的热量散发到油箱外的空气中,从而使变压器的绕组和铁芯得到冷却。

绝缘油有良好的消弧性能,能防止油箱内事故电弧的扩大。

由于绝缘油排除了油箱内的空气,除了有利于绝缘保持原有化学性能和物理性能外,还利于金属的防腐。

运行中的变压器变压器油,有可能与空气接触,并逐渐吸收空气中的水分,降低其绝缘性能。绝缘油内只要含有/10000的水分,其绝缘性能就会降低为干燥时的1/8。就是说,绝缘油受潮后容易造成击穿和闪烙,甚至造成事故。

变压器油可吸收和溶解大量气体。由于油经常在较高的温度下运行,与空气中的氧接触,易生成各种氧化物。这些氧化物带有酸性,容易使铜、铝、铁和绝缘材料腐蚀,并增加油的介质损耗。经验表明,油在60~70℃时即开始氧化,但很少发生变质,但温度达到120℃时,氧化就激烈进行,变质加剧。

由于绝缘油劣化是变压器故障的主要原因之一,在运行中应加强对油的管理,注意以下几点:

1、按期取样做简化试验,不合格者及时进行处理。

2、监视变压器的上层油温。上层油温不得超过95℃,一般情况下不宜长时间超过85℃。

干式变压器的绕组、铁心最高温度不得超过155℃,最高温升100K。干式变压器正常运行温度不超过110℃,温控器设置掉闸温度为150℃。

温控系统通过温控箱和安装在低压绕组中的PTC测温元件,实现对变压器的温度检测与控制。自冷式变压主配置温控箱,变压器绕组温度超过安全值,温控箱会发出信号。强迫风冷配置温控箱应能停启冷却风机,并发出超温报警信号和超温跳闸信号。

在超负荷运行中应密切注意变化,切忌因温升过高而损坏绝缘,无法恢复运行。

干式变压器的定期试验周期一般3~5年。

3、减少绝缘油与空气的接触,防止水分渗入。

4、对运行中电压35KV以上,容量1000KVA及以上的油浸变压器,每年至少进行一次溶解

于绝缘油里的气体的气相色谱分析试验。

油质分析:

1)外观透明无悬浮和机械杂质δδδ

2)水溶性酸PH值≥5.4

3)酸值 mgKOH/g ≤0.03

4) 闪点(闭口)℃≥140

5)水分 mg/L ≤20

6)击穿电压KV ≥40 运行变压器≤35

7)tgδ(90℃)% ≤1

8)体积电阻率(90℃)Ω.m ≥6×10. 10

三、过电压引起的故障

过电压分两类:外过电压和内过电压。外过电压是由雷击引起,内过电压是由于电力系统中的参数发生变化时,电磁能的振荡和积聚引起。这两类过电压引起的损坏事故大多是绕组的主绝缘击穿。

对于在高压侧装有避雷器的配电变压器,雷击高压线路时,避雷器会流过大的电流,并在接地装置上产生电压降,此电压降将同时作用在低压绕组上,低压绕组将流过电流,并在高压绕组感应出一高压电动势。这种高压侧受雷击,避雷器放电,作用于低压侧的高电位,通过电磁感应又变换到高压侧的过程称为反变换。

为防止这种过电压,可在低压侧每相上装一只避雷器或装压敏电阻保护。当高压侧避雷器放电,接地装置上的电压升高到一定数值时,低压避雷器就放电,可以降低反变换电压。当低压侧装有避雷器或压敏电阻保护后,不但保证了在高压下的分流作用,还能在雷击低压线路时,保护低压绕组,并防止低压侧过电压经过电磁变换,击穿高压侧绕组的绝缘。

这些年在系统操作内引起的过电压事故虽然不多,但对绝缘老化,性能不良所变压器,则可能在系统操作中,由于弧光接地、弧光短路,线路断线,负荷剧变等情况而发生事故。

四、套管及引线故障

套管损坏主要是由于检修维护不当或不及时引起。为了避免套管损坏,应加强套管的预防性试验及清扫工作。

1)引线连接处焊接不牢或连接头螺栓未拧紧,都能引起局部发热,使连接处熔损,造成断线。

2)引线对油箱或金属支架距离不够,可能引起短路事故。有时虽然距离够了,但因固定不牢,短路或过载的剧烈摆动或摩擦,也可能引起短路。此外,由于漏油,使内部引线处于空气中,可能导致内部放电闪烙。

(3)高压套管主要形式是油纸电容套管。其常见故障多以放电性故障为主,尤其是低能量火花放电,多发生在气隙处或悬浮带电体空间内。引起套管故障的主要原因是制造质量缺陷和运行维护不当。

(4)运行维护不当:由于检修工艺不良,真空注油不完善,或者漏油等造成密封不严,致使潮气入侵而使绝缘受潮。在现场预防性试验时拆接引线不当,造成高温过热,或者造成未屏引线断线、接触不良引起放电性故障。此外,变压器多次出口短路和单相接地引起过电压,以及雷击或操作过电压引起套管内部游离放电,或者表面脏污引起外部闪络等也是造成套管故障甚至事故的原因之一。

五、磁路故障

1)穿心螺杆或螺丝碰接铁芯。其间发生短路时将有很大电流通过,造成局部过热,有时甚至会使铁芯、夹板熔化引起绝缘着火,这种事故通常是由于穿心螺丝上的绝缘垫被压坏或穿心螺杆的包扎绝缘不符合要求,有可能是平板与铁芯之间的绝缘板太薄或有裂纹造成。

2)硅钢片间的绝缘损坏。为了减少铁芯的涡流损失,铁芯硅钢片的片间有涂漆绝缘。如果绝缘破损或绝缘老化,片间的绝缘性能降低,涡流增加,将导致局部过热甚至熔化。同

时还会使绕组温升剧增而加速绝缘老化速度。

3)铁芯未接地或接地不良。铁芯如无良好接地,则在绕组的感应作用下会产生一定电压,并可能在接地的油箱之间产生放电,这种放电使油炭化、变质、劣化。

4)分接开关故障。无载分接开关可能发生下列故障:

(1)开关触头接触不良而烧伤。触头弹簧压力不足,滚轮压力不均使有效面积减少,渡银层磨损,接触处存在油污等,导致接触不良。

(2)开关的连接线连接不好,遇大电流或短路电流时,导致烧伤或脱焊。

(3)开关的编号错误,使副边三相电压不平衡,并在三角形接法的绕组内产生环流,造成变压器过热。

(4)开关的相间距离不够,过电压时可能产生相间短路。

有载分接开关可能发生下列故障:

(1)其限流阻抗在切换过程中烧断。如断口处电弧不能熄灭将使故障扩大。

(2)开关由于密封不严而进水,可造成相间闪络或短路。

(3)开关滚轮被卡住,使触头停在过渡位置而损坏。

(4)开关的附加油箱缺油,不能有效地熄灭电弧而损坏。

变压器的事故处理

一、变压器内部异常声响

变压器发出异常声响可能有以下原因:

(1)严重过负荷,会使变压器内部发出沉重的〝嗡嗡〞声。

(2)由于内部接触不良或有击穿,发生放电,会使变压器内部发出〝吱吱〞声。

(3)由于变压器顶盖连接螺栓或个别零部件松动,变压器铁芯未夹紧,造成硅钢片振动,会发出强烈噪声。铁芯两侧硅钢片未被夹紧,也会发出异常声音。

(4)电网中有接地或短路故障时,绕组中流过很大电流,也会发出强烈的噪声。

(5)变压器有大型动力设备起动或能产生谐波电流的设备运行时,可能导致变压器发出〝哇哇〞声。

(6)由于铁磁谐振,变压器发出忽粗忽细的异常声音。

(7)变压器原边电压过高或不平衡都会发出异常声音。

(8)由于过电压,绕组或引出线对外壳放电,或铁芯接地线断,致使铁芯对外壳放电,均使变压器发出放电声响。

当变压器发出异常声响时,应判断其可能的原因,变压器内部有击穿或零部件松动,应停电处理。

二、变压器保护动作

气体保护是变压器的主保护。

当气体保护发出信号时,应对继电器气体和变压器进行检查,并严密监视运行情况。包括电流、电压的检查,温升、声音的查检,油位、油色的检查。气体继电器动作的原因可能是:(1)加油或滤油时,空气带入油箱内部,随着温度上升,空气逐渐析出聚焦于气体继电器上部,使之发信号或动作。

(2)温度下降或漏油,使油面下降,引起气体继电器发信号或动作。

(3)变压器内部不十分严重的故障,产生少量气体,使气体继电器发信号或动作。

气体继电器动作后,经检查仍有怀疑的,应收集存积在气体继电器的气体,进行分析。

如果气体无色无臭,而且不能燃烧,说明是空气进入变压器内造成继电器报警和动作。

如果气体是可燃的,则说明变压器有故障,应停电处理。

一般黄色不易燃的气体,说明变压器内部有木质绝缘的过热分解。灰白色带有强烈气味的可燃气体,说明纸或纸板等绝缘材料有故障。黑色或深灰色有焦臭味的易燃气体,

说明变压器内有闪络,以致绝缘油过热分解。气体颜色的鉴定必须尽快进行,以避免有色物质沉淀后颜色消失。

油色谱分析:

氢(H2)注意值<150 新油<10

一氧化碳(CO)

二氧化碳(CO2)

甲烷(CH4)

乙烷(C2H6)

乙烯(C2H4)

乙炔(C2H2)注意值<5 新油0

总烃(∑炔) 注意值<150 新油<20

气体继电器动作使变压器跳闸的可能是:

(1)变压器内部发生严重故障。

(2)由于漏油,变压器油位迅速下降。

(3)新装和大修后变压器投入运行时,油中空气分离出来太多太快。

(4)保护装置的二次回路有故障。

三、变压器油位过高或过低

正常时,变压器的油位决定于油温的变化。

(1)油位固定不变或变化规律与油温不相符合。可能是假油位。假油位一般是油标管堵塞,呼吸器堵塞或气体释放阀堵塞造成。处理假油位,应将气体继电器跳

闸回路解除,以防误跳闸。

(2)变压器油位过高,可能造成溢油。油位过低,可能造成气体继电器误动作,还可能使变压器内部引线或线圈外露,导致内部放电。

油位过高可以适当放油,油位过低时可适当关闭散热器并及时补油。变压器缺油是由于大量漏油引起,应该采取检修和其它补救措施。

四、变压器油枕或气体释放阀(防爆管)喷油

变压器油枕或气体释放阀喷油,表明变压器内部严重故障。喷油使油位迅速降低,可能导致气体继电器动作跳闸。变压器未装气体继电器或保护未动作,则当油位下降至顶盖以下时,变压器内部可能姓放电。

发现油枕或气体释放阀喷油时,应立即停电防止事故进一步扩大。

五、变压器油质变坏或油温突然升高

变压器油如果经常过热和进水,吸收潮气,将使油质变坏,通过取样分析,可以发现油色加深或变黑,油内含有碳粒和水分,酸值增高、闪点降低,绝缘强度降低,这里很容易在绕组与外壳之间发生击穿放电,造成严重事故。此时应对油进行过滤和再生过滤处理。

变压器运行时,油温突然升高是变压器内部过热的表现,铁芯着火,绕组匝间短路,内部螺栓松动,冷却装置故障,变压器严重超负荷,都可能使油温突然升高。负荷过高引起油温升高,可以适当降低负荷,如果是其它原因,应停电检修。

六、变压器着火

变压器内部发生严重故障,又没有及时处理,即可能着火,酿成火灾。变压器着火时,油箱内绝缘油燃烧,变成气体,使油箱爆裂,燃烧的油四处飞溅,可能造成更大的损失。

内部短路,外部短路或严重过负荷,雷击或外界火源移近变压器,均可能导致变压器着

火。

以上变压器火灾的措施

(1)加强变压器的运行管理,尽量控制上层油温不超过85℃,定期对变压器性能进行检查和试验,定期做油的简化试验。

(2)小容量变压器高、低压侧应有熔断器等过流保护环节,大容量变压器,应按规定装设气体保护和差动保护。高压用熔断器保护,100KVA以下的变压器,熔丝

额定电流按额定电流的2~3倍选择。100KVA以上的变压器,按额定电流的1.5~

2倍选择。

(3)变压器室应为一级耐火建筑,应有良好通风,最高排风温度不宜超过45℃,进风和排风温差不宜超过15℃,室内应有挡油设施和蓄油坑,一室不能安装两台

三相变压器。

(4)经常检查变压器负荷,负荷不得超过规定。

(5)由架空线引入的变压器,应装设避雷器,雷雨季节前应对防雷装置进行检查。

哪些部位可能发热如何判断?

一、分接开关接触不良

变压器有载(分接开关)接触不良,造成局部高热是比较普遍的问题。分接开头经常切换,产生问题的机会是最多的。

分接开关发热主要是由于接触不良,使接触电阻增大,尤其是分接开关频繁动作和变压器过负荷运行,特别可能发生这种情况。接触不良的原因可能是:

1、接触点压力不够;

2、开关接触处有油泥堆积,使动、静触点间有一层油泥膜;

3、接触面小使接点熔伤;

4、定位指示与开关的接触位置不对应。

这种故障在大修或切换分接开关后最容易发生,穿越性故障后,也可能烧伤接触面。在运行中,特别要注意轻瓦斯动作的情况,往往这种故障也可从轻瓦斯频繁动作觉察到。取油样分析化验,其明显特征是分接开关高热使油的闪点迅速下降。也可以采用现行的油色谱分析判断。

二、线圈匝间短路

所谓线圈匝间短路就是相邻几个线匝之间的绝缘损坏。几个线匝间形成闭合的短路回路,同时,也使该相线圈减少了匝数,短路环内由交变磁通感应出来的短路电流,将产生高热,并可能导致变压器烧毁。造成匝间短路的原因:

1、在线圈制造时因敲打、弯头、压紧等工艺过程造成绝缘的机械损伤,或某

些毛刺刺伤绝缘而留下隐患。

2、运行时间过久,绝缘老化严重,变脆脱落,使导线连通短路。

3、运行中局部高温使绝缘迅速老化(如油道堵塞等)。

4、穿越性短路时,在电动力的作用下使某些线匝发生轴向或辐向位移将绝缘

磨损短路。

5、变压器油面下降,使线圈露出失去冷却作用。

6、长期过负荷运行,温度控制不科学,使线匝间温度太高,绝缘很快老化变

脆而发生短路。

真正发展成匝间短路,是发生在过电压,过电流之后。较严重的匝间短路在运行中也能发现,因发热厉害,油温上升,而且电源侧的电流有某种程度的增加,轻瓦斯可能动作。短路匝处发高热时油可能象沸腾似的,可以听到异常的声音。

三、铁芯硅钢片间存在短路

铁芯是由相互绝缘的硅钢片叠成。由于外力损伤或绝缘老化等原因使硅钢片漆膜绝缘损坏,会增大涡流,造成局部过热。

穿心螺杆绝缘损坏也是造成环流的原因之一。穿心螺杆一般由绝缘套管使其与硅钢片绝缘。两端还有绝缘垫圈使其与夹件绝缘。可能由于拧紧螺帽时损伤绝缘或因螺杆本身中的涡流发热,使绝缘经常处于高温下老化变脆。如果有几棵螺杆绝缘损坏,就会在螺杆和铁芯间形成短路,使铁芯局部过热而损坏。

若变压器铁芯硅钢片的接地设置不正确(人为多点接地,或因某种原因造成铁芯多点接地)都将造成铁芯多点接地,形成环流,局部过热而导致严重事故。

其它可能导致发热的原因还有:如接头发热(引线和线圈焊接处,引线与套管中导杆的螺母连接处,线圈内部焊头等)压环螺钉绝缘损坏或压环碰接铁芯造成环流,某螺钉或铁件通过漏磁多,涡流大造成过热等。

高热、油劣化,这是上述故障的共同特点,其反映出来的气体继电器动作或油温上升都是共同现象。直接判断是哪个部位故障是比较困难的,只能根据变压器的历史及运行情况,油的色谱分析和化验进行综合分析。根据上述现象,运行检修人员应经常监视变压器油温,听变压器声音,轻瓦斯动作后及时引起注意。

变压器铁芯故障检测

变压器局部过热故障多见于分接开关接触不良、铁芯局部短路和多点接地。对于分接开关故障检查是比较容易的。然而,对于铁芯故障,因涉及结构件多,引起的原因比较复杂,加之外部有线圈遮挡,检查起来也不太容易了,正因为如此,有的变电站在确实找不到故障接地点,予以排除。而且确切地判定故障点是稳定的金属接地的情况下,作为临时措施,往往将工作接地点断开,以故障接地点代替工作接地。

1、不吊罩(芯)检测

(1)铁芯一点外引接地时,不吊罩(芯)检测:用钳型电流表测量外引地线电流,当电流I为零到数十毫安时为正常;如果I>1A及以上时,则存在两点接地故

障。

(2)铁芯和上夹件分别外引接地时检测:先测出上部外引线对地电流I1,在测量下部接地线对地电流I2,然后按表经验判据进行判断。

经验判据之一

(3)断开工作接地点检测:用1000V兆欧表测量铁芯对箱壳的绝缘电阻,若该电阻值达200MΩ及以上时,则为正常。如果兆欧表指示铁芯与箱壳相通,则改用万

用表欧姆档测量铁芯与箱壳之间的电阻,若该电阻值为1~2Ω时,则铁芯有金

属性多点接地。如果该电阻值为200~400Ω时,则说明铁芯有高阻接地,必须

处理后变压器才能投入运行。

(4)利用空载试验检出铁芯内表面(窗口内)故障:因为铁芯内表面故障功率消耗较大,有时可达数KW,因此,根据单相空载试验,若某一相空载损耗增加约10%,

且在试验过程中的几分钟之内,油中故障特征气体明显增加,则该相铁芯内表

面有接地故障。但是,单相空载试验对铁芯外表接地故障是不灵敏的。因为该

类故障功率消耗不大,最大只有200~300W,所以单相空载试验检测不出来。

2、吊罩(芯)检查

变压器吊罩(芯)以后,铁芯有无多点接地的检测顺序和方法如下:

(1)检查正压钉和反压钉是否松动,压钉绝缘垫圈(压钉碗)是否位移脱落或破损;

(2)检查穿心螺栓与夹件之间的绝缘垫圈是否完好,并检测穿心螺栓对铁芯及夹件的绝缘电阻;检查铁芯底部各间隙、槽部有无金属或其它导电性异物;

(3)断开接地片,检测夹件对铁芯的绝缘电阻;

(4)断开压环包与夹件的金属连接,测压包对铁芯及夹件的绝缘电阻。

如果以上检测均正常,则铁芯不存在多点接地故障。

3、检测铁芯有无局部短路

(1)检查铁芯接地片是否完好,有无折叠而搭接在铁芯片上。

(2)采用降压法测铁芯各级叠片间的直流电压,即在夹件与铁芯各级间加12V~24V 直流电压,通入5A左右电流,用mV表逐级测量铁芯各级叠片间的直流电压。

如果铁芯叠片对称级的电压mV数近似或相等,则属正常;若某一级的mV数值

很小或者为零,则该级有局部短路故障。

(3)检测铁芯内外磁路有无局部短路

检测方法:在变压器加上一定的励磁电压时,对单相或三相变压器分别测出铁芯外表面叠片间的电压U1和内表面叠片电压U2;对三相五柱变压器除测定外表面和内表面的电压U1和U2之外,还应测定旁柱窗口内表面叠片的电压U3。

判定:按表的经验判据判断

12

2、铁芯故障部位的查找和消除

1)铁芯故障部位的查找:

如果确认铁芯存在多点接地时,可按下列方法查找多点接地故障部位。

(1)断开正常接地片,测夹件对铁芯绝缘电阻,可以判断故障是在上铁轭还是在下铁轭处。

(2)若判定故障不在下铁轭时,则可在上夹件与铁轭之间加12V~24V直流电压,然后用mV表逐级测定每级叠片对夹件mV值,当某一级的读数为0mV时,则该级为接地故障点。

(3)测量外引接地点的开路电压U0确定故障接地部位。即在变压器三相励磁时,则可按如下经验判据判断:

a、U0≈28%匝电压(三相五柱时,U0≈22.5%匝电压)时,故障接地点一般在高压侧;

b、U0≈14%匝电压(三相五柱时,U0≈11%匝电压)时,故障接地点一般在下铁轭底部中央

部位。

2)不稳定接地点的查找和消除

铁芯不稳定接地点以铁芯底部多见,一般是金属或导电异物所引起,由于大型变压器吊罩后,一般无法吊芯检查,且故障点有时在低压线圈最内层的铁芯底部,往往很难找到故障部位。因此,可用铁丝对铁芯底部进行清扫或进行油中冲洗和氮气冲吹。若故障还不能消除,则可采用“脉冲放电的原理”,利用大电容储能充电,然后再向故障铁芯突然放电的方法,

借助瞬间强大的冲击放电电流通过故障点,产生电动力将不稳定的接地故障点消除。实践证明这一方法是比较有效的。

3)高阻接地点的查找和消除

当铁芯存在200~400Ω高阻接地点时,可按下述步骤消除。

(1)在铁芯与箱壳之间施加110V单相工频电压,其电源要求5KVA,引线需承受30A 电流。在其回路上装一隔离开关和30A熔丝,电源地端接箱壳。合上电源,若

熔丝不会熔断,则再在铁芯与箱壳之间施加220V电压。

(2)施加220V电压时,最好用隔离变压器,将电源与加压输出相隔离。这样,即使220V电源有接地也无碍。同时在220V回路上串接一隔离开关和60A熔丝,合上

电源,仔细监听变压器内有无放电声,并察看能否看到的故障点部位。

(3)然后用欧姆表测量铁芯与箱壳之间的电阻,如果该阻值增大至1000Ω,再利用1000V兆欧表检查,若阻值达到200MΩ或以上,则铁芯高阻接地已消除。

(4)对铁芯施加1000V单相工频电压,持续1min。必须注意,耐压回路同样应串入刀闸开关和60A熔丝。耐压过程中要在输出回路上用钳型电流表测量加压回路

中是否有稳定的电流。如果没有电流则证实接地点确已消除。

有时也可以用直流电焊机来消除铁芯的接地点。可以选择如下方法:

(1)把焊机的负端接箱壳,正端接至铁芯上。加以约40A的电流,用一适当的电流表监测该电流值。若这样能使接地消除,则电流会降低,电压会升高。如果必

要在20~40A之间分级增加电流,重复试验。每次处理后,用欧姆表或兆欧表

来检查处理是否有效果。

(2)如果绝缘电阻已得到改善,则用上述方法施加1000V、1min交流耐压,以确证接地点已经消除。如果加至1000V交流电压,并耐压1min通过,则认为铁芯对

地绝缘正常。这时,铁芯的接地片可以恢复与接地端连接。

此外,如果发现铁芯有接地,且证明极难消除时,则可以在铁芯正常接地线上串接一电阻,以限制环流。此电阻值应在250~1000Ω之间。

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

主变异常及事故处理

主变异常处理 一.声音异常的处理: 1) 当变压器内部有“咕嘟咕嘟”水的沸腾声时,可能是绕组有较严重的故障或分接开关接触不良而局部严重过热引起,应立即停止变压器的运行,进行检修。 2) 变压器声响明显增大,内部有爆裂声时,立即断开变压器断路器,将变压器转检修。 3) 当响声中夹有爆裂声时,既大又不均匀,可能是变压器的器身绝缘有击穿现象,应立即停止变压器的运行,进行检修。 4) 响声中夹有连续的、有规律的撞击或摩擦声时,可能是变压器的某些部件因铁芯振动而造成机械接触。如果是箱壁上的油管或电线处,可增加距离或增强固定来解决。另外,冷却风扇、油泵的轴承磨损等也发出机械摩擦的声音,应确定后进行处理 二.油温异常升高的处理: (一)变压器油温异常升高的原因 1) 变压器冷却器运行不正常。 2) 运行电压过高。 3) 潜油泵故障或检修后电源的相序接反。 4) 散热器阀门没有打开。 5) 变压器长期过负荷。 6) 内部有故障。 7) 温度计损坏。 8) 冷却器全停。 (二)油温异常升高的检查 1) 检查变压器就地及远方温度计指示是否一致 2) 检查变压器是否过负荷。 3) 检查冷却设备运行是否正常。 4) 检查变压器声音是否正常,油温是否正常,有无故障迹象。 5) 检查变压器油位是否正常。 6) 检查变压器的气体继电器内是否积聚了可燃气体。 7) 必要时进行变压器预防性试验。 (三)油温异常升高的处理 1) 若温度升高的原因是由于冷却系统的故障,且在运行中无法修复,应将变压器停运修理;若不能

立即停运修理,则应按现场规程规定调整变压器的负荷至允许运行温度的相应容量,并尽快安排处理;若冷却装置未完全投入或有故障,应立即处理,排除故障;若故障不能立即排除,则必须降低变压器运行负荷,按相应冷却装置冷却性能与负荷的对应值运行 2) 如果温度比平时同样负荷和冷却温度下高出10℃以上,或变压器负荷、冷却条件不变,而温度不断升高,温度表计又无问题,则认为变压器已发生内部故障(铁芯烧损、绕组层间短路等),应投入备用变压器,停止故障变压器运行,联系检修人员进行处理。 3) 若经检查分析是变压器内部故障引起的温度异常,则立即停运变压器,尽快安排处理。 4) 若由变压器过负荷运行引起,在顶层油温超过105℃时,应立即降低负荷。 5) 若散热器阀门没有打开,应设法将阀门打开,一般变压器散热器阀门没有打开,在变压器送电带上负荷后温度上升很快。若本站有两台变压器,那么通过对两台变压器的温度进行比较就能判断出。 6) 如果三相变压器组中某一相油温升高,明显高于该相在过去同一负荷、同样冷却条件下的运行油温,而冷却装置、温度计均正常,则过热可能是由变压器内部的某种故障引起,应通知专业人员立即取油样做色谱分析,进一步查明故障。若色谱分析表明变压器存在内部故障,或变压器在负荷及冷却条件不变的情况下,油温不断上升,则应按现场规程规定将变压器退出运行。 三.油位异常的处理 (一)引起油位异常的主要原因有: ①指针式油位计出现卡针等故障。②隔膜或胶囊下面蓄积有气体,使隔膜或胶囊高于实际油位。 ③吸湿器堵塞,使油位下降时空气不能进入,油位指示将偏高。④胶囊或隔膜破裂,使油进入胶囊或隔膜以上的空间,油位计指示可能偏低。⑤温度计指示不准确。⑥变压器漏油使油量减少(二)油位异常的处理 1.油位过低的处理 油位过低或看不到油位,应视为油位不正常。当低到一定程度时,会造成轻瓦斯动作告警。严重缺油时,会使油箱内绝缘暴露受潮,降低绝缘性能,影响散热,甚至引起绝缘故障。 1)油位过低的原因: (1) 变压器严重渗油或长期漏油。 (2) 设计制造不当,储油柜容量与变压器油箱容量配合不当。一旦气温过低,在低负荷时油位下降过低,则不能满足要求。 (3) 注油不当,未按标准温度曲线加油。 (4) 检修人员因临时工作多次放油后,而未及时补充。 2)油位过低的处理: ①若变压器无渗漏油现象,油位明显低于当时温度下应有的油位(查温度~油位曲线),应尽快补

简析变压器的运行维护和事故处理

简析变压器的运行维护和事故处理 发表时间:2015-10-09T16:19:50.250Z 来源:《基层建设》2015年7期作者:常晓闯 [导读] 阳西海滨电力发展有限公司 529800 从变压器运行的日常管理入手,探析变压器运行过程中易出现的故障,采取变压器日常维护的有效措施,是保证和实现电网系统有效运行的重要手段。 常晓闯阳西海滨电力发展有限公司 529800 摘要:随着我国现代科学技术的发展,电力变压器在供电系统中有着极其重要的作用,是企业供电设备的核心之一,但由于变压器事故处理和维护水平低等原因,变压器故障问题发生的仍比较频繁,对企业的正常生产和运行产生非常严重的影响,变压器是电力系统的重要组成部分,变压器的运行状态影响着电网系统的安全与稳定。从变压器运行的日常管理入手,探析变压器运行过程中易出现的故障,采取变压器日常维护的有效措施,是保证和实现电网系统有效运行的重要手段。 关键词:变压器;运行维护;故障处理 电力变压器是电力系统的重要组成部分,在电力系统的运行过程中发挥着重要作用。由于变压器的设计制造工艺、技术以及变压器运行维护水平等方面的原因,在电力系统运行过程中,经常发生变压器故障。因此,在电力系统运行过程中,采取有效措施,防止变压器发生故障,加强对变压器的维护,对确保变压器及电力系统的安全稳定运行有着重要意义。 1、运行维护 1.1监视仪表及抄表。变压器运行中,运行人员应监视控制盘上的仪表,负荷不应超过额定值,电压不能过高或过低,并按规定及时抄录表计。过负荷时,应每半小时抄表一次,无人值班的变电所,每次检查变压器时,应记录其电压、电流和上层油温。 1.2变压器的巡视周期。有人值班的变电所,每天应按要求进行巡视,每天至少一次,每星期应有一次夜间检查,无人值班的变电所和室内变压器容量在 3 200 kVA 及以上者,每10 天至少检查一次,变压器在投入和停用后,都要进行检查,另外可根据气候变化等情况,增加检查次数,特别注意变压器的油位变化。此外,在瓦斯继电器发出告警信号时,亦应对变压器进行外部检查。 1.3变压器的铁芯,应每月进行一次铁芯电流测量,净油器中的吸附剂发现变色时,应及时更换。 2、变压器运行中出现的不正常现象 2.1渗漏油 变渗漏油是变压器常见的缺陷,渗与漏仅是程度上的区别,渗漏油常见的部位及原因是:阀门系统,蝶阀胶材质安装不良,放油阀精度不高,螺纹处渗漏;胶垫接线桩头,高压套管基座流出线桩头,胶垫较不密封、无弹性,小瓷瓶破裂渗漏油;设计制造不良,材质不好。 2.2声音异常 变压器内部音响很大,很不正常,有爆裂声;温度不正常并不断上升;储油柜或安全气道喷油;严重漏油使油面下降,低于油位计的指示限度;油色变化过快,油内出现碳质;套管有严重的破损和放电现象等,应立即停电修理。 2.3油温异常 当发现变压器的油温较高时,而其油温所应有的油位显著降低时,应立即加油。加油时应遵守规定。如因大量漏油而使油位迅速下降时,应将瓦斯保护改为只动作于信号,而且必须迅速采取堵塞漏油的措施,并立即加油。 2.4油位异常 变压器油位因温度上升而逐渐升高时,若最高温度时的油位可能高出油位指示计,则应放油,使油位降至适当的高度,以免溢油。 2.5 高压侧熔丝熔断或掉闸 首先判断高压侧熔丝是否熔断,究竟是断了一相熔丝还是两相或三相,可通过表 1 中所列出的情况进行判断。 表1熔丝熔断情况判断 2.6出现强烈气体 变压器内部发生严重故障,油温剧烈上升,同时分解出大量的气体,使变压器油很快流入油枕.如装有瓦斯保护动作的变压器,其瓦

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器异常运行及事故处理

一、变压器异常运行 1、值班人员在变压器运行中发现有任何不正常现象(如漏油、油位变化过高或过低,温度异常,音响不正常及冷却系统不正常等),应设法尽快消除,并及时汇报值长、班长。应将经过情况记入值班操作记录簿和设备缺陷记录簿内。 2、若发现异常现象必须停用变压器才能处理,且有威胁整体安全的可能性时,应申请调度同意立即停下修理。 (一)、变压器声音不正常 1. 变压器运行时,应为均匀的嗡嗡声,如变压器产生不均匀声音或异音,都属于声音不正常。 2.变压器过负荷:使变压器发出沉重的“嗡嗡声”。 3. 变压器负荷急剧变化:变压器发出较重的“哇哇声”或“咯咯”的突发间歇声 4. 系统短路:变压器发出很大的噪声,值班员应对变压器加强监视。 5. 电网发生过电压:变压器发出时粗时细的噪声,值班员可结合电压表指示综合判断。 6. 变压器铁芯夹紧件松动:变压器发出“叮当叮当”和“呼呼呼”等锤击和类似大风的声音,此时变压器油位、油温和油色均正常。 7. 变压器内部故障放电打火:使变压器发出“哧哧”或“劈啪”放电声此时应停电处理并做绝缘油的色普分析。 8. 绝缘击穿或匝间短路:变压器声音中夹杂不均匀的爆裂声和“咕噜咕噜”的沸腾声,应停电处理并做绝缘油的色普分析。 9. 外部气候引起的放电:套管处有蓝色的电晕或火花发出“嘶嘶”或“嗤嗤”的声音,说明瓷件污秽严重或设备线卡接触不良,应加强监视,待机停电处理。 (二)、变压器油温异常 1. 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。 2. 变压器内部故障:如匝间短路或层间短路、绕组对围屏放电、内部引线接头发热、铁芯多点接地使涡流增加而过热等产生的热量,使油温升高,这时变压器应停电处理。

变压器事故案例

案例一: 变压器套管炸裂 【事故经过】 2003年1月19日0:33:10,某供电公司220kV主变压器(型号为SFP7-120000/220,三线圈)轻重瓦斯、差动保护动作,一次开关跳闸,二次开关未跳闸。0:35:26与该变压器并联运行的另1台主变压器复合过流保护动作,一、二次开关跳闸。0:35:35,手动拉开该变压器二次开关,同时发现该变压器着火。事故发生时,该变压器有功负荷70MW。 【事故现场】 现场外观检查发现,该变压器一、二、三次套管全部炸裂,一、二次引流线烧断,变压器门型构架横梁因高温而变形,变压器控制柜到变压器控制箱控缆烧损。返厂检查发现:高压侧B相无励磁分接开关严重烧损,B相绕组围屏开裂、线圈裸露。A、B相无励磁分接开关接触不到位,A相铁心底角螺丝垫有烧痕;B相分接开关对箱壁有放电痕迹。将高压围屏拆除后发现A、C相高压线圈无变形,B相线圈基本脱落,损坏严重。 【事故前的运行方式】 该变压器于1998年4月25日投运,投运前进行了常规试验、耐压(二、三次及一次中性点)试验,均未发现问题。色谱试验数据为乙炔痕量。局部放电试验数据:在1 5倍对地交流电压下,三相高压端的局部视在放电量均小于500pC,试验合格。但该变压器B相绕组在20~25min期间持续放电量达1100pC,A相切始放电量也较大。运行至2002年3月15日期间色谱试验数据:乙炔始终在0 3μL/L左右。该变压器于2002年4月迁到目前变电所,于当年9月13日投入运行。投运前所有试验数据合格(包括局放)。9月16日带负荷运行。10月22日发现乙炔,进行油色谱跟踪试验(见表1)。 10月28日主变停运热备用。停运后进行的常规试验及局部放电试验均未发现问题。为排除潜油泵问题而引起的油色谱试验数据异常,11月7~15日在变压器停运状态,启动潜油泵进行色谱监视,通过色谱数据分析排除了潜油泵问题。 12月12日对变压器进行了脱气处理。随后进行带负荷油色谱监视运行。 【事故原因分析】 通过解体检查及运行记录分析,事故原因不难找出。B相分接开关接触不良是导致此次事故的直接原因。而该变压器二次开关拒动,与之并联运行的另1台变压器向该主变反充电(时间长达3min)是使事故扩大并发展的主要原因。事故发展的过程:由于B相无励磁分接开

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

变压器异常运行和常见故障分析及事故处理

变压器异常运行和常见故障分析及事故处理 [摘要] 变压器的安全运行管理工作是我们日常工作的重点,通过对变压器的异常运行情况、常见故障分析的经验总结,将有利于及时、准确判断故障原因、性质,及时采取有效措施,确保设备的安全运行。 [关键词] 变压器异常故障常见故障分析事故处理 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。现根据对变压器的运行、维护管理经验,分析总结变压器异常运行和常见故障如下: 一、变压器声音出现异常的情况 1、电网发生单相接地或产生谐振过电压时,变压器的声音较平常尖锐; 2、当有大容量的动力设备起动时,负荷变化较大,使变压器声音增大。如变压器带有电弧炉、可控硅整流器等负荷时,由于有谐波分量,所以变压器内瞬间会发出“哇哇”声或“咯咯”间歇声; 3、过负荷使变压器发出很高而且沉重的“嗡嗡”声; 4、个别零件松动如铁芯的穿芯螺丝夹得不紧或有遗漏零件在铁芯上,变压器发出强烈而不均匀的“噪音”或有“锤击”和“吹风”之声; 5、变压器内部接触不良,或绝缘有击穿,变压器发出“噼啪”或“吱吱”声,且此声音随距离故障点远近而变化; 6、系统短路或接地时,通过很大的短路电流,使变压器发出“噼啪”噪音,严重时将会有巨大轰鸣声; 7、系统发生铁磁谐振时,变压器发生粗细不匀的噪音。 二、在正常负荷和正常冷却方式下,变压器出现油温不断升高的情况 1、由于涡流或夹紧铁芯用的穿芯螺丝绝缘损坏均会使变压器的油温升高。而穿芯螺丝绝缘破坏后,使穿芯螺丝与硅钢片间的绝缘破坏,这时有很大的电流通过穿芯螺丝,使螺丝发热,也会使变压器的油温升高; 2、绕组局部层间或匝间的短路,内部接点有故障,接触电阻加大,二次线路上有大电阻短路等等,也会使油温升高。 三、变压器绝缘油颜色出现显著变化的情况 绝缘油在运行时可能与空气接触,并逐渐吸收空气中的水份,从而降低绝缘性

变压器的常见故障分析及维护措施实用版

YF-ED-J1765 可按资料类型定义编号 变压器的常见故障分析及维护措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

变压器的常见故障分析及维护措 施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 摘要: 在中国高速的现代化发展中,电 力工业的安全运行起着关键作用。本文主要从 变压器的常见故障的原因进行分析,并对变压 器的维护提出一点建议。 关键词:变压器故障原因输电线路 变压器是电力系统的重要设备,其状态好 坏,直接影响电网的安全进行。由于变压器在设 计、制造、安装和进行维护等方面原因使绝缘 存在缺陷,抗短路能力降低,因此近年来主变的 事故较多,其中威胁安全最严重的为绕组局部放

电性故障。根据国家电力公司对 2001 年全国110kV 及以上主变事故的调查,得知绕组的事故占总事故台数的 74.6%(福建省网为80%)。因此,提高变压器安全运行是极其重要的。 1 变压器故障原因分析 多种因素都可能影响到绝缘材料的预期寿命,负责电气设备操作的人员应给予细致地考虑。这些因素包括:误用、振动,过高的操作温度、雷电或涌流、过负荷、对控制设备的维护不够、清洁不良、对闲置设备的维护不够、不恰当的润滑以及误操作等。 1.1 雷击 雷电波看来比以往的研究要少,这是因为改变了对起因的分类方法。现在,除非明确属于

电力变压器的运行维护和事故处理

电力变压器的运行维护和事故处理 发表时间:2017-12-06T10:09:53.833Z 来源:《电力设备》2017年第23期作者:王炎民 [导读] 摘要:介绍了变电站主变压器的验收及日常巡视检查内容,分析变压器部分异常和故障的现象,并论述了变压器主保护瓦斯和差动保护动作的检查处理原则。 (国网河南省电力公司洛阳供电公司河南洛阳 471000) 摘要:介绍了变电站主变压器的验收及日常巡视检查内容,分析变压器部分异常和故障的现象,并论述了变压器主保护瓦斯和差动保护动作的检查处理原则。 关键词:变压器运行维护事故处理 1 新安装或大修后的变压器应进行的验收项目 主变压器在投运前,应进行全面检查,确认其符合运行条件时,方可投入试运行。检查项目如下: (1)变压器及其附属设备的出厂技术资料及现场安装调试记录、交接试验报告及设计说明等齐全,并移交运行单位; (2)本体、冷却装置及其它附属设备应无缺陷,且不渗油; (3)油漆应完整,相色标志正确; (4)变压器顶盖上应无遗留杂物; (5)事故排油设施应完好,消防设施齐全; (6)储油柜、冷却装置、净油器等油系统上的阀门均应打开,且指示正确; (7)接地引下线及其与主接地网的连接应满足设计要求,接地应可靠;铁芯和夹件的接地引出套管、套管的接地小套管及电压抽取装置不用时其抽出端子均应接地;备用电流互感器二次端子应短接接地;套管顶部结构的接触及密封应良好; (8)储油柜和充油套管的油位应正常;呼吸器应装有合格的吸附剂,且呼吸畅通; (9)分接开关的位置应三相一致,符合运行要求;远方位置指示应正确; (10)变压器的相位及绕组的接线组别应符合并列运行的要求; (11)气体继电器、压力释放阀、油位计、温度计及套管型电流互感等的测量、保护、控制及信号回路接线应正确;测温装置指示应正确,整定值符合要求; (12)冷却装置试运行正常,控制系统正确可靠,风扇及油泵电机转向正确,无异常噪声、振动和过热现象;变压器投入试运行前,应起动全部冷却装置,进行循环4h以上,放完残留空气; (13)变压器的全部电气试验应合格;保护装置齐全并经传动试验正确。 2 变压器运行中的检查 (1)检查变压器上层油温是否超过允许范围。由于每台变压器负荷大小、冷却条件及季节不同,运行中的变压器不能以上层油温不超过允许值为依据,还应根据以往运行经验及在上述情况下与上次的油温比较。如油温突然增高,则应检查冷却装置是否正常,油循环是否破坏等,来判断变压器内部是否有故障。 (2)检查油质,应为透明、微带黄色,由此可判断油质的好坏。油面应符合周围温度的标准线,如油面过低应检查变压器是否漏油等。油面过高应检查冷却装置的使用情况,冷却器投入数量是否与变压器负荷及环境温度相符,是否有内部故障。 (3)变压器的声音应正常。正常运行时一般有均匀的嗡嗡电磁声。如声音有所改变,应细心检查,并迅速汇报值班调度员并报检修单位处理。 (4)应检查套管是否清洁,有无裂纹和放电痕迹,冷却装置应正常。工作、备用电源及油泵应符合运行要求等等。 (5)瓦斯继电器内应无气体、无渗漏油,呼吸器干燥剂是否实效,有载调压装置室内外位置是否一致,接地是否良好。 (6)强油风冷系统油泵、风机是否有过大振动及异常响声,油流继电器是否正常,控制箱内的接头应无发热,灯光指示良好。(7)天气有变化时,应重点进行特殊检查。大风时,检查引线有无剧烈摆动,变压器顶盖、套管引线处应无杂物;大雪天,各部触点在落雪后,不应立即熔化或有放电现象;大雾天,各部有无火花放电现象等等。 3 变压器运行中的不正常状态 (1)由外部故障引起的过电流。 (2)由外部负荷引起的过负荷。 (3)中性点直接接地电网中,外部接地短路引起的过电流和中性点过电压。 (4)冷却系统故障,使变压器油温升高。 (5)变压器油位升高或降低。 4 变压器的常见故障 变压器在运行中常见的故障可分为内部故障和外部故障。 4.1 内部故障 内部故障是指变压器油箱里面发生的故障,一般有以下两类: (1)在变压器各绕组上发生的相间短路、匝间短路、单相接地短路等电气故障,这类故障对变压器及电网可能造成较大的损伤及影响。 (2)电气连接接触不良或铁芯故障、分解开关故障等,引起变压器油温升高、绕组过热。以上故障应及时处理,否则可能会引起更为严重的单相接地或相间短路等故障,扩大事故范围。 4.2 外部故障 外部故障是变压器最常见的故障,是油箱外部绝缘套管及引出线上的相间短路和单相接地短路。 5 变压器的事故处理 为了正确的处理事故,应掌握下列情况:①系统运行方式,负荷状态,负荷种类;②变压器上层油温,温升与电压情况;③事故发生

变压器常见故障分析

电力变压器状态监测与故障诊断 内容摘要; 电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。在运行中,配电变压器经常发生故障。本文简要介绍了电力变压器的分类和结构组成,并针对配电变压器故障率高这一实际情况,着重分析了配电变压器常见的故障和异常现象及主要原因,分析了这些故障对变压器的危害及针对这些故障进行了分析,对消除故障的方法进行了归纳总结,同时提出了一些具体的防范解决措施,为防止和减少配电变压故障的发生。 特别介绍我在工作中遇到的一些变压器故障(局部放电)进行的探索及通过一些方法进行认证的过程。 关键词:变压器、故障诊断、故障处理、局部放电

目录 内容摘要 ............................................................ I 引言 (1) 1 电力变压器简要介绍 (2) 1.1 电力变压器的分类 (2) 1.2 电力变压器的主体结构 (2) 1.2.1 油浸电力变压器 (2) 1.2.2 干式变压器 (3) 2 电力变压器常见的故障类型及故障产生原因 (4) 2.1 变压器发生故障的原因 (4) 2.1.1 制造工艺存在缺陷 (4) 2.1.2 、缺乏良好的管理及维护 (5) 2.1.3 、绝缘老化 (5) 2.2 变压器故障按严酷程度分类 (5) 2.3 变压器故障按部位分类分析 (5) 2.3.1 、绕组故障分析 (5) 2.3.2 、铁心故障分析 (6) 2.3.3 、分接开关故障分析 (6) 2.3.4 、引线故障分析 (7) 2.3.5 、套管故障分析 (7) 2.3.6 、绝缘故障分析 (7) 2.3.7 、密封不良 (8) 2.4 从变压器的异常声音判断故障 (8) 2.5 变压器温度异常导致原因 (9) 2.6 喷油爆炸导致原因 (10) 2.7 油位显著下降及严重漏油导致原因 (10) 2.8 油色异常,有焦臭味导致原因 (10) 3 变压器中的局部放电的预防及局部放电产生后处理 (11) 4 结论 (16) 参考文献: (17)

变压器常见事故的处理

变压器的事故处理 一、变压器常见的故障部位 1、绕组的主绝缘和匝间绝缘故障 变压器绕组的主绝缘和匝间绝缘是容易发生故障的部位.其主要原因是:由于长期过负荷运行,或散热条件差,或使用年限长,使变压器绕组绝缘老化脆裂,抗电强度大大降低;变压器多次受短路冲击,使绕组受力变形,隐藏着绝缘缺陷,一旦遇有电压波动就有可能将绝缘击穿;在高压绕组加强段处或低压绕组部位,因统包绝缘膨胀,使油道阻塞,影响散热,使绕组绝缘由于过热而老化,发生击穿短路;由于防雷设施不完善,在大气过电压作用下,发生绝缘击穿. 2、引线绝缘故障 变压器引线通过变压器套管内腔引出与外部电路相连,引线是靠套管支撑和 绝缘的.由于套管上端帽罩(将军帽)封闭不严而进水,引线主绝缘受潮而击穿,或变压器严重缺油使油箱内引线暴露在空气中,造成内部闪络,都会在引线处发生故障. 3、铁芯绝缘故障 变压器铁芯由硅钢片叠装而成,硅钢片之间有绝缘漆膜.由于硅钢片紧固不好,使漆膜破坏产生涡流而发生局部过热.同理,夹紧铁芯的穿芯螺丝、压铁等部件,若绝缘破坏,也会发生过热现象.此外,若变压器内残留有铁屑或焊渣,使铁芯两点或多点接地,都会造成铁芯故障. 4、变压器套管闪络和爆炸

变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹;电容芯子制造上有缺陷,内部有游离放电;套管密封不好,有漏油现象;套管积垢严重,都可能发生闪络和爆炸. 5、分接开关故障 变压器分接开关是变压器常见故障部位之一.分接开关分无载调压和有载调压两种,常见故障的原因是: 无载分接开关 由于长时间靠压力接触,会出现弹簧压力不足,滚轮压力不均,使分接开关连接部分的有效接触面积减小,以及连接处接触部分镀银层磨损脱落,引起分接开关在运行中发热损坏;分接开关接触不良,引出线连接和焊接不良,经受不住短路电流的冲击而造成分接开关被短路电流烧坏而发生故障;由于管理不善,调乱了分接头或工作大意造成分接开关事故 有载分接开关 带有载分接开关的变压器,分接开关的油箱与变压器油箱一般是互不相通的.若分接开关油箱发生严重缺油,则分接开关在切换中会发生短路故障,使分接开关烧坏.为此,在运行中应分别监视两油箱油位应正常;分接开关机构故障有:由于卡塞,使分接开关停在过程位置上,造成分接开关烧坏;分接开关油箱密封不严而渗水漏油,多年不进行油的检查化验,致使油脏污,绝缘强度大大下降,以致造成故障;分接开关切换机构调整不好,触头烧毛,严重时部分熔化,进而发生电弧引起故障. 二、重瓦斯保护动作的处理 运行中的变压器,由于变压器内部发生故障或继电保护装置及二次回路故障,引起重瓦斯保护动作,使断路器跳闸.重瓦斯保护动作跳闸时,中央事故音响发出

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

配电变压器常见故障分析

何金奎 (中铝山西分公司氧化铝一分厂,山西河津043300) 摘要:本文介绍了配电变压器常见的一些故障,并提出了相应的判断方法,为准确判定变压器常见故障提供了一定的借鉴。 关键词:变压器;故障判断; 响声;油温 配电变压器是电力设备的主体设备,关系到电网安全经济运行。随着系统容量的增大和电网规模的扩大,配电变压器故障给电网安全经济运行带来的影响越来越大;系统的稳定和经济运行也对变压器提出了越来越高的要求。因此,对配电变压器进行在线检测,及时掌握设备的状态,一直是电力工作者的梦想和追求。变压器的状态检测,就是通过对有关参数、信号的采集和分析,生产主管部门立即组织人员进行综合分析,诊断设备的状态,减少损失, 避免恶性事故的发生, 将传统的定期维护转为状态维护,从而提高电网的安全经济运行,改善对用户的服务质量。对变压器常见在线故障现象可通过以下几方面判断分析,进而采取相应的措施。 1 从变压器的声音判断故障 其方法是用木棒的一端顶在变压器的油箱上,另一端贴近耳边仔细听声音,据其异常声音可判断以下故障: (1)变压器过负荷:变压器过负荷严重时,会发出很高而且沉重的“嗡嗡”声。 (2)电压过高:当电源电压过高时,会使变压器过励磁,响声增大且尖锐。 (3)绕组发上短路:音响中夹有水的沸腾声,发出"咕噜、咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。此时,应立即停止变压器运行,进行检修。 (4)调压分接开关不到位或接触不良:当变压器投入运行时,分接开关不

到位,将发出较大的“啾啾”响声,严重时造成高压熔丝熔断;如果分接开关接触不良,就会产生轻微的“吱吱”火化放电声,一旦负荷加大,就有可能烧坏分接开关的触头。遇到这种情况,要及时停电修理。 (5)掉入异物和穿芯螺杆松动:当变压器夹紧铁心的穿芯螺杆松动,铁心上遗留有螺帽零件或变压器中掉入小金属物件时,变压器将发出“叮叮当当”的敲击声或“呼…呼…”的吹风声以及“吱啦、吱啦”的象磁铁吸动小垫片的响声,而变压器的电压、电流和温度却正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (6)变压器的铁心接地线断:当变压器的铁心接地断线时,变压器将产生“哗剥哗剥”的轻微放电声。 (7)内部放电:送电时听到“噼啪噼啪”的清脆及铁声,则是导电引线通过空气对变压器外壳的放电声;如果听到通过液体沉闷的“噼啪”声,则是导体通过变压器的油面对外壳的放电声。如属绝缘距离不够,则应停电吊心检查,加强绝缘或增设绝缘隔板。 (8)变压器高压套管脏污或裂损:当变压器的高压套管脏污,表面釉质脱落或裂损时,会发生表面闪络,听到“嘶嘶”或“哧哧”的响声,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。 (9)外部线路断线或短路:当线路在导线的连接处或T接处发生断线,在刮风时时接时断,接触时发生弧光或火花,这时变压器就发出像青蛙的“唧哇、唧哇”的叫声;当低压线路发生接地或出现短路事故时,变压器就发出“轰轰”的声音;如果短路点较近,变压器将发出像老虎的吼叫声。 (10)声响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

相关文档