文档库 最新最全的文档下载
当前位置:文档库 › 伽马函数在概率统计中的应用

伽马函数在概率统计中的应用

伽马函数在概率统计中的应用
伽马函数在概率统计中的应用

韩山师范学院

学生毕业论文

( 2011届)

题目(中文)伽马函数在概率统计中的应用(英文)The Application of the Γ–Function in the

Probability 系别:数学与信息技术系

专业:数学与应用数学班级: 20071112 姓名:史泽龙学号: 2007111205 指导教师:屈海东讲师

韩山师范学院教务处制

诚信声明

我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。

毕业论文作者签名:签名日期:年月日

摘要: 本文阐述了Γ函数的定义及其特殊性质, 并就如何利用Γ函数的特定性质解决概率应用中的一些特定问题进行了探讨和分析. 分析说明: 应用Γ函数收敛的性质, 可间接求解概率积分值; 利用Γ函数表示分布的密度;可表征F分布的密度函数. 这些分析及其结论对于函数的具体应用, 对于求解概率论中的一些具体实用问题具有重要的参考价值.

关键词: Γ函数; 收敛性; 概率积分; 密度函数

Abstract: Expounds the definition of Γ function and its special properties, and how to use the specific nature solution Γ function in some specific questions the probability application is discussed and analyzed. Γ function analysis and explanation: application of nature, but indirect convergent solution probability integral value; Use the density of Γ function says distribution; F distribution can be characterized the density function analysis and conclusions. These specific application for function for solving some of the specific practical problems probability has important reference value.

Keywords:Gamma function;Convergence; Probability integral;Density function

目录

1. Γ函数的定义及主要性质 (1)

1.1 Γ函数的定义 (1)

1.2 Γ函数的主要性质 (2)

1.3 Γ函数的递推公式 (2)

2. Γ函数在概率问题中的应用 (3)

2.1 利用Γ函数间接求出概率积分 (3)

2.2 利用Γ函数表示分布的密度 (4)

2.3 利用Γ函数求F分布的密度函数 (5)

3 结语 (6)

参考文献 (7)

致谢 (8)

伽马函数在概率统计中的应用

在高等数学及概率统计中,经常会看到伽玛函数这个熟悉的名字,但是关于这个函数性质及详细的应用却很少提及,然而这个函数在积分运算中经常起到意想不到的简便效果.也有一些文献讨论它在积分运算和概率统计中的应用,但是篇幅太少,并没有详细的介绍.本文将对这两个函数在概率统计中的应用给出详细的介绍并推导出一些有用的结论.

Γ函数是由世界著名数学家欧拉(1729 年)最先用含参变量的广义积分定义的特殊函数.它作为一种超越函数具备了丰富和优美的特征,在数字的许多分支中都起着重要作用.

概率论及其应用中,计算连续型随机变量的数字特征是一个重要内容,而它最终往往归结为积分的计算..而积分特别是多次分部积分对高等数学学时较少的学生来说是难点,也易产生计算错误..利用Γ函数的特殊性质有效简便地求解概率论中所涉及的具体且复杂的积分表征形式以及函数分布求解、数字特征求解等数学问题,可以避免多次分部积分,大大简化了此类问题的计算.

1 Γ函数的定义及主要性质

本节主要讲述了Γ函数的推导以及其公式,还讲述了一些Γ函数的主要性质以及由Γ函数所推导出来的一些公式,为论文讲述Γ函数在概率统计中的运用打好基础.

1.1 Γ函数的定义[1]

我们回想一下在微积分课程中的一个(广义)积分

()()

1

0log 1!n

n

x dx n =-? (1)

(通过分部积分),因而有欧拉表示式

1

01log !n

dx n x ??= ??

?? (2) 在等式(2)中做变量代换1log t x

= ()t

x e -=,那么就得到

!t n e t dt n ∞

-=?

(3)

由此,我们定义Γ函数

()10

t z z e t dt ∞

--Γ=?,0z > (4)

我们把定义式(4)称为Γ函数的勒让德表示式.

1.2 Γ函数的主要性质[1]

显然Γ函数是因为求解一个特殊的常微分方程而引出的,但是人们发现它的意义远不止于此,它有着更加重要的意义.

接着我们来考虑Γ函数的收敛问题: 如果把(4)中的z 写成z x iy =+,那么(4)中的

()()1111cos log sin log z x iy x iy x t t t t t y t i y t -+---===+????.

另一方面,当0x >时,广义积分

10

t x e t dt ∞

--?

是收敛的:当[]0,1t ∈中时,110t x x e t t ---≤≤,所以

1

11

1

001100t x x x e t dt t dt t x ---≤≤=??1

x

=,

而当t 充分大时,1

21

t x e t t

--<

,所以11t x e t dt ∞--?是收敛的. 由此,我们可以得出定理:当()Re 0z >时,广义积分

10

t z e t dt ∞

--?

是收敛的.

1.3 Γ函数的递推公式[2]

我们首先来建立Γ函数关于平移的函数方程 由Γ函数,对正实数x ,用分部积分:

()()()()

10

10t x t x

t x x e t dx

e t

e xt dt x x ∞

-∞

---Γ+=∞

=---=Γ??

则我们可以得出定理: 当()Re 0z >时,

()()1z z z Γ+=Γ.

下面我们来推导一个Γ函数非常重要的一个结论:

()11

1x n x n

n e x

dx e x dx

-+--Γ+==??

我们用分部积分法来计算这个积分:

10

n

x n

x n x x e x dx n e x dx

e ∞

∞---∞??-=+?????

?

当0x =时, 000

01

n e -==.当x 趋于无穷大时,根据洛必达法则,有:

!0

lim lim 0n x x x x x n e e

→∞→∞--?==. 因此第一项0

n x x e ∞

??-????变成了零,所以:

()1

1n x x n n dx e

-∞

Γ+=?

等式的右面正好是()n n Γ.因此,递推公式为:

()()1n n n Γ+=Γ.

由此,我们可以得出结论:

对于任何正整数n 都有()1!n n Γ+=

2 Γ函数在概率问题中的应用

本节主要讲述了我们在概率运用中所遇到的一些比较复杂的问题,以及如何利用Γ函数的特殊性质有效简便地求解概率论中所涉及的具体且复杂的积分表征形式以及函数分布求解、数字特征求解等数学问题,可以避免多次分部积分,大大简化了此类问题的计算.

2.1 利用Γ函数间接求出概率积分

正态分布是概率统计中的重要分布之一.概率积分是标准正态分布概率密度函数的广义积分.[2]

但它的计算或推导是在高等数学的微积分中完成的,推导比较复杂.利用Γ函数可使推导简便有效.

先求12??

Γ

???

的值,在β函数 ()()

()1

1

1

,10,0n m B m n x

x dx m n --=->>?中,取12

m n ==

,则 ()()

1

1

22

1112

12

0112

4

2

1

11,1arcsin 022dx

x B x x dx x π

-??=-==-= ???--??

又由Γ函数与β函数之间的关系,有

()()()2

112

2

111,2212B ΓΓ??

????=

=Γ ? ???Γ??

????

故12π??Γ= ???

又在2

x e dx ∞-?中,令2x u =则

12

20

01112222

x u e

dx e u du π∞

∞--??==Γ=

????

?

2.2 利用Γ函数表示分布的密度

设()~0,1X N ,又12,,n x x x 设x 为的一个样本,它们的平方和记作2x ,即

222212n x x x x =+++ ,称为2x 服从参数为n 的分布,记为()22~x x n .

()2x n 分布的概率密度可由Γ函数表示

()()

2

2

12210200

y

n e n n y y f y y -?≥?Γ=??

现推导此式.设()~0,1z N ,则()22

~1Y x x =概率密度为:

()12210200

y y y y e y f y π

--?>?

=??≤?

再由2x 分布的可加性知()22

~x x

n ,即服从自由度为n 的2x 分布,因为卡方分布是伽玛

分布的特例,即()21,22n x n Ga ????= ? ????

?.根据伽马分布的可加性

2

11~,22x Ga ?? ???,得 ()2

22110220y n

n

y e y n f y --?>????Γ= ?

??????

其他 2.3 利用Γ函数求F 分布的密度函数

设12,x x 是两个独立的2

x 变量,其自由度分别是,m n ,则称的12x m

F x n

=联合密度是

()2

221122,122m m m n m n m m n f x x y y

m n n +--+????Γ ?????????=+ ???????ΓΓ ? ?

????

,现推导方差比12x m F x n =的分布律. 因为12,x x 分别服从()2

x

m 和()2x n 的分布,其密度函数为()1p x 和()2p x ,根据独立随

机变量商的分布的密度函数公式1

2

x z x =

的密度函数为: ()()()()

2

2

2

22

1112122222

2

222m m n

x m n

Z Z z Z

p x p x p x dx x e

dx m n ++-+∞

+∞

--+==

????ΓΓ ? ?????

?

?

.

应用变换()2

12

x u Z =

=,可得 ()()

2

2

2

110

122m n

m m n

u Z z Z

z p u

e du m n ++--+∞

--+=

????ΓΓ ? ?????

?

最后的定积分为伽马函数2m n +??

Γ ???

,从而

()()22

121,022m n m Z z m n

p Z z z m n +--+Γ

=+>????ΓΓ ? ?????

接着来算n

F z m

=

的密度函数,对0y >,有 ()F z m m p y p y n n ??=?= ???2

212122m m n m n m m m y y m n n n n +--+??Γ ?????

???+? ? ?????????ΓΓ ? ?????

2

2

212122m

m n

m m n m m n y

y m n n +--+????

Γ ???

???

???=?+ ?

?????

?ΓΓ ? ?????

.

即为自由度为()n

F z m n m

=≠的分布律.

3 结语

从以上实例中可以看出,Γ函数简单易学.如能灵活掌握函数的定义和特有性质,可以有效求解概率论中的复杂分布求解、密度函数求解、求解概率积分和数字特征等数学问题,而且可使计算过程大大简化,是一种有效的求解概率论中具体问题的数学方法.并可为相关问题提供求解的方法和参考.有关Γ函数在其他问题中的应用也正在继续探讨之中.

,

参考文献

[1]谭琳. Γ函数札记[M].杭州:浙江大学出版社.1997.

[2]胡淑荣. Γ函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12-15.

[3]魏宗舒等. 概率论与数理统计教程[M]. 北京: 高等教育出版社. 2008.

[4](美)M.R 斯皮格尔J.希勒R.A.斯里尼瓦桑.孙山泽,戴中维译.概率与统计[M].

北京: 科学出版社.2002.

[5]赵树媛.微积分[M].北京:中国人民大学出版社.2000.

[6]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社.2002.

[7]赵兴杰.高等代数教学研究[M].西南师范大学出版社,2006:23-35.

致谢

转眼间,到了大学即将毕业的时节,时光虽匆匆,但美好往事仍历历在目.作为一名韩山师范学院的学子,我感到特别的荣幸,老师们严谨的治学态度是我学习的好榜样,我也学到了许多知识,感谢母校四年来的栽培.在这里我还要特别感谢屈海东老师,本文从选题到完成开题报告,从中期质量检查报告到论文的顺利完成,都离不开老师您的帮助,您给我提出这些宝贵的意见,使我的论文得以顺利完成.值此论文完成之际,谨向屈海东老师表示我崇高的敬意和衷心的感谢,同时我还要感谢在我学习期间给我极大关心和支持的各位老师以及关心我的同学和朋友,谢谢你们!

史泽龙

2011年3月31日

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422 ====≥=====≥=≥)(故从而解得)所以() (而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

Matlab 概率论与数理统计

Matlab 概率论与数理统计一、matlab基本操作 1.画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin(x); plot(x,y,'-r'); x1=0:0.1:pi/2; y1=sin(x1); hold on; fill([x1, pi/2],[y1,1/2],'b'); 【例01.02】填充,二维均匀随机数 hold off; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv,'b'); hold on; plot(x,y0,'r',y0,x,'r',x,y60,'r',y60,x,'r'); plot(x1,y1,'r',x2,y2,'r'); yr=unifrnd (0,60,2,100); plot(yr(1,:),yr(2,:),'m.') axis('on'); axis('square'); axis([-20 80 -20 80 ]);

2. 排列组合 C=nchoosek(n,k):k n C C =,例nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从n1到n2的连乘 【例01.03】至少有两个人生日相同的概率 公式计算n n n n N N n N N N N n N N N C n p )1()1(1)! (! 1!1+--?-=--=- = 365364 (3651)365364 3651 11365365365365 rs rs rs ?-+-+=- =-? rs=[20,25,30,35,40,45,50]; %每班的人数 p1=ones(1,length(rs)); p2=ones(1,length(rs)); % 用连乘公式计算 for i=1:length(rs) p1(i)=prod(365-rs(i)+1:365)/365^rs(i); end % 用公式计算(改进) for i=1:length(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end % 用公式计算(取对数) for i=1:length(rs)

《应用概率统计》张国权编课后答案详解习题一解答

习 题 一 解 答 1. 设A、B、C表示三个随机事件,试将下列事件用A、B、C及其运算符号表示出来: (1) A发生,B、C不发生; (2) A、B不都发生,C发生; (3) A、B中至少有一个事件发生,但C不发生; (4) 三个事件中至少有两个事件发生; (5) 三个事件中最多有两个事件发生; (6) 三个事件中只有一个事件发生. 解:(1)C B A (2)C AB (3)()C B A ? (4)BC A C AB ABC ?? (5)ABC (6)C B A C B A C B A ?? ――――――――――――――――――――――――――――――――――――――― 2. 袋中有15只白球 5 只黑球,从中有放回地抽取四次,每次一只.设Ai 表示“第i 次取到白球”(i =1,2,3,4 ),B表示“至少有 3 次取到白球”. 试用文字叙述下列事件: (1) 41 ==i i A A , (2) A ,(3) B , (4) 32A A . 解:(1)至少有一次取得白球 (2)没有一次取得白球 (3)最多有2次取得白球 (4)第2次和第3次至少有一次取得白球 ――――――――――――――――――――――――――――――――――――――― 3. 设A、B为随机事件,说明以下式子中A、B之间的关系. (1) A B=A (2)AB=A 解:(1)A B ? (2)A B ? ――――――――――――――――――――――――――――――――――――――― 4. 设A表示粮食产量不超过500公斤,B表示产量为200-400公斤 ,C表示产量低于300公斤,D表示产量为250-500公斤,用区间表示下列事 件: (1) AB , (2) BC ,(3) C B ,(4)C D B )( ,(5)C B A . 解:(1)[]450,200; (2)[]300,200 (3)[]450,0 (4)[]300,200 (5)[]200,0 ――――――――――――――――――――――――――――――――――――――― 5. 在图书馆中任选一本书,设事件A表示“数学书”,B表示“中文版”, C表示“ 1970 年后出版”.问: (1) ABC表示什么事件? (2) 在什么条件下,有ABC=A成立? (3) C ?B表示什么意思? (4) 如果A =B,说明什么问题? 解:(1)选了一本1970年或以前出版的中文版数学书 (2)图书馆的数学书都是1970年后出版的中文书 (3)表示1970年或以前出版的书都是中文版的书 (4)说明所有的非数学书都是中文版的,而且所有的中文版的书都不是数学书 ――――――――――――――――――――――――――――――――――――――― 6. 互斥事件与对立事件有什么区别?试比较下列事件间的关系. (1) X < 20 与X ≥ 20 ; (2) X > 20与X < 18 ;

第9章概率论与数理统计的MATLAB实现讲稿汇总

第9章 概率论与数理统计的MATLAB 实现 MATLAB 总包提供了一些进行数据统计分析的函数,但不完整。利用MATLAB 统计工具箱,可以进行概率和数理统计分析,以及进行比较复杂的多元统计分析。 9.1 随机变量及其分布 利用统计工具箱提供的函数,可以比较方便地计算随机变量的分布列(或密度函数)和分布函数。 9.1.1 常见离散型随机变量的分布列的计算 如果随机变量全部可能取到的不相同的值是有限个或可列无限多个,则称为离散型随机变量。 MATLAB 提供的计算常见离散型随机变量分布列的函数及调用格式: 函数调用格式(对应的分布) 分布列 y=binopdf(x,n,p)(二项分布) )() 1(),|(),,1,0(x I p p C p n x f n x n x x n --= y=geopdf(x,p)(几何分布) x p p p x f )1()|(-= ),1,0( =x y=hygepdf(x,M,K,n)(超几何分布) n M x n k M x K C C C n K M x f --=),,|( y=poisspdf(x,lambda)(泊松分布) λ λλ-=e x x f x ! )|(),1,0( =x y=unidpdf(x,n)(离散均匀分布) N N x f 1)|(= 9.1.2 常见连续型随机变量的密度函数计算 对于随机变量X 的分布函数)(x F ,如果存在非负函数)(x f ,使对于任意实数x 有 ? ∞ -=x dt t f x F )()( 则称X 为连续型随机变量,其中函数)(x f 称为X 的密度函数。 MA TLAB 提供的计算常见连续型随机变量分布密度函数的函数及调用格

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体X ~ N(12,4), X^XzJII’X n 为简单随机样本,求样本均值与总体均值之 差的绝对 值大于1的概率. X 解:由于 X ~ N(12,4),故 X 一 ~ N(0,1) /V n 1 ( 2 0.8686 1) 0.2628 10 7.3 设总体X ?N(0,0.09),从中抽取n 10的简单随机样本,求P X : 1.44 i 1 X i 0 X i 0 X i ~N(0,°.09),故亠-X0r~N(0,1) X 所以 ~ N(0,1),故U n P{ X 1} 1 P{ X 1} 解: 由于X ~ N (0,0.09),所以 10 所以 X i 2 2 是)?(10) 所以 10 10 X : 1.44 P i 1 i 1 X i 2 (倉 1.44 P 0.09 2 16 0.1 7.4 设总体 X ~ N( , 2), X 1,X 2,|||,X n 为简单随机样本 2 ,X 为样本均值,S 为样 本方差,问U n X 2 服从什么分布? 解: (X_)2 2 ( n )2 X __ /V n ,由于 X ~ N( , 2), 2 ~ 2(1)。 1 —n

7.6 设总体X ~ N( , 2), Y?N( , 2)且相互独立,从X,Y中分别抽取 m 10, n215的简单随机样本,它们的样本方差分别为S2,M,求P(S2 4S ; 0)。 解: S2 P(S24S2 0) P(S24S;) P 12 4 由于X ~ N( , 2), Y~ N( , 2)且相互独立S2 所以S12~ F(10 1,15 1),又由于F°oi(9,14) 4.03 S2 即P F 4 0.01

应用概率统计试卷

062应用数学 一、 填空题(每小题2分,共2?6=12分) 1、设服从0—1分布的一维离散型随机 变量X 的分布律是:011X P p p -, 若X 的方差是1 4,则P =________。 2、设一维连续型随机变量X 服从正态分布()2,0.2N ,则随机变量21Y X =+ 的概率密度函数为______________。 3、设二维离散型随机变量X 、Y 的联合分布律为:则a , b 满足条件:___________________。 X Y 11 2 3 1115 6 9

4、设总体X 服从正态分布()2 ,N μσ , 12,,...,n X X X 是它的一个样本,则样本均 值X 的方差是________。 5、假设正态总体的方差未知,对总体均值 μ 作区间估计。现抽取了一个容量 为n 的样本,以X 表示样本均值,S 表示样本均方差,则μ 的置信度为1-α 的置信区间为:_______________________。 6、求随机变量Y 与X 的线性回归方程 Y a b X =+ ,在计算公式 xy xx a y b x L b L ?=-? ?=?? 中,() 2 1 n xx i i L x x == -∑,xy L = 。

二、单项选择题(每小题2分,共2?6=12分) 1、设A ,B 是两个随机事件,则必有( ) ()()()()()()()()A P A B P A P B B P A B P A P A B -=--=- ()()()() ()()()()()C P A B P A P B D P A B P A P A P B -=-=- 2、设A ,B 是两个随机事件, ()()() 524,,556 P A P B P B A === ,( ) () ()()1 1()()()232 12 ()()3 25 A P A B B P AB C P AB D P AB === = 3、设X ,Y 为相互独立的两个随机变量,则下列不正确的结论是( )

概率论复习题

函授概率论与数理统计复习题 一、填空题 1、已知P(A)=P(B)=P(C)=25.0,P(AC)=0,P(AB)=P(BC)=15.0,则A 、B 、C 中至少有一个发生的概率为 0.45 。 2、A 、B 互斥且A=B ,则P(A)= 0 。 3.把9本书任意地放在书架上,其中指定3 本书放在一起的概率为 1 12 4. 已知()0.6P A =,()0.8P B =,则()P AB 的最大值为0.6 ,最小值为0.4。 5、设某试验成功的概率为0.5,现独立地进行该试验3次,则至少有一次成功的 概率为 0.875 6、 已知()0.6P A =,()0.8P B =,则()P AB 的最大值为 0.6 。 ,最小值为 0.4 。 7、设A 、B 为二事件,P(A)=0.8,P(B)=0.7,P(A ∣B )=0.6,则P(A ∪B)= 0.88 。 8、设X 、Y 相互独立,X ~)3,0(U ,Y 的概率密度为 ???? ?>=-其它,00 ,41)(41x e x f x ,则(253)E X Y -+= -14 ,(234)D X Y -+= 147 。 9.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ?B ) = ____0.5___; 若 A 与 B 相互独立, 则 P (A ?B ) = ___0.58______. 10.已知()0.5,()0.6,()0.2P A P B P A B ===,则()P AB = 0.3 11.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ____2/5_______.

应用概率统计期末复习题及答案

第七章课后习题答案 7.2 设总体12~(12,4),,,,n X N X X X L 为简单随机样本,求样本均值与总体均值之 差的绝对值大于1的概率. 解:由于~(12,4)X N , ~(0,1)X N {1}1{1}1P X P X P μμ?->=--≤=-≤ 112(11(20.86861)0.262822P ??=-≤=-Φ-=-?-=?????? 7.3 设总体~(0,0.09),X N 从中抽取10n =的简单随机样本,求1021 1.44i i P X =?? >???? ∑. 解:由于~(0,0.09),X N 所以~(0,0.09),i X N 故 ~(0,1)0.3 i i X X N σ --= 所以 10 2 21 ( )~(10)0.3 i i X χ=∑ 所以{}1010222 11 1.441.44()160.10.3 0.09i i i i X P X P P χ==????>=>=>=????????∑∑ 7.4 设总体2 ~(,),X N μσ12,,,n X X X L 为简单随机样本, X 为样本均值,2 S 为样 本方差,问2 X U n μσ?? -= ??? 服从什么分布? 解: 2 2 2 X X X U n μσ????-=== ???,由于2 ~(,)X N μσ, ~(0,1)N ,故2 2 ~(1)X U χ??=。

7.6 设总体2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立,从,X Y 中分别抽取1210,15n n ==的简单随机样本,它们的样本方差分别为22 12,S S ,求2212(40)P S S ->。 解: 22 22211 2 1 2 22(40)(4)4S P S S P S S P S ?? ->=>=> ??? 由于2 ~(,),X N μσ2 ~(,)Y N μσ且相互独立 所以2 122 ~(101,151)S F S --,又由于0.01(9,14) 4.03F = 即()40.01P F >=

2015春《应用概率统计》试卷A

浙江农林大学 2014 - 2015 学年第 二 学期考试卷(A 卷) 课程名称 概率论与数理统计(A )课程类别:必修 考试方式:闭卷 注意事项:1、本试卷满分100分.2、考试时间 120分钟. 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

一、选择题(每小题3分,共24分) 1.随机事件A 或B 发生时,C 一定发生,则C B A ,,的关系是( ) . A. C B A ?? B.C B A ?? C.C AB ? D.C AB ? 2.()()4, 1, 0.5XY D X D Y ρ===,则(329999)D X Y -+=( ). A .28 B .34 C .25.6 D .16 3.对于任意两个随机变量X 和Y ,若()()()D X Y D X D Y -=+,则有( ). A .()()()D XY D X D Y = B .()()()E XY E X E Y = C .X 和Y 独立 D .X 和Y 不独立 4. 设随机变量X 的概率密度为()2 21 x x p x -+-= ,则()D X =( ). A B . 2 C . 1 2 D .2 5. 设)(),(21x f x f 都是密度函数,为使)()(21x bf x af +也是密度函数,则常数b a ,满足( ). A. 1=+b a B. 0,0,1≥≥=+b a b a C. 0,0>>b a D. b a ,为任意实数 6.在假设检验中,当样本容量确定时,若减小了犯第二类错误的概率,则犯第一类错误的概率会( ). A. 不变. B. 不确定. C. 变小. D. 变大. 7. 设321,,X X X 4X 来自总体),(2 σμN 的样本,则μ的最有效估计量是 ( ) A . )(31 321X X X ++ B . )(4 1 4321X X X X +++ C . )(2143X X + D .)(5 1 4321X X X X +++

matlab在概率统计中的应用实例

关于全国受旱灾土地总面积的数理分析 提出问题:下表是从1990年至2010年全国因干旱而受灾的土地总面积(单位:千公顷)数。(数据来源于全国统计局官网) 试解决一下问题: (1)计算所给样本的均值与标准差; (2)检验在显著水平为0.05的情况下,全国每年因干旱而受灾的土地总面积是否服从正态分布? (3)如果服从正态分布,用极大似然估计法对未知参数μ和σ作出估计; (4)若年受旱灾总面积大于35000千公顷即为重灾年,根据估计出的μ值和σ值,计算当年为重灾年的概率。 分析问题:这是一个样本均值和标准差的计算以及正态性检验和计算的一系列问题。对于此类问题可以应用数学软件MATLAB进行处理,应用MATLAB可以很容易的计算出均值及标准差,此外,采用Jarque-Beran检验即可知道其是否服从正态分布,并估计出总体的均值μ和标准差σ。 解决问题:下面计算样本的均值和标准差 MATLAB程序代码如下 clear

X=[18175 24917 32981 21097 30423 23455 20152 33516 14236 30156 40541 38472 22124 24852 17253 16028 20738 29386 12137 29259 13259]; [h,stats]=cdfplot(X) 运行程序后,输出如下 h =152.0022 stats = min: 12137 max: 40541 mean: 2.4436e+004 median: 23455 std: 8.1234e+003 从输出结果可看出,样本的最小值为12137,最大值为40541,

学应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ 一、填空题(本大题共6小题,每小题3分,共18分) 1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________. 2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为: ),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________. 4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________. 5. 设X 、Y 相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及 其参数). 6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分) 1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,0 2.0)(,01.0)(,0 3.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05 B. 0.06 C. 0.07 D. 0.08 2. 设A 、B 为两个随机事件,且B A ?,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P > C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ). A. 21 ,0()11,0x F x x x ?≤? =+??>? B. 0,0() 1.1, 011,1 x F x x x ? 1

(完整版)Matlab概率论与数理统计

Matlab 概率论与数理统计 、matlab 基本操作 1. 画图 【例01.01】简单画图 hold off; x=0:0.1:2*pi; y=sin (x); plot(x,y, '-r'); x1=0:0.1:pi/2; y1=s in( x1); hold on; fill([x1, pi/2],[y1,1/2], 'b'); 【例01.02】填充,二维均匀随机数 hold off ; x=[0,60];y0=[0,0];y60=[60,60]; x1=[0,30];y1=x1+30; x2=[30,60];y2=x2-30; plot(x,y0, 'r' ,y0,x, plot(x1,y1, 'r' ,x2,y2, yr=u nifrnd (0,60,2,100); plot(yr(1,:),yr(2,:), axis( 'on'); axis( 'square' ); axis([-20 80 -20 80 ]); xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0]; fill(xv,yv, 'b'); hold on ; 'r' ,x,y60, 'r' ,y60,x, 'r') 'r'); 'm.')

2. 排列组合 k C=nchoosek(n,k) : C C n ,例 nchoosek(5,2)=10, nchoosek(6,3)=20. prod(n1:n2):从 n1 至U n2 的连乘 【例01.03】至少有两个人生日相同的概率 365 364|||(365 rs 1) rs 365 365 364 365 rs 1 365 365 365 rs=[20,25,30,35,40,45,50]; %每班的人数 p1= on es(1,le ngth(rs)); p2=on es(1,le ngth(rs)); %用连乘公式计算 for i=1:le ngth(rs) p1(i)=prod(365-rs(i)+1:365)/365A rs(i); end %用公式计算(改进) for i=1:le ngth(rs) for k=365-rs(i)+1:365 p2(i)=p2(i)*(k/365); end ; end %用公式计算(取对数) for i=1:le ngth(rs) p1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365)); end 公式计算P 1 n!C N N n N! 1 (N n)! 1 N n N (N 1) (N n 1)

应用统计 概率 试卷解答1

《概率论》试卷解答 一. 填空题 1. 设某系统有4个独立工作的元件k A ,它们的可靠性为k p ,.4,3,2,1=k 系统中元件的连接方式如图,则系统的可靠性为)1()(4321214p p p p p p p --++. 解:由系统中元件的连接方式知,系统可靠的概率为 ]})[({3214A A A A P p =])([])[()(32143214A A A A P A A A P A P -+= )()()()()(32143214A P A A P A P A P A A P p -+= )()()](1[32144A P A A P A P p -+=3212144))(1(p p p p p p p -+-+= 2. 设A ,B 是随机事件,且知概率41)(= A B P ,8 5)(=A B P ,41 )(=AB P ,则=)(A P =)(B P )(B A A P 解:(1)41)(41 )() () ()()()()()()(=- =-=-== A P A P A P A B P A P A P AB A P A P B A P A B P ,解得3 1)(=A P . (2)853 1141 )()(1) ()()(1)() ()()(=- - =--=--==B P A P AB P B P A P AB B P A P B A P A B P ,解得32 )(=B P . AB A B A B A -=-= AB B A AB B A B B A -=-= 2 2,p A 11,p A 4 4,p A 3 3,p A

(3)) ()()() () ()()()() ()]([)(B A P B P A P B A P B A P B P A P B A A A P B A P B A A P B A A P -+= -+= = )()()()() ()(A B P A P B P A P A B P A P -+= 734 131)321(31)851)(311()()()](1[)()](1)][(1[= ?--+--=--+--=A B P A P B P A P A B P A P 3. 一只木箱中有a 只红球、b 只白球,每次有放回地从中任意抽取一球,记录球的颜色。第 5次取到的球恰是第3 解:由于是每次有放回地从中任意抽取一球,故每次取到白球的概率都是.b a b + 在这样的前4次抽取中取到的白球数)., 4(~b a b b X + 于是 .) (6)()()2(532222 4b a b a b a b b a a b a b C b a b X P +=+?++=+?= 4. 设随机变量 X ,Y ,Z 相互独立,且满足),3(~p b X , ) (~λπY ,Z 服从指数分布,分 布密度为? ????>=-其它,0 0,601 )(60z e z f z ,278)0(==X P , 33)1(-==e Y P ,则p =λ =+-)64(Y X E )6030(≤

工程数学 应用概率统计习题九答案

习题9答案 9.1 假定某厂生产一种钢索,其断裂强度5(10)X Pa 服从正态分布2(,40),N μ从中抽取容量为9的样本,测得断裂强度值为 793, 782, 795, 802, 797, 775, 768, 798, 809 据此样本值能否认为这批钢索的平均断裂强度为580010Pa ??(0.05α=) 解:00:800H μμ== 10:H μμ≠ 选取检验统计量~(0,1)Z N =, 对于0.05α=,得0H 的拒绝域2 1.96W z z α? ?=>=???? 计算得7918000.675 1.96403 z -==< 所以接受0H ,拒绝1H .即可以认为平均断裂强度为580010Pa ?. 9.3 某地区从1975年新生的女孩中随机抽取20个,测量体重,算得这20个女孩的平均体重为3160g ,样本标准差为300g ,而根据1975年以前的统计资料知,新生女孩的平均体重为3140g ,问1975年的新生女孩与以前的新生女孩比较,平均体重有无显著性的差异?假定新生女孩体重服从正态分布,给出0.05α=. 解:00:3140H μμ== 10:H μμ≠ 选取检验统计量~(1)T t n =-, 对于0.05α=,得0H 的拒绝域2 (19) 2.0930W T t α? ?=>=???? 计算得 0.298 2.0930T ===<

故接受0H ,拒绝1H .即体重无明显差异. 9.5 现要求一种元件的使用寿命不得低于1000h ,今从一批这种元件中随机的抽取25件,测定寿命,算得寿命的平均值为950h ,已知该种元件的寿命2~(,),X N μσ已知100σ=,试在检验水平0.05α=的条件下,确定这批元件是否合格? 解:00:1000H μμ≥= 10:H μμ< 选取检验统计量~(0,1)Z N =, 对于0.05α=,得0H 的拒绝域{}1.645W Z z α=<-=- 计算得 9501000 2.5 1.6451005 Z -==-<- 所以拒绝0H ,接受1H . 即认为这批元件不合格. 9.8 某厂生产的铜丝,要求其拉断力的方差不超过216()kg ,今从某日生产的铜丝中随机的抽取9根,测得其拉断力为(单位:kg ) 289 , 286 , 285 , 284 , 286 , 285 , 286 , 298 , 292 设拉断力总体服从正态分布,问该日生产的铜丝的拉断力的方差是否合乎标准?(0.05α=). 解: 2200:16H σσ≤= 2210:H σσ> 选取检验统计量2 2220(1)~(1)n S n χχσ-=- 对于0.05α=,得0H 的拒绝域{} 22(8)15.507W αχχ=>= 计算得 2 220(1)820.3610.1815.50716 n S χσ-?==≈< 所以接受0H , 拒绝1H ,即认为是合乎标准的。

电大应用概率统计试题资料

国家开放大学学习指南试题及参考答案 国家开放大学学习指南形考作业1 一、多选题(每题5分,共计10分) 1、请将你认为不适合描述为国家开放大学特色的选项选择出来。(B) 选择一项: A. 国家开放大学是一所在教与学的方式上有别与普通高校的新型大学 B. 国家开放大学是一所与普通高校学习方式完全相同的大学 C. 国家开放大学可以为学习者提供多终端数字化的学习资源 D. 国家开放大学是基于信息技术的特殊的大学 2、请将下列不适用于国家开放大学学习的方式选择出来。 选择一项或多项:(B) A. 利用pad、手机等设备随时随地学习 B. 只有在面对面教学的课堂上才能完成学习任务 C. 在网络上阅读和学习学习资源 D. 在课程平台上进行与老师与同学们的交流讨论 二、判断题(每题2分,共计10分) 3、制定时间计划,评估计划的执行情况,并根据需要实时地调整计划,是管理学习时间的有效策略。(对) 4、远程学习的方法和技能比传统的课堂学习简单,学习方法并不重要。(错) 5、在国家开放大学的学习中,有课程知识内容请教老师,可以通过发email、QQ群、课程论坛等方式来与老师联络。(对) 6、在网络环境下,同学之间、师生之间无法协作完成课程讨论。(错) 7、纸质教材、音像教材、课堂讲授的学习策略都是一样的。(错) 国家开放大学学习指南形考作业2

一、单选题(每题2分,共计10分) 1、开放大学学制特色是注册后(A)年内取得的学分均有效。选择一项: A. 8 B. 3 C. 10 D. 5 2、请问以下不是专业学位授予的必备条件?(A) 选择一项: A. 被评为优秀毕业生 B. 毕业论文成绩达到学位授予相关要求 C. 课程成绩达到学位授予的相关要求 D. 通过学位英语考试 3、是专业学习后期需要完成的环节(B) 选择一项: A. 入学教育 B. 专业综合实践 C. 入学测试 D. 了解教学计划 4、转专业后,学籍有效期仍从(D)开始计算。 选择一项: A. 转专业后学习开始的时间 B. 转专业批准的时间 C. 提出转专业申请的时间 D. 入学注册时 5、不是目前国家开放大学设有的学习层次。(A) 选择一项: A.小学、初中

《应用概率统计》复习题及答案

工程硕士《应用概率统计》复习题 考试要求:开一页;题目类型:简答题和大题;考试时间:100分钟。 1. 已知 0.5,)( 0.4,)( 0.3,)(===B A P B P A P 求)(B A P ?。 解:因为 0.7,0.3-1)(-1(A)===A P P 又因为, ,-- A B A B A A B A AB ?== 所以 0.2,0.5-7.0)( -(A))(A ===B A P P B P 故 0.9.0.2-0.40.7P(AB)-P(B)(A))(A =+=+=?P B P 2.设随机变量)1(,9 5 )1(),,4(~),,2(~≥=≥Y P X P p b Y p b X 求并且。 解: . 8165 31-1-10)(Y -11)(Y ),3 1,4(~,31,94-1-1-10)(X -1)1(,9 5)1(),,2(~422====≥=====≥=≥)(故从而解得)所以()(而且P P b Y p p p P X P X P p b X 3.随机变量X 与Y 相互独立,下表中给出了X 与Y 的联合分布的部分数值,请将表中其

4.设随机变量Y 服从参数2 1=λ的指数分布,求关于x 的方程0322 =-++Y Yx x 没有实根的概率。 解:因为当时没有实根时,即0128Y -Y 03)-4(2Y -Y 2 2 <+<=?,故所求的概率为}6Y P{20}128Y -P{Y 2 <<=<+,而Y 的概率密度 ?? ???≤>=0,00 ,21f(y)21-y y e y ,从而36221 -621-1dy 21f(y)dy 6}Y {2e e e P y ===<

应用概率统计试题范文

042应用数学 一、填空题 (每小题3分,共21分) 1.已知()0.4,()0.3,()0.6,P A P B P A B ===则() .P AB = 2.设(),,X B n p 且()12 , ()8 ,E X D X ==则 , .n p == 3.已知随机变量X 在[0,5]内服从均匀分布,则 ()()()14 ,2 , .P X P X E X ≤≤==== 4.设袋中有5个黑球、3个白球,现从中随机地摸出4个,则其中恰有3个白球的概率为 . 5.设12 19,X X X 是来自正态总体()2 ,N μσ 的一个样本,则() 2 19 21 1 i i Y X μσ==-∑ 6.有交互作用的正交试验中,设A 与B 皆为三水平因子,且有交互作用,则A B ?的自由度为 . 7.在MINITAB 菜单下操作,选择Stat Basic Statistics 2Sample T >>-可用来讨论 的问题,输出结果尾概率为0.0071P =,给定 0.01α=,可做出 的判断. 二、单项选择题(每小题3分,共15分) 1.设,A B 为两随机事件, ()6 0.6,()0.7,(|), 7P A P B P A B ===则结论正确的是( ) (A ),A B 独立 (B ),A B 互斥 (C )B A ? (D )()()()P A B P A P B +=+ 2. 设()1F x 与()2F x 分别为随机变量1X 与2X 的分布函数.为使()()()12F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ) (A ) 32,;55a b ==-(B )22,;33a b ==(C )13,;22a b =-=-(D )13,. 22a b ==- 3.设128,, X X X 和1210,, Y Y Y 分别来自两个正态总体()1,9N -与()2,8N 的样本,且相互独立, 21S 与22S 分别是两个样本的方差,则服从()7,9F 的统计量为( ) (A )212235S S (B )212289S S (C )212298S S (D )212253S S 4. 设Y 关于X 的线性回归方程为01,Y X ββ∧ ∧ ∧ =+则0β∧ 、1β∧ 的值分别为( ) (10,780,88,3,24xx yy xy L L L x y =====) (A )8.8,-2.4 (B )-2.4,8.8 (C )-1.2,4.4(D )4.4,1.2 5.若 ()10T t 分布,则2T 服从( )分布. (A )( )10,1 F (B )()9 t (C )(1,10)F (D )(100)t 四、计算题(共56分) 1.据以往资料表明,某一3口之家,患某种传染病的概率有以下规律: P{孩子得病}=0.6 ,P{母亲得病 | 孩子得病}=0.5 , P{父亲得病 | 母亲及孩子得病}=0.4 ,求母亲及孩子得病但父亲未得病 的概率.(8分) 2.一学生接连参加同一课程的两次考试.第一次及格的概率为0.6,若第一次及格则第二次及格的概率也为0.6;若第一次不及格则第二次及格的概率为0. 3. (1)若至少有一次及格则能取得某种资格,求他取得该资格的概率?

应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ 一、填空题(本大题共6小题,每小题3分,共18分) 1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===,则()P A B =________ ______. 2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为: ),(Y X 的联合分布函数 为),(y x F ,则(1,3)F =______________. 4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2 X 的数学期望是______________. 5. 设X 、Y 相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分 布及其参数). 6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分) 1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). ? A. 0.05 ?B . 0.06 ?C. 0.07? ?D . 0.08 2. 设A 、B 为两个随机事件,且B A ?,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P > C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ). 1 ,0x ?≤? 0,0x

MATLAB 概率分布函数

统计工具箱函数 Ⅰ-1 概率密度函数 函数名对应分布的概率密度函数 betapdf贝塔分布的概率密度函数 binopdf二项分布的概率密度函数 chi2pdf 卡方分布的概率密度函数exppdf指数分布的概率密度函数 fpdf f分布的概率密度函数 gampdf伽玛分布的概率密度函数 geopdf几何分布的概率密度函数 hygepdf超几何分布的概率密度函数 normpdf正态(高斯)分布的概率密度函数lognpdf对数正态分布的概率密度函数 nbinpdf负二项分布的概率密度函数 ncfpdf非中心f分布的概率密度函数 nctpdf非中心t分布的概率密度函数 ncx2pdf 非中心卡方分布的概率密度函数poisspdf泊松分布的概率密度函数 raylpdf雷利分布的概率密度函数 tpdf学生氏t分布的概率密度函数 unidpdf离散均匀分布的概率密度函数 unifpdf连续均匀分布的概率密度函数 weibpdf威布尔分布的概率密度函数 Ⅰ-2 累加分布函数 函数名对应分布的累加函数 betacdf贝塔分布的累加函数 binocdf二项分布的累加函数 chi2cdf 卡方分布的累加函数 expcdf指数分布的累加函数 fcdf f分布的累加函数 gamcdf伽玛分布的累加函数 geocdf几何分布的累加函数 hygecdf超几何分布的累加函数 logncdf对数正态分布的累加函数 nbincdf负二项分布的累加函数 ncfcdf非中心f分布的累加函数 nctcdf非中心t分布的累加函数 ncx2cdf 非中心卡方分布的累加函数normcdf正态(高斯)分布的累加函数poisscdf泊松分布的累加函数 raylcdf雷利分布的累加函数 tcdf学生氏t分布的累加函数 unidcdf离散均匀分布的累加函数 unifcdf连续均匀分布的累加函数

相关文档
相关文档 最新文档