文档库 最新最全的文档下载
当前位置:文档库 › 斜拉桥

斜拉桥

斜拉桥
斜拉桥

哈尔滨工业大学毕业设计(论文)

第1章绪论

1.1概述

斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。

上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段:

第一阶段:稀索,主梁基本上为弹性支承连续梁;

第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力;

第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。

近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。

1.1.1 结构体系

斜拉桥的基本承载构件由梁(桥面)、塔和索三部分组成,且三者以不同的方式影响总体结构的性能。实际设计时三者是密不可分的。塔、梁及索的不同变化和相互组合,可以构成具有各自结构性能且力学特点和美学效果的突出的斜拉桥。正因为如此,斜拉桥基本体系可按力学性能分为漂浮体系、支承体系、塔梁固结体系和刚构体系:

漂浮体系为塔墩固结、塔梁分离,主梁除两端有支承外,其余全部用拉索悬吊,是具有多点弹性支承的连续梁。

支承体系即墩梁固结、塔梁分离,在塔墩上设置竖向支承,为具有多点弹性支撑的三跨连续梁。

塔梁固结体系即塔梁固结并支承在墩上,梁的内力和挠度同主梁与塔柱的弯曲刚度比值有关。其支座至少有一个为纵向固定。

刚构体系为梁塔墩互为固结,形成跨度内具有多点弹性支承的刚构。这种体系的优点是既免除了大型支座又满足悬臂施工的稳定要求,结构整体刚度较好,主梁挠度小;缺点是主梁固结处负弯矩较大,较适合于单塔斜拉桥。在塔墩很高的双塔斜拉桥中,若采用薄壁柔性墩来适应温度和活载等对结构产生的水平变形,形成连续刚构,能保持刚构体系的优点,并使行车平顺。采用这种体系的有美国的Dames Point桥和我国的广东崖门大桥等。

- 1 -

哈尔滨工业大学毕业设计(论文)

- 2 -

在边跨加辅助墩,对梁和塔的内力和变形都很有利。实践表明,无论采用以上何种体系,设一个辅助墩后,塔顶水平位移、主梁跨中挠度、塔根弯矩和边跨主梁弯矩均急剧降低,一般约为原来的40%~65%。

1.1.2 主梁

斜拉桥主梁直接承受车辆荷载,是斜拉桥主要承重构件之一。由于受拉索的支承作用,与其它体系桥梁相比,斜拉桥主梁具有跨越能力大、建筑高度小和能够借助拉索的预应力对主梁内力进行调整等特点。

斜拉桥的跨径比应考虑全桥刚度、拉索疲劳强度、锚固墩承载能力等多种因素确定。双塔斜拉桥的边跨与主跨比一般为0.25~0.50,从经济角度考虑,宜取0.4。

斜拉桥主梁自重应尽量减小,梁高与主跨比L h /变化范围一般在1/50~1/100,对密索体系大跨径斜拉桥,高跨比可小于1/200;单索面要按抗扭刚度确定。

主梁截面形式应根据跨径、索距、桥宽等不同需要,综合考虑结构的力学要求、抗风稳定、施工方法等选用。如对于单索面斜拉桥,主梁断面宜采用抗风性能优越的近似三角形断面。

主梁按材料可分为混凝土梁、钢梁、结合梁和混合梁,其中混凝土梁的主要优点是:

(1) 造价低。但当主跨大于500m 时,混凝土主梁的低造价难以抵销

由于混凝土自重大而导致拉索和基础费用的额外增值。

(2) 刚度大挠度小。在汽车作用下,产生的主要挠度约为类似钢结构

的60%左右。

(3) 抗风稳定性好。这是由于混凝土结构振动衰减系数约为钢结构的

两倍。

(4) 后期养护比钢桥简单便宜。缺点是跨越能力不如钢结构大,施工

速度不如钢结构快。

1.1.3 索塔

作用于斜拉桥主梁的恒活载通过拉索传递给索塔,因而索塔是通过拉索对主梁起弹性支承作用的重要构件。索塔上的作用力除本身的自重引起的轴力外,还有拉索索力的垂直分力引起的轴向力、水平分力引起的弯矩和剪力。索塔设计应满足强度、刚度、稳定等使用要求,并充分考虑施工方便、

哈尔滨工业大学毕业设计(论文)

造价低及造型美观等要求。

斜拉桥索塔的型式有柱式、门式、A型、倒Y型、菱型和钻石型等。塔柱截面型式可分成矩形和非矩形两种基本型式。柱式塔柱构造简单,但承受横向水平荷载的能力较差。对于单索面斜拉桥,由于索塔塔柱常设在桥面中央分隔带上,增加了桥面宽度,因此多采用单柱型索塔。

双塔斜拉桥索塔高与主跨比宜选用0.18~0.25,并宜使边索与水平线的夹角控制在25°~45°左右。

1.1.4 拉索

斜拉索是斜拉桥的重要组成部分,并显示了斜拉桥的特点。斜拉桥桥跨结构的重量和桥上荷载,绝大部分或全部通过斜拉索传递到塔柱上。拉索布置不仅影响桥梁的结构性能,而且影响到施工方法和经济性。

斜拉索横桥向布置可分为中心挂索(单面索)、侧挂索(双面索)和三索面三种体系。现有桥梁大部分采用双面索,即把斜拉索设于桥面结构两侧;然而,现已成功修建了数座单面索斜拉桥,单索面体系避免了拉索交叉的视觉,给人以美观开阔的视感,结构轻巧,但要求主梁具有必要的横向抗弯和抗扭刚度;较少采用三面索。

在桥梁纵向,拉索布置可选择扇形、竖琴形(平行)、辐射形和不对称形。平行索从力学和经济的观点考虑不是最佳的形式;辐射形索的索塔锚固区应力集中、构造复杂、造价昂贵且外观较笨重;不对称形索适用于单跨斜拉桥;扇形索综合了平行索和辐射形索的优点,是一种理想的索形。目前大部分斜拉桥采用扇形索。

目前,斜拉桥已从大索距的稀索发展到小索距的稀索,绝大多数斜拉桥采用密索布置。一般密索体系布置时,对于混凝土主梁,索距宜采用4m~12m。为使拉索材料经济,边索倾角宜控制在25°~45°左右。

1.1.5 桥型确定

本设计为墩、塔、梁固结的,双塔单索面预应力混凝土斜拉桥。

1.2目的与意义

1.2.1 立题目的

通过本次有关斜拉桥的毕业设计,可使自己初步了解有关斜拉桥的基本

- 3 -

哈尔滨工业大学毕业设计(论文)

知识和结构设计计算的基本理论,并具备相当程度的大跨度桥梁的设计计算能力,为今后的学习和工作打下良好的基础,同时使自己能够熟练运用计算机程序或软件进行桥梁结构设计计算,并熟悉计算机绘图。

1.2.2 立题意义

毕业设计是大学四年来最重要的一项学习内容,是对四年所学知识的总结与运用;运用学过的基础理论和专业知识,结合工程实际,参考国家有关规范、标准、工程设计图集及其他参考资料,独立地完成斜拉桥部分构件的设计;同时初步掌握斜拉桥的设计步骤、方法,培养分析问题、解决问题的能力,为以后的继续学习和工作奠定基础。

1.3 主要内容

由于时间有限,未对斜拉桥进行全面设计,主要的内容有:

(1)XXX混凝土斜拉桥的构造尺寸、结构形式及其结构静力计算,包括计算恒载内力、活载内力、温度内力、支座沉降引起的内力,并进行索塔控制截面的作用效应组合;

(2)确定成桥状态的合理索力,即斜拉桥的恒载受力优化;

(3)拉索设计,包括拉索应力验算与拉索的构造和下料长度;

(4)桥塔锚固区的局部受力分析,对桥塔锚固区配置水平预应力筋。

- 4 -

哈尔滨工业大学毕业设计(论文)

第2章技术指标及设计资料

2.1 设计依据

2.1.1 技术指标

(1)公路等级:高速公路

(2)设计速度:120km/h

(3)设计荷载

汽车荷载:公路—I级

温度作用:均匀温度取±15℃,梁、塔与斜拉索的温差取±10℃,

主梁的日照温差按桥面板升温5℃计

(4)桥面宽度:2×11m+4×0.45m(防撞栏)+3(分隔带)=26.8m

桥面横坡2%

(5)通航标准:通航水位:2.27m(黄海高程)

通航净高:48m

通航净宽:底宽≥300m,顶宽≥220m

(6)基础变位:主墩沉降3.0cm,边、辅助墩沉降2.0cm

(7)主桥竖曲线:凸曲线半径R=16700m;纵坡:±2%

2.1.2 设计规范

(1)《公路桥涵设计通用规范》(JTG D60-2004)

(2)《公路斜拉桥设计规范》(试行)(JTJ027-96)

(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 2.1.3 航运净空

根据《全国内河通航标准》有关规定及交通部广州航道局提供的有关船舶资料,结合地形、地质条件,考虑特种船舶运营的需要,经审批后的通航净空要求为:

通航净空高48m。航道净宽300m。

2.2材料参数

- 5 -

哈尔滨工业大学毕业设计(论文)

- 6 -

2.2.1 混凝土

预应力混凝土主梁的混凝土强度等级为C50,索塔为C60,主墩墩身为C50,承台、桩基、边墩和辅助墩墩柱均采用钢筋混凝土结构,混凝土强度等级为C40。

2.2.2 预应力钢材

桥塔锚索区的环向预应力钢筋为32φ的精轧螺纹粗钢筋,强度标准值pk f =930MPa ,弹性模量为s E =2.0×510MPa 。预应力管道均采用预埋金属波纹管成型。

2.2.3 斜拉索

该桥采用扭绞型平行钢丝斜拉索,由φ7mm 高强平行钢丝组成,规格为PES7-109~PES7-187,抗拉强度标准值pk f =1670MPa ,弹性模量为p E =2.05×510MPa ,为PE 、PU 双层防护体系。锚具为冷铸墩头锚。

2.2.4 桥面铺装

8cm 厚防水混凝土,容重23KN/3m 。

2.2.5 支座

GPZ 抗震型盆式橡胶支座。

2.2.6 伸缩缝

SSFB240型伸缩装置。

2.3 设计荷载与组合

2.3.1 主要设计荷载

(1)永久作用:结构重力、基础变位作用

(2)可变作用:汽车荷载(含汽车冲击力)、温度(均匀温度和梯度温

度)作用

哈尔滨工业大学毕业设计(论文)

- 7 -

2.3.2 索塔的作用效应组合

根据《公路桥涵设计通用规范》第4.1.6条规定:公路桥涵结构按承载能力极限状态设计时,应采用以下两种作用效应组合:

基本组合—永久作用的设计值效应与可变作用设计值效应相组合,其效应组合表达式为:

0γ)(21110∑∑==++=n

j Qjk Qj c k Q Q m i Gik Gi ud S S S S γψγγγ

式中 ud S —承载能力极限状态下作用基本组合的效应组合设计值; Gi γ—第i 个永久作用效应的分项系数,按表4.1.6的规定采用; Gik S —第i 个永久作用效应的标准值和设计值;

1Q γ—汽车荷载效应(含汽车冲击力)的分项系数,取1Q γ=1.4; 1Q S —汽车荷载效应(含汽车冲击力)的标准值和设计值;

Qj γ—在作用效应组合中除汽车荷载效应(含汽车冲击力)、风荷载外

的其他第j 个可变作用效应的分项系数,取Qj γ=1.4;

Qjk S —在作用效应组合中除汽车荷载效应(含汽车冲击力)、风荷载外

的其他第j 个可变作用效应的标准值和设计值;

c ψ—在作用效应组合中除汽车荷载效应(含汽车冲击力)外的其他可

变作用效应的组合系数,当只有一种其他可变作用(温度)参

与组合时,取c ψ=0.8。

公路桥涵结构按正常使用极限状态设计时,应根据不同的设计要求,采用以下两种效应组合:

1. 作用短期效应组合。永久作用标准值效应与可变作用频遇值效应相

哈尔滨工业大学毕业设计(论文)

- 8 -

组合,其效应组合表达式为:

∑∑==+=n

j Qjk j m i Gik sd S S S 111?

式中 sd S —作用短期效应组合设计值;

j 1?—第j 个可变作用效应的频遇值系数,汽车荷载(不计冲击力)

1?=0.7;

j 1?Qjk S —第j 个可变作用效应的频遇值。

2. 作用长期效应组合。永久作用标准值效应与可变作用准永久值效应相组合,其效应组合表达式为:

∑∑==+=n

j Qjk j m i Gik ld S S S 121?

式中 sd S —作用短期效应组合设计值;

j 2?—第j 个可变作用效应的准永久值系数,汽车荷载(不计冲击

力)1?=0.4;

j 2?Qjk S —第j 个可变作用效应的准永久值。

索塔设计中考虑的主要作用效应组合见表2-1:

表2-1 作用效应组合表

2.3.3 拉索的内力组合

根据《公路斜拉桥设计规范》第 4.2.1条规定:公路斜拉桥设计荷载的计算,应遵照《公路桥涵设计通用规范》(JTJ 021—89)执行。

哈尔滨工业大学毕业设计(论文)

- 9 -

当结构重力产生的效应与汽车荷载产生的效应同号时:

=∑);(Q G S q g d γγ 1.2G S 4.1+1'Q S (组合I )

=1.1G S +1.31'Q S +1.32Q S (组合III)

式中:G S —永久荷载中结构重力产生的效应;

1'Q S —基本可变荷载中汽车产生的效应;

2Q S —其他可变荷载中的温度影响力和永久荷载中的基础变位影响力

的一种或几种产生的效应。

拉索设计中考虑的主要荷载组合见表2-2:

表2-2 荷载组合表

哈尔滨工业大学毕业设计(论文)

第3章桥型与结构形式

3.1 桥型总体布置

该斜拉桥的桥跨组合为(165+338+165)m=668m。主桥为墩、塔、梁固结,双塔单索面预应力混凝土斜拉桥,每侧边跨均设一个辅助墩,跨径组合为50m+115m+338m+115m+50m。斜拉桥设置50m端跨,其目的是:(1)解决边墩负反力问题;

(2)降低边跨弯矩变化幅度,改善结构受力状态;

(3)布索较合理。

索面布置在中央分隔带上,给人以美观开阔的视感。本桥箱梁采用抗风性能优越的近似三角形断面,并采用下承式牵索挂篮悬浇施工。在支承体系上,本桥采用塔、梁、墩固结,这种体系取消了悬臂体系在施工中必须设置的临时固结结构,提高了施工中结构的抗风稳定性,有利于0号块施工,有利于地震力的分布。为配合这种体系,本桥设计采取下列措施来减少由于温度、混凝土收缩徐变及合龙索张拉产生的很大推(拉)力:

(1)采用柔性较大的双壁墩,加之本桥桥墩很高,也为降低桥墩的纵向刚度提供了极为有利的条件;

(2)为克服收缩徐变影响,在中跨合龙时,合龙处设置千斤顶向塔侧施以推力。

该斜拉桥方案有如下优缺点:

优点:由于索面布置在中央分隔带上,整个结构较双索面斜拉桥美观且造价较低。

缺点:通航净宽较双索面斜拉桥小,抗震性能较双索面斜拉桥差。

该桥总体布置如图3-1:

- 10 -

哈尔滨工业大学毕业设计(论文)

- 11 -

图3-1

斜拉桥总体布置图

哈尔滨工业大学毕业设计(论文)

- 12 -

3.2 结构形式及尺寸

3.2.1 下部结构构造

主墩采用双薄壁矩形柔性墩,平面几何尺寸为12.4m ×2.4m ,两墩柱内侧净距3.6m ,双壁之间中心距6m ,墩高47.6m 。主墩基础采用18根φ3.0m 的大直径钻孔灌注桩,为摩擦桩,成梅花型布置。主墩承台为高桩承台,长30.60m ,宽21.80m ,高6.50m (包括1.5m 封底),承台棱角均处理为圆弧倒角。承台底面标高为-2.5m ,而通常河床最低潮水位为-0.35m ,高潮时水位达+2.30m 。承台采用有底套箱施工。主墩基础构造如图3-2:

辅墩采用柔性薄壁空心墩,墩厚2m ,横向宽10m 。基础采用6根φ1.8m 钻孔灌注桩。

边墩为悬臂式盖梁配双柱式墩身,以适应引桥的过渡。边墩基础为8根φ1.8m 钻孔灌注桩。桩基均按嵌岩桩设计。

立面

图3-2 主墩基础构造

3.2.2 主塔

索塔为空心直塔,平面几何尺寸为6.6m ×3.6m 。桥面以上塔柱高77m ,高跨比1:4.4,塔柱采用矩形空心截面,断面360(横桥向)×(660~800)cm (纵桥向)。索塔前进方向设25对斜拉索,塔柱上斜拉索锚固区段高度约46m ,每侧的单根斜拉索锚固于塔壁内侧齿块上,索塔锚固区采用预应力粗钢

哈尔滨工业大学毕业设计(论文)

- 13 - 筋加劲。

主塔一般构造图见图纸4。

3.2.3 斜拉索

该桥的主塔为双向变截面空腹结构,上塔柱

为斜拉桥锚固区,在单塔,同一断面中有4根斜

拉索,塔上斜拉索锚固点间距为160cm ,梁上斜

拉索锚固点间距为6m 。主桥斜拉索双塔共200

根,两端均采用张拉端型锚具。在张拉过程中,

斜拉索采用主塔端张拉,主梁端锚固。该桥采用

扭绞型平行钢丝斜拉索,由 7mm 高强平行钢

丝组成,规格为PES7-109~PES7-187,抗拉强度

标准值pk f =1670MPa ,为PE 、PU 双层防护体系。锚具为冷铸墩头锚。斜拉索断面如图3-3: 图3-3 斜拉索断面

斜拉索构造详图见图纸3。

3.2.4 主梁

混凝土主梁采用单箱五室预应力混凝土箱梁,标准段梁高 3.48m ,箱宽26.8m,高跨比1:100,高宽比1:7.9,宽跨比1:12.6。为了提高抗风性能,主梁采用扁平流线形断面,见图3-4:

横隔板的设置主要考虑活载的横向分布以及桥面板的受力、斜拉索的锚固,以及增强桥梁的横向刚度。主梁每隔6m 设一道横隔板(在斜拉索锚固点处),其厚度为25cm ,并设有人洞。

斜拉桥结构体系

斜拉桥结构体系 一、结构体系的分类 1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。 2、按照主梁的连续方式,有连续体系和T构体系等。 3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。 4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。 二、结构体系介绍 1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。 漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。目前,大跨斜拉桥多采用此种体系。 漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。 2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。水平位移将由斜拉索制约。 3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。 塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。 4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。 种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。

斜拉桥发展历史及未来方向

斜拉桥的发展历程及未来发展趋势 通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。梁桥以受弯为主的主梁作为承重构件的桥梁。主梁可以是实腹梁或桁架梁。实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。其缆索几何形状由力的平衡条件决定,一般接近抛物线。从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。斜拉桥和梁桥和拱桥相比有着跨越能力大的优

势。而与悬索桥相比在300-1000米跨度又有经济性的优势。同时外形对称美观更兼线条纤秀,构造简洁,造型优美。符合桥梁美学的要求。适合在跨度为300-1000米的桥梁使用。 斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。在这个体系里,他构想用锻铁拉杆将梁吊到相当高的桥塔上,拉索扇形布置,所有拉索都锚固于桥塔顶部。1855年美国工程师罗伯林在尼亚加拉河上,建成了跨径达250米的公铁两用桥。这是世界上首次将悬索体系和拉索体系的成功组合。1949年,德国著名的桥梁工程师迪辛格尔发表了他对斜拉桥的结构体系的研究成果,为现代斜拉桥的诞生和发展奠定了理论基础。1952年德国莱昂哈特教授在世界上第一个设计出现代化斜拉桥――德国杜塞尔多夫跨越莱茵河的大桥。1953年迪辛格尔与德国承包商德玛格公司,承建了瑞典的斯特罗姆松德桥,这是世界上第一座现代斜拉桥。从此斜拉桥经历了三个发展阶段:自20世纪50年代中至60年代中,其特征是拉索为稀索体系,钢或混凝土梁体,以受弯为主;第二阶段,自20世纪60年代后期开始,其特征是拉索逐步采用密索体系,并可以换索,钢和混凝土梁以受压为主,截面减小;第三阶段,从20世纪80年代中期至今,拉索普遍采用密索体系,可以换索,梁体结构出现组合式、混合式、钢管混凝土等新的形式。相应地梁向轻型化发展,梁高减小,梁面也出现了肋板式、板式等形式。

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

STEAM 科学实验 斜拉桥

斜拉桥 一、教学目标 1.认识桥梁的拉力、压力及相互作用,了解桥的一些历史知识 2.锻炼学生的动手能力和知识总结能力 3.培养学生的观察、分析、总结的思维能力 二、教学重难点 教学重点:理解压力和拉力的知识 教学难点:理解斜拉桥的实验原理 三、教学准备 教师用学生用/每组备注 器材斜拉桥套件、弹簧、剪刀斜拉桥套件、弹簧、剪刀 试剂无无 注:试剂和器材多备2组 四、教学过程 (一)回顾 回顾上次课所学知识,(1-2个学生回答),教师总结 (二)情境引入 桥,大家应该都不陌生,那你见过有哪些种类的桥呢?桥一般在哪些地方会用到呢?学生思考回答。桥主要是为了联通公路连通不了的地方,比如海、河、山或者现在交通中的高架桥、立交桥等。桥的承受力和稳定性是最重要的,那大家知道建造师一般通过哪些方法来增加桥等稳定性吗?学生思考回答。(增加桥墩、拱形桥)

去年我们国家刚刚建造完成了一座超大规模的举世闻名的大桥,大家知道是什么桥吗?(港珠澳大桥)有没有哪位同学了解港珠澳大桥的?跟大家分享分享。学生分享。展示高珠澳大桥的图片,大家仔细观察,有没有发现这座伟大的桥跟之前我们看到的桥有哪些相同的地方和那些不同的地方?想一想这座跨度这么长建在海上的桥是利用什么来增加其稳定性的?学生观察回答。(有桥墩、有绳索) 这种用绳索来增加桥身的稳定性的桥就叫做斜拉桥,今天我们就要一起来探究斜拉桥的结构和特性。

(三)实验过程 1.斜拉桥结构分解 斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。斜拉桥比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。 2.拉力和压力验证 在我们生活中存在很多的力,大家知道的有哪些力呢?学生思考回答,最常见的重力、摩擦力,当然也有拉力和压力等,桥在运营过程中想要保持足够的稳定,就要确保其受到的各方的力要达到平衡。今天我们先来感受下拉力和压力大概念。 学生通过拉伸和压缩弹簧来感受拉力和压力大概念。 我们把弹簧伸长的力称为拉力。弹簧变长就是因为我在拉弹簧,对弹簧施加了拉力。弹簧变短是因为老师用手压紧弹簧,给弹簧施加了一个压力。我们把使弹簧 缩短的力称为压力。 所有的桥梁都会受到压力和拉力的作用。当压力超过桥面的承受能力时桥面就 会发生弯曲,当拉力超过承受能力时就会造成桥面被拉断。 3.斜拉桥原理探究 学生探究斜拉桥大稳定性与有无绳索之间的关系

斜拉桥的结构体系及特点

斜拉桥结构体系及特点 斜拉桥亦称矮塔斜拉桥, 其构造特点是在连续梁中支点处设置矮索塔,其塔高只有斜拉桥索塔高度的一半左右, 斜拉索通过矮索塔上设置的鞍座对主梁产生竖向支反力和水平压力。部分斜拉桥主梁自身刚度较大, 能够承担大部分荷载效应,斜拉索对主梁只起到一定程度的帮扶作用。斜拉桥是介于斜拉桥和连续梁桥之间的一种新桥型, 兼具斜拉桥和连续梁桥的双重结构特征。 斜拉桥是由上部结构索、塔、梁三种基本构件和下部结构墩台、基础组成的结构体系,影响部分斜拉桥结构各部分荷载效应最根本的因素是梁、塔、墩之间的结合方式,不同的结合方式产生不同的结构体系。根据部分斜拉桥结构自身的特点和梁、塔、索、墩的结合方式, 可将部分斜拉桥结构体系划分为三种型式: (1)塔梁固结体系;(2)支承体系; (3) 刚构体系, 见图1 所示。(4)半漂浮体系,见图2所示。 (1)塔梁固结体系及特点 塔梁固结、塔墩分离、梁底设支座支承在桥墩上,斜拉索为弹性支承,这是一种完全的主梁具有弹性支承的连续梁结构。这种体系必须有一个固定支座, 一般是一个塔柱处梁底支座固定,而其他支座可纵向活动。这种体系的主要优点是取消了承受很大弯矩的梁下塔柱部分,代之以一般桥墩,中央段的轴向拉力较小, 梁身受力也很均匀, 整体温度变化对这种体系影响较小, 几乎可以略去。这种体系结构整体刚度小, 当中跨满载时,由于主梁在墩顶处的转角位移导致塔柱倾斜,使塔顶产生较大的水平位移, 因而显著增大了主梁的跨中挠度。上部结构重力和活载反力需经支座传递到桥墩, 因此需设置大吨位支座。 我国的漳州战备桥、小西湖黄河大桥、离石高架桥; 日本的蟹泽桥、士狩大桥、木曾川桥、揖斐川桥、新唐柜大桥均采用这种体系。已建部分斜拉桥采用这种结构体系较多, 与连梁体系相同, 符合部分斜拉桥的概念含义。塔梁固结体系的特点:塔、墩内力最小,温变内力也小,主梁边跨负弯矩较大。 (2)支承体系及特点 塔墩固结、塔梁分离, 主梁在塔墩上设置竖向支承, 支座均为活动支座,这种体系接近主梁具有弹性支承的连续梁结构。支承体系与梁塔固结体系主梁受力性能基本相同, 塔墩底部承受较大的弯矩。 我国芜湖长江大桥采用的是支承体系, 该体系在部分斜拉桥结构中较少采用。支承体系的特点:支承体系悬臂施工中不需要额外设置临时支点,施工较方便。

斜拉桥的发展

中国斜拉桥的发展状态和关键技术 摘要:斜拉桥的发展引用着多种现代的高新技术,得以桥梁在大跨度的桥梁施工中,得以精确度的保证以及在规范要求的范围内,并且施工中必须考虑到外部环境的影响,所以接下来对以上的问题作以叙述。 关键词:斜拉桥全球卫新定位系统防护措施施工重点 斜拉桥又称斜张桥,上部结构由索、梁、塔三个主要组成部分构成,从其力学特点看,属于组合体系桥。斜拉桥依靠斜拉索支撑梁跨,类似于多跨弹性支承梁,梁内弯矩与桥梁的跨度基本无关,而与拉索间距有关。斜拉桥开始于17世纪,现在斜拉桥正处于发展的高峰期间,长度、跨度和持久性也在不断增加。 斜拉桥采用斜拉索来支撑主梁,使主梁变成多跨支撑连续梁,从而降低主梁高度、增大跨度。斜拉桥属于自锚结构体系,斜拉索对桥跨结构的主梁产生有利的压力,改善了主梁的受力状态。主要构造有基础、墩塔、主梁和拉索。其上的主梁是受弯构件,为多点弹性支撑,弯矩和挠度显著减小,斜拉索水平分力,提供对称的预应力,减缓主梁的压力。斜索是受拉构件,为主梁提供弹性支持,调整其索力、间距和数量,可调整桥梁内力分布及刚度,对斜拉索进行预张拉。 斜拉桥孔跨布置主要可分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。 1、双塔三跨式 目前双塔三跨式最常用,形式有对称式和非对称式,适用在跨越较大的河流、海口及海面比较近的工程中。以下为双塔三跨式的例子,如图一所示。杭州湾跨海大桥建于2003年11月14日开工,2007年6月26日贯通,2008年5月1日启用。杭州湾跨海大桥是一座横跨中国杭州湾海域的跨海大桥,北起浙江嘉兴海盐郑家埭,南至宁波慈溪水路湾,全长36公里,比连接巴林与沙特的法赫德国王大桥还长11公里,已经成为中国世界纪录协会世界最长的跨海大桥候选世界纪录,成为继美国的庞恰特雷恩湖桥和青岛胶州湾大桥是世界上最长的跨海大桥后世界第三长的桥梁。此桥的特点为两侧都建有辅助墩,目的是为了缓和端锚索应力集中或减少边跨主梁弯矩,增大桥梁总体刚度。杭州湾大桥的钢管桩制作过程中,每个工序都进行严格质量检查,对焊缝百分之百进行超声波检查,还有部分的需要进行射线照相。其中T形和十字形的焊缝及近桩顶焊缝作为重点检查。焊缝不允许有咬边、焊缝未融合、未焊透的情况表面气孔、弧坑、夹渣等外观缺陷,这些都是对桩的焊接要求,而且在做这桥的设计时,还得考虑到一些外在因素,因为作为海上建筑,必须考虑到海上的海风很大,桥墩放下的时候会因为海风的吹动而摇晃,可能导致放置的位置不精确,所以得用到精密仪器测量和GPS 定位导航系统,这个是近几年才开始开发使用在桥梁建筑上的科技技术使用。在建成的时候还得预防以后海上出现台风现象,因为美国就有桥在设计时未能够充分考虑到风力和风速的影响,导致桥在风的作用下,产生摇晃,导致桥的倒塌。钢管桩的制作已经需要考虑到防腐的问题,而且也要考虑到在运输的时候,防止桩与周围的摩擦。而且全球卫星定位系统在这里利用的地方也比较多。像这里外海沉桩施工过程中,因为在海上的施工,所以在岸上看上去距离远,常规的经纬仪和全站仪测量定位很难达到设计的要求,所以只有使用全球卫星定位系统在施

斜拉桥发展史及现状综述

从斜拉桥看桥梁技术的发展 姓名:马哲昊 班级:1403 专业:建筑与土木工程 学号:143085213086

摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。 关键词: 斜拉桥;发展史;现状;展望 Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward. Key words: Cable-stayed bridge; Review; Looking forward to

1.斜拉桥的发展 1.1 斜拉桥的历史 斜拉桥是一种古老而年轻的桥型结构。早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。1818 年,英国一座跨越特威德河的人行桥也毁于风振。现在看来,这些桥梁的垮塌主要是由于当时工业水平的限制、对斜拉桥这样高次超静定结构体系缺乏理论分析方法和技术手段以及桥梁结构构造存在缺陷。世界上第一座现代化的大跨径斜拉桥诞生于 1955 年,在第二次世界大战结束后,Dischinger 在瑞典设计建成了 Stromsund 桥。该桥主跨 182.6m,全桥采用斜拉式结构,主梁为钢板梁,中间用横梁连接,双塔式,每塔只用了两对高强钢丝拉索,梁上索距 35m 左右,梁高 3.25m 为跨径的 1/56,塔高 28m 为跨径的 1/6.5。这座桥在现代的观点来看虽然在细节上存在着一些不足,如桥面采用的分离的混凝土梁,索塔的造型缺乏美感等,但在桥梁结构上却开创了一个新的纪元,创造出了一种新的桥梁体系,且这种桥梁结构拥有着诸多优点: ①用少量拉索取代了深水桥墩,不但节省了费用、降低了施工难度,而且有效的提高了桥梁的跨越能力,利于通航和排洪。 ②拉索作为主梁的中间弹性支承,使得在桥梁跨径增大的同时,主梁的梁高却可以减小,从而使主梁本身以梁以及段引桥的造价得以降低。 ③拉索自锚固于主梁上,梁身能够得到免费的预压应力,在很多情况下,尤其对于中等跨径桥梁是有利的,和悬索桥相比还可以节省庞大而昂贵的地锚。 ④拉索和索塔、主梁组成了多个三角形结构,稳定性高,刚度大。静、动力性能都良好。 ⑤整体结构新颖,造型美观。 斜拉桥这种新桥型的的出现,以其先进的技术,经济的造价、美观的外形,很快的得到了社会的认同,并在许多国家得到了推广,从Stromsund 桥建成后的第二年起,诸多有名的斜拉桥相继诞生,且发展的速度很快,平均每年就能完一座斜拉桥的修建。早期的斜拉桥结构大多采用当时盛行的轻型钢结构正交异性桥面板,各桥不仅在形式上不尽相同,

斜拉桥的分类

斜拉桥的总体布置与结构体系 总体布置主要有跨径布置、拉索及主梁的布置、索塔高度与布置。 一、跨径布置主要有下面三种类型 (1)双塔三跨式。为目前应用最广泛的跨径布置方式。下面是立面图与其荷载作用不同位置时发生的索塔与主梁的形变。 (2)独塔双跨式。这也是应用较为广泛的一种跨径布置,但由于它的主孔跨径一般比双塔三跨式的小,故特别适用于跨越中小河流、谷地及作为跨线桥,或用于跨越较大河流的主航道部分,也可用主跨跨越河流,索塔及边跨布置在河流一岸的方式。

独塔双跨式斜拉桥立面图 (3)多塔多跨式。多塔多跨式斜拉桥适用于需要多个大通航孔的大江大河、宽阔湖泊或海峡上,但这种结构一般采用较少,主要原因是中间塔顶没有端锚索来有效地限制它的变位,使结构柔性及变形增大,整体刚度差。 多塔多跨式斜拉桥示意图 二、拉索的布置,拉索的布置分为空间上的布置与索面内的布置。 (1)拉索索面在空间可布置成单索面和双索面,而双索面又可分为竖直双索面和倾斜双索面。

单索面斜拉桥(临海大桥) 竖直双索面斜拉桥

倾斜双索面斜拉桥 (2)拉索在索面内的布置形式主要有以下三种:辐射形、竖琴形及扇形。 辐射形:拉索与水平面的平均交角较大,拉索的垂直分力较大,故拉索的用量最省。由于在拉索的水平分力在塔顶基本平衡,故索塔的弯矩较小,索塔高度也较小,但由于拉索都固定在塔顶,所以塔顶的结构复杂,集中应力现象突出,给施工和养护带来困难。 竖琴形:所有拉索的倾角完全相同,且拉索与索塔的锚固点分散布置,使拉索与索塔、拉索与主梁的连接构造简单,易于处理。竖琴形布置拉索加强了索塔的顺桥向刚度,对减少索塔的弯矩和提高索塔的稳定性都有利。但是其拉索的倾角与水平方向的交角较小故所需的拉索数量大,布置密集,一般都用于中小跨径的斜拉桥中。

组合斜拉桥简介及其结构特点分析

2002年增刊广东公路交通 GuallgDOllgc∞gIjlJi日岫总第76期文章编号:167l一7619(2002)增刊一0Q52一03 组合斜拉桥简介及其结构特点分析 苗德山1(1.广东省交通集团有限公司.广州5101叭 孙向东2 2.广东省公路勘察规划设计院。广州5lQ5昕) 摘要:利用斜拉桥自身构件的各种变化,可以派生出众多优美的结构形式,并达到与环境的完美结合。组合斜拉桥跨越能力强,应用广泛,桥型美观。简要介绍了其类型并分析了各桥型的结构受力特点。 关键词:组舍斜拉桥桥掣结构分析 中图分类号:tM8.刀“文献标识码:c 1引言 随着结构分析技术、高强材料及先进施工工艺的发展,斜拉桥凭其自身的特点在太跨径桥梁领域成为了一种竞争能力极强的桥型。虽然现代斜拉桥只有短短的几十年历史,却在实际工程中展现了勃勃生机。利用斜拉桥自身构件的各种变化可以派生出众多优美的结构形式,并达到与环境的完美结合。 斜拉桥的上部结构由梁、索、塔三类构件组成,因上述三者一般不是同一种材料,故从整体上看斜拉桥本身就是一种组合结构。对于任何桥型来说跨度的推进始终是其发展的主题,而斜拉桥在自身的发展过程中,其粱、索、塔在结构形式、材料组成及协作方式等方面均发生了众多演化,其中以粱所派生出的形式最多,影响也最大。斜拉桥的主梁在空间不同的部位可以分别采用不同材料,通常是钢材和混凝土,此类斜拉桥与钢斜拉桥和混凝土斜拉桥相比,可称之为组合斜拉桥。 2组合斜拉桥分类 2.1竖向组合斜拉桥 竖向组合斜拉桥,是指在钢格构或钢梁上铺设钢筋混凝土或预应力混凝土行车道,这也就是通常所说的叠合梁斜拉桥(图1)。此类斜拉桥的代表有加拿大的A11Ilacis桥、中国上海的南浦及杨浦大桥等。 囤1血mads桥的叠台粱断面 2.2纵向组合斜拉桥 纵向组合斜拉桥一般是由边跨混凝土主粱与主跨钢粱在纵向加以连接组成.也就是通常所说的混合粱斜拉桥。此类斜拉桥的代表有法国的 ?52N0Ⅱllalldv桥和日本的生口桥等。 图2所示为N0㈣dy大桥的纵向布置情况,图中显示边跨混凝土粱进人中跨116m后与中跨钢主梁相接,从而减少钢主梁长度,降低造价。 圈2N0mwdv桥的纵向布置

斜拉桥的认识

浅谈斜拉桥认识 斜拉桥又称斜张桥,是一种缆索承重结构体系,其上部结构由塔、梁、拉索三种基本构件组成。由塔柱伸出的斜拉索作为主梁的多点弹性支承,同时斜拉索拉力的水平分力对主梁起着轴向预应力作用,因此斜拉桥是一种桥面体系以主梁受压(密索)或受弯(稀索)为主、支承体系以斜拉索受拉及桥塔受压为主的桥梁。斜拉桥良好的力学性能、建造相对经济、景观优美,已是我国大跨径桥梁最流行的桥型之一。 一、斜拉桥介绍 以斜拉桥的主要结构体系来划分,斜拉桥的发展可分成两个阶段:第一阶段,稀索体系;第二阶段,密索体系。稀索体系的主梁基本上为弹性支承连续梁;密索体系的主梁主要承受强大的轴向力,同时又是一个受弯构件。斜拉桥是将主梁用许多拉索直接拉在桥塔上的一种桥梁,可看作是拉索代替支墩的多跨弹性支承连续梁。斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。这样可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。梁按所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。纵观斜拉桥结构体系的发展历史,可以看到,加劲梁朝着更细更柔的方向演变,加劲梁的高跨比不断减小。唯一的制约来自于空气动力作用,为了使加劲梁获得令人愉悦的外形而同时又要保证最小刚度,加劲梁从最初的重质量块发展到后来的加肋板、箱梁。虽然也有由桁架构成的加劲梁体系,但这多应用于双层桥面体系。拉索体系则经历了一个从无到有、从少到多的过程。现在稀索体系斜拉桥已经很少采用,除非偶尔为了桥梁造型上的求新创异,密索体系以其突出的优势成为了人们心目中默认的斜拉桥体系,也必然将是超千米主跨斜拉桥结构体系的组成之一。索塔的外形由简单到复杂,稳定性却在不断加强,其最初为门式塔,继而“入"形塔,A形塔,钻石形塔,直至空间塔结构。对于大跨径斜拉桥而言,一种合理的结构体系就是要选用合理的构件体系,并进行有效的组合。斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。 二、斜拉桥的受力特点 斜拉桥是通过斜拉索、主梁和索塔三部分相互配合而正常工作的。桥塔上引出的斜拉索为主梁提供了一系列弹性中间支承,借以降低梁跨的截面弯矩,减轻梁重,提高梁的跨越能力。同时,斜拉索拉力的水平分力对主梁起着轴向预应力作用,增强了主梁的抗裂性能。桥塔上斜拉索拉力在水平方向上可以自相平衡,竖直方向的分力传递到桥塔上,再由桥塔传至基础。斜拉桥是一种高次超静定结构,其自重引起的内力和变形可以通过调整斜拉索的张拉力而人人为地进行调整。借助这一特性,在施工阶段通过调整斜拉索的索力,可以很有效地改变主梁的受力状态和线形,以保证到成桥阶段斜拉桥处于一个理想的成桥状态。由于斜

斜拉桥发展概况

斜拉桥发展概况 自1955年瑞典建成世界第一座现代斜拉桥以来,斜拉桥的建设在世界各地蓬勃发展,但现有斜拉桥大多是独塔双跨式和双塔三跨式,而具有连续主梁的三塔四跨式斜拉桥很少。伴随着内陆经济发展,三峡库区蓄水工作逐渐完成,长江做为最大的黄金水道其重要性更加凸显,这也要求桥梁必须能够保证通航,多跨连续斜拉桥正好可以完整适应这一要求。 1斜拉桥的发展及其结构特点 斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。它以其跨越能力大,结构新颖而成为现代桥梁工程中发展最快,最具有竞争力的桥型之一。 2国内外斜拉桥的发展现状及展望 现代斜拉桥的历史虽短,但是利用斜向缆索、铁链或铁杆,从塔柱或桅杆悬吊梁体的工程构思以及实际应用可追朔到17 世纪。斜拉桥发展几乎与悬索桥同时代(Virlogeux M, 1999)。在我国古代,城墙外面护城上架设的可以开启的桥梁应属于斜拉式,东南亚地区的原始竹索桥的布置与近代的斜拉桥颇为相似。15, 16世纪的地理大发现,极大推动了东西方文明的交流,源于亚洲的原始形态的斜拉桥对欧美近代斜拉桥的演变产生了深远的影响。在欧美,最早见于记载的斜拉桥是1617年意大利威尼斯工程师V erantius建造的一座有几根斜拉铁链的桥。1784年,德国人C.J. Loscher建造了一座木制斜拉桥。这是世界上第一座真正愈义上的斜拉桥。 但是,18 世纪初两座斜拉桥的损毁,致使这种斜拉体系在18 世纪到19 世

公路斜拉桥设计规范

公路斜拉桥设计规范(试行) Design Specifications of Highway Cable Stayed Bridge (on trial) 主编部门:交通部重庆公路科学研究所 批准部门:中华人民共和国交道部 试行日期:1996年12月1日 人民交通出版社 1996-北京 1总则 1.0.1为了使公路斜拉桥设计达到技术先进、经济合理、安全适用、确保质量,特制定本规范。 1.0.2本规范适用于混凝土斜拉桥、结合梁斜拉桥、钢斜拉桥的设计,为现行公路桥涵设计规范的补充。除本规范明确规定外,应遵照现行有关公路桥涵设计规范要求执行。 1.0.3斜拉轿总体方案,应与环境协调并综合考虑经济与安全、设计与施工、材料与机具、营运与管理,以及桥位处地质、水文、气象、地震等因素确定结构体系。 1.0.4桥宽应满足交通发展的要求,并应符合《公路工程技术标准(JTJ01--88)(1995年版)的规定。 1.0.5设计主梁、索塔与拉索时,宜进行多方案比较。 1.0.6所选方案除进行静力分析外,应重视动力分析,结构体系应满足强度、刚度、稳定性要求,并有较好的抗震性能,混凝土斜拉桥宜注意收缩徐变影响 2术语 2.0.1混凝土斜拉桥:主梁为钢筋混凝土或预应力混凝土的斜拉桥。 2.0.2钢斜拉桥:主粱及桥面系均为钢结构的斜拉桥。 2.0.3结合梁斜拉桥:主梁为钢结构,桥面系为混凝土结构,主梁与桥面系结合在一起共同受力的斜拉桥。 2.0.4拉索:承受拉力并作为主梁主要支承的结构构件。 2.0.5索塔:用以锚固拉索,并将其索力直接传递给下部结构的受力构件。

2.0.6主梁:主要由拉索支承,直接承受荷载的结构构件。 2.0.7辅助墩:为改善主跨的受力状态,在边跨内设置的既能承受压力又能承受拉力的墩。 2.O.8训拉力:安装拉索时,给拉索施加的张拉力。 2.0.9拉索调整力:为改善主梁及索塔的截面内力状态而调整拉索的拉力。 2.0.10跨径:原则上为两支座中心线间的距离,中跨为两个索塔中心线间的距离,边跨为后锚索处的墩上支座中心线与临近的索塔中心线间的距离。 3一般规定 3.1材料 3.1.1混凝土 用于斜拉桥各部分构件的混凝土标号、混凝土设计强度和标准强度、混凝土受压及受拉时的弹性模量,按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用. 预应力混凝土主粱的混凝土标号不宜低于40号,预应力混凝土索塔的混凝土标号不宜低于30号,钢筋混凝土主梁的混凝土标号小宜低于30号,钢筋混凝土索塔的混凝土标号不宜低子30号。 3.1.2钢材 钢筋混凝土及预应力混凝土构件所采用的钢筋类别、钢筋的设计强度和标准强度、钢筋的弹性模量按交通部现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023--85)的规定采用。 拉索采用强度及弹性模量较高的高强钢丝、钢绞线及高强粗钢筋。 销稿拉桥主梁所用钢板、高强螺栓、粗制螺栓、铆钉等材料的技术要求,焊接材料及钢材的弹性模量等按交通部现行《公路桥涵钢结构及木结构设计规范》(JTJ 025--86)的规定采用。 3.1.3锚具用钢材 拉索锚具及预应力锚头应采用45号钢及其他优质钢材。 3.1.4拉索防护材料 拉索防护材料应选用具有防锈蚀、耐老化及经济的聚乙烯、玻璃钢、防腐涂料等材料。 3.2结构型式

斜拉桥结构设计及问题简析

斜拉桥结构设计及问题简析 摘要:斜拉桥是一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。本文通过分析斜拉桥的结构特点,论述了斜拉桥在结构、布置、选材和审美方面的设计要求及注意事项,并简单介绍了斜拉桥在结构设计和施工建设方面遇到的难题及采取措施。 关键词:斜拉桥;布置形式;结构设计;斜拉桥审美 Abstract: The cable-stayed bridge is a bridge combined stress system, its main structure is composed of cables, towers, girders. In this paper, through the analysis of the structural characteristics of cable-stayed bridge, the cable-stayed bridge in the structure, layout, material selection and design aesthetic requirements and matters needing attention, and briefly introduces the problems encountered in the design and construction of cable-stayed bridge and measures. Keywords: cable-stayed bridge;layout;structure design;cable-stayed bridge aesthetics 自1979年建成的第一座斜拉桥——主跨只有76米云阳桥以来,经过30多年的飞速发展,现今我国斜拉桥无论是在规模和跨度方面,还是在结构设计和施工技术都取得了巨大的成就。目前我国已经是世界上斜拉桥数量最多、跨度最大的国家。我国斜拉桥的设计与施工技术也已经跨入世界的先进行列,并取得了显著的成绩:(1)斜拉索制造工艺实现了专业化和工厂化及防护技术不断完善;(2)斜拉桥的施工技术逐步完善;(3)用计算机进行结构计算和施工过程控制等。目前我国的斜拉桥正在向新型结构、大跨度、轻质和美观等方向发展,以更好的适应交通、经济、环境和安全的要求。 1 斜拉桥整体结构特点 斜拉桥又称为斜张桥,是用许多拉索将主梁直接拉在桥塔上的一种组合受力体系的桥梁,其主体结构由斜拉索、索塔、主梁组成。在斜拉桥结构体系中,索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势。 2 斜拉桥的布置 2.1斜拉桥整体布置

斜拉桥发展历程

斜拉桥发展历程 斜拉桥作为桥梁的一种重要结构形式,出现于17世纪,其发展几乎与悬索桥同时代。在欧美,有记录的最早的斜拉桥是,1617年意大利工程师Verantius建造的一座有几根斜铁链的桥,但受制于当时的科技发展水平,不能对其进行可靠的力学分析和提供足够强度的材料,致使其没有发展起来。18世纪,德国人就曾设想过建造木制斜拉桥,1817年英国架成了一座跨径34m 的人行木制斜拉桥,桥塔是铸铁的,缆索使用铁丝,但是材料的强度有限,结构的受力也无法分析,这座桥不久就毁坏了。之后,英、法、德等国都曾修过一些木制斜拉桥,但不久都毁坏了。 1824年,在英国在Nienburg跨越Saale河修了一座用铁链条和铸铁杆作拉索的斜拉桥,不久就毁于一场游行。1918年,位于英国Dryburgh-Abber附近,跨越Tweed河建造的一座长约79m的人行桥,在风力振荡的情况下,致使斜链在节点处折断而出现事故。这些的主要原因是当时的工业水平不高,无法制造高强钢丝,只能用铁丝或者铁丝绳,同时由于当时的理论体系不健全和计算手段落后,无法准确计算多次超静定结构,也无法分析风振动对桥梁的影响。1930年,法国的著名工程师Navier在研究了这些桥的事故后,著文声称斜拉桥概念是模糊不清,是不能成立的,并宣布了斜拉桥的死刑。他认为毁坏的原因是由于没能精确计算力的变化过程,同时对一些细节处理不够。他提出悬

索桥和斜拉桥相结合的方案,后来由美国的一位工程师设计并建成当时世界上跨径最大的桥梁。直到1938 年德国工程师Dishinger 重新认识到了斜拉桥的优越性, 并对其进行了研究。1955年,Dischinger设计建成了世界第一座现代化的大跨斜拉桥——瑞典的S tr?msund桥(图1-1),主跨182.6米,采用全部斜拉结构,其主梁为钢板梁,中间用横梁连接,双塔式,每塔只用两对高强钢丝拉索,属于稀索体系。尽管用现代的观点来看,这座桥在细节处尚有一些不足之处,如桥面采用分离的混凝土梁的方案,索塔造型尚缺美观等,但其在桥梁结构上却是开创了一个新纪元,创造了一个新体系。而此时正值战后重建恢复时期,这样一种技术先进、造价经济、外形美观的新桥型一出现,立即得到社会的欣赏和认识,并大量进行推广随后。 图1-1 第一座现代预应力混凝土斜拉桥建于1962年,由意大利工程师Morandi设计的委内瑞拉马拉开波湖大桥,也属于稀索体系,

斜拉桥发展史与现状综述

从斜拉桥看桥梁技术的发展 :马哲昊 班级:1403 专业:建筑与土木工程 学号:6

摘要: 介绍了国外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。 关键词: 斜拉桥;发展史;现状;展望 Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward. Key words: Cable-stayed bridge; Review; Looking forward to

1.斜拉桥的发展 1.1 斜拉桥的历史 斜拉桥是一种古老而年轻的桥型结构。早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。1818

最新斜拉桥发展史及现状综述

1 2 从斜拉桥看桥梁技术的发展3 4 5 6 7 8 9 10 11 12 13 14 15 姓名:马哲昊 16 班级:1403 专业:建筑与土木工程 17 18 学号:143085213086 19 20 21

22 23 24 25 摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分 26 27 析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,28 对今后斜拉桥的发展做出展望。 29 关键词: 斜拉桥;发展史;现状;展望 30 31 32 Abstract: the paper introduces the domestic and foreign in recent 33 decades history of Cable-stayed bridge.the paper summarized the The 34 structure of cable-stayed bridge and the Economic benefits and 35 Introduced the technology of it.the direction of further research in 36 the future was put forward. 37 Key words: Cable-stayed bridge; Review; Looking forward to 38 39 40 41 42 43

44 45 46 47 48 49 50 51 1.斜拉桥的发展 52 1.1 斜拉桥的历史 53 斜拉桥是一种古老而年轻的桥型结构。早在数百年前,斜拉桥的设想和实54 践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的55 斜拉结构人行桥。在古代,世界各地也都出现过通行人、马等轻型荷载的斜56 拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造, 57 58 拉索则采用了钢丝。以后在欧洲的很多国家都先后出现了一些斜拉桥,如59 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了60 铁链条和铸铁杆,后来由于承载能力不足而垮塌。1818 年,英国一座跨越61 特威德河的人行桥也毁于风振。现在看来,这些桥梁的垮塌主要是由于当时62 工业水平的限制、对斜拉桥这样高次超静定结构体系缺乏理论分析方法和技63 术手段以及桥梁结构构造存在缺陷。世界上第一座现代化的大跨径斜拉桥诞64 生于 1955 年,在第二次世界大战结束后,Dischinger 在瑞典设计建成了

斜拉桥的结构形式、原理及发展

斜拉桥的结构形式、原理及发展 斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 一、结构 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182.6米的斯特伦松德(Stromsund)桥。目前世界上建成的最大跨径的斜拉桥为俄罗斯的俄罗斯岛大桥,主跨径为1104米,于2012年7月完工。 斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。它由梁、斜拉索和塔柱三部分组成。斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。 2013年已建成的斜拉桥有独塔、双塔和三塔式。以钢筋混凝土塔为主。塔型有H形、倒Y形、A形、钻石形等。斜拉索仍以传统的平行镀锌钢丝、冷铸锚头为主。钢绞线斜拉索在汕头石大桥采用。钢绞线用于斜拉索,无疑使施工操作简单化,但外包PE的工艺还有待研究。 斜拉桥的钢索一般采用自锚体系。开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。钢箱与钢箱的连接,一是螺栓,二是全焊,三是栓焊结合。 一般说,斜拉桥跨径300~1000m是合适的,在这一跨径范围,斜拉桥与悬索桥相比,斜拉桥有较明显优势。德国著名桥梁专家F.leonhardt认为,即使跨径1400m的斜拉桥也比同等跨径悬索桥的高强钢丝节省二分之一,其造价低30%左右。 斜拉桥发展趋势:跨径会超过1000m;结构类型多样化、轻型化;加强斜拉索防腐保护的研究;注意索力调整、施工观测与控制及斜拉桥动力问题的研究。

相关文档