文档库 最新最全的文档下载
当前位置:文档库 › 枯草芽孢杆菌的介绍-第二版本

枯草芽孢杆菌的介绍-第二版本

枯草芽孢杆菌的介绍-第二版本
枯草芽孢杆菌的介绍-第二版本

枯草芽孢杆菌的介绍

完成者:河岸hkfced(https://www.wendangku.net/doc/7811222809.html,/hkfced)完成时间:2012-3-23

版本:第二版本

目录

第一章芽孢杆菌的简要介绍 (1)

第一节芽孢杆菌种类 (1)

第二节芽孢杆菌的表达系统发展简史 (2)

第二章枯草芽孢杆菌的转化系统 (3)

第一节:常见转化方法 (3)

1 化学转化法 (3)

2 电转化 (3)

3 原生质体转化 (3)

4 碱金属离子转化 (4)

5 质粒的其它转移方式 (4)

第二节:标准操作 (4)

第一种方法:电转化 (4)

第二种方法:Spizizen转化 (5)

第三种方法:原生质体法(Takashi) (5)

第四种方法:原生质体转化之二 (6)

第五种转化方法:质粒混合法(BGSC推荐) (7)

第三章芽孢杆菌的表达系统 (8)

第一节芽孢杆菌表达系统的优点(相对于大肠杆菌) (8)

第二节芽孢杆菌的缺点 (9)

第三节助表达系统 (9)

第四节芽孢杆菌基因表达的主要特点 (9)

第四章枯草芽孢杆菌的转录翻译系统 (9)

第一节:转录系统 (10)

第二节:翻译系统 (11)

第五章芽孢杆菌常用的宿主和载体 (12)

第六章芽孢杆菌应用实例 (13)

1 中国 (13)

2 日本 (13)

3 加拿大 (14)

第七章芽孢杆菌的产品 (14)

第一节核苷类产品 (14)

第二节核黄素 (14)

第三节微生物制剂/益生菌 (15)

第四节工业酶制剂 (15)

第八章结语 (15)

附录一. 芽孢杆菌的相关经典文章 (16)

附录二. 枯草芽孢杆菌相关数据库 (16)

致谢及参考文献 (17)

第一章芽孢杆菌的简要介绍

芽孢杆菌作为一个属,于1872年被首次提出,至今已有一百多年。目前人们对芽孢杆菌的研究几乎涉及到了革兰氏阳性可生孢细菌的各个领域。尤其是在感受态、芽孢形成及其调控、遗传操作、菌种改良、生物技术等领域进行了大量的工作。芽孢杆菌是一个泛泛的概念,而科学研究中应用最多的当属枯草芽孢杆菌,例如168菌株及其大量的衍生菌株。枯草杆菌的研究之所以领先于其他芽孢杆菌的种,主要是由于他的转化、转导方法较完善,以及大量的衍生菌株。

目前应用最多的芽孢杆菌属菌种有枯草芽孢杆菌、嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、球形芽孢杆菌、嗜热脂肪芽孢杆菌、苏云金芽孢杆菌和耐碱的芽孢杆菌以及病原菌炭疽芽孢杆菌等12种。

第一节芽孢杆菌种类

目前,芽孢杆菌属很多菌株的全基因组序列已经报道,截至2011年10月(目前远不止这个数字,NCBI公布的更多),在KEGG上公布全基因组序列的芽孢杆菌属菌种有:简称菌种名称测序时间测序链接

bsu Bacillus subtilis1997RefSeq

bss Bacillus subtilis subsp. spizizenii W232010RefSeq

bst Bacillus subtilis subsp. spizizenii TU-B-102011 RefSeq

bsn Bacillus subtilis BSn52011RefSeq

bha Bacillus halodurans2000RefSeq

ban Bacillus anthracis Ames2003RefSeq

bar Bacillus anthracis Ames 05812004RefSeq

bat Bacillus anthracis Sterne2004 RefSeq

bah Bacillus anthracis CDC 6842009 RefSeq

bai Bacillus anthracis A02482009 RefSeq

bal Bacillus cereus biovar anthracis CI2010RefSeq

bce Bacillus cereus ATCC 145792003RefSeq

bca Bacillus cereus ATCC 109872004RefSeq

bcz Bacillus cereus ZK2004RefSeq

bcr Bacillus cereus AH1872008 RefSeq

bcb Bacillus cereus B42642008 RefSeq

bcu Bacillus cereus AH8202009 RefSeq

bcg Bacillus cereus G9******* RefSeq

bcq Bacillus cereus Q12009RefSeq

bcx Bacillus cereus 03BB1022009 RefSeq

bcy Bacillus cytotoxis NVH 391-982007RefSeq

btk Bacillus thuringiensis 97-272004RefSeq

btl Bacillus thuringiensis Al Hakam2006RefSeq

btb Bacillus thuringiensis BMB1712010RefSeq

bwe Bacillus weihenstephanensis2008 RefSeq

bli Bacillus licheniformis ATCC 145802004RefSeq

bld Bacillus licheniformis DSM132004RefSeq

bay Bacillus amyloliquefaciens FZB422007RefSeq

bao Bacillus amyloliquefaciens DSM 72010RefSeq

bae Bacillus atrophaeus2010 RefSeq

bcl Bacillus clausii2005 RefSeq

bpu Bacillus pumilus2007RefSeq

bpf Bacillus pseudofirmus2010 RefSeq

bmq Bacillus megaterium QM B15512010 RefSeq

bmd Bacillus megaterium DSM 3192010 RefSeq

bse Bacillus selenitireducens2010 RefSeq

bco Bacillus cellulosilyticus2011 RefSeq

bck Bacillus coagulans2011 RefSeq

bag Bacillus coagulans 36D12011 RefSeq

第二节芽孢杆菌的表达系统发展简史

芽孢杆菌表达系统是在70年代从枯草芽孢杆菌,又称枯草杆菌(Bacillus subtilis)开始,逐步扩展至其它种的。

枯草杆菌能发展成为芽孢杆菌中的第一个基因工程表达系统是与其早期的遗传学工作密切相关的。Spizizen于1958年发现枯草杆菌168菌株为可转化菌株以来,枯草杆菌的遗传学工作不断深入和发展。美国俄亥俄州立大学Bacillus遗传保藏中心(BGSC,https://www.wendangku.net/doc/7811222809.html,/)至1999年保藏的168菌株的遗传突变株就有890个。它牵涉到了诸多营养要求、各种酶、芽孢形成和发芽、感受态、Sigma因子、DNA重组与修复以及正负调控等各方面基因的突变体。70年代发明了DNA重组技术以后,特别是发现金黄色葡萄球菌的带有抗性标志的质粒可作为枯草杆菌的载体以后,克服了枯草杆菌只有隐秘性质粒的困难,枯草杆菌基因工程的工作更是加速发展。迄今,已经在枯草杆菌及其近缘种中克隆和表达了大量的原核和真核基因,其中有的已应用于工业化生产,取得了不少成绩。

将携有外源基因载体导入宿主细菌中是细菌基因工程表达系统的必要条件。大肠杆菌的氯化钙转化法对枯草杆菌无效,所以枯草杆菌基因工程表达系统中的宿主菌株用的最广泛的就是在DNA重组技术发明之前就可以进行感受态转化的168菌株及其突变体。Spizizen感受态转化的基本原理:是细胞在Spizizen最低盐培养基中形成一段饥饿、易于摄取外源DNA

片段的时期。一般步骤是先将其在较为丰富的培养基中培养,然后转接到贫瘠的培养基中,使其形成感受态(一般非常短暂)。有关感受态时期参与摄取外源DNA的几种蛋白及其摄取机制已有初步的研究。

第二章枯草芽孢杆菌的转化系统

第一节:常见转化方法

1 化学转化法

芽孢杆菌属不能够使用大肠杆菌常用的化学转化法,枯草芽孢杆菌表达系统中应用最为广泛的的宿主菌株是在DNA重组技术发明之前就可进行感受态转化的168菌株(色氨酸缺陷型)及其突变体。对于B. subtilis来说,自然感受态是对数生长后期在一种二元信号转导系统的调节下形成的,需要一系列相关基因的调控。按照这些基因的功能和表达时间的先后,它们被分为早期感受态基因和晚期感受态基因。其中早期基因主要对感受态的形成起调节作用,并进一步促进晚期感受态基因的表达。而后者主要负责细胞对外源DNA的吸附、吸收和重组。

B. subtilis的自然感受态是在对数生长后期开始形成的。这种生理状态的形成受到感受态信息素的调节,只有当细胞达到一定的数目(一般在对数后期)时,细胞所分泌到培养基中的感受态信息素的浓度达到一定临界值时后,感受态才能被诱导形成。

2 电转化

对于绝大多数微生物来说电转化是常见的转化效率最高的一种方法,芽孢杆菌属首次使用电转化方法转化出现在1989年,目前芽孢杆菌属内最常使用的B. subtilis的转化率已经达到104- 106。对于化学转化法,芽孢杆菌属形成感受态的时间并不好把握,另外由于其感受态的形成受到诸多基因的控制,对于一些经过诱变的工业生产株,往往不能形成感受态,所以在实际操作中,一般采用电转化将外源DNA导入宿主细胞。由于电转化方法具有操作简单、实验结果重现性好、参数容易控制等优点,目前已被许多实验室用来进行芽孢杆菌的基因转化。但是,电转化法的操作条件对转化效率影响很大,因此最佳条件的建立非常重要。影响电穿孔转化率的几个主要因素包括感受态的制备方法、电击压力、感受态和DNA溶液中离子浓度、复苏液的选择和复苏时间等。

3 原生质体转化

原生质体转化技术是20世纪60年代发展起来的一项重要的分子生物学技术,是将细胞通过酶解破壁,使之成为球状的原生质体,然后与DNA混合于高渗缓冲液中,在聚乙二醇(PEG)介导下,使原生质体-DNA发生相互凝聚,进行遗传转化,然后在适宜的条件下再生细胞壁,获得转化子的过程。原生质体转化开辟了育种工作的新途径。自1953年Weibull 首次用溶菌酶酶解分离巨大芽孢杆菌的原生质体,1979年Chang等[创立了原生质体转化技

术后,它很快应用在微生物中,并得到了证实,成功地实现了酵母菌、霉菌和细菌等微生物的转化。B. subtilis经过一定处理后能够形成原生质球,这种原生质球经聚乙二醇(PEG)处理后,能再生细胞壁而成为转化细胞,这种转化的转化频率非常高,B. subtilis原生质球转化时有80%细胞被转化。质粒DNA的单体、多聚体以及开环DNA都可以转化。线形质粒DNA的转化效率大约为环状分子的1%。最为重要的是这种方法能够转化不能形成感受态细胞的B. subtilis,另外许多其它种的芽孢杆菌也能够使用这种转化方法。但是这个质粒转化系统在实际操作中应用较少,因为使用原生质体转化时,大质粒的转化效率较低。并且原生质体的再生需要营养丰富的再生培养基,因此不能从再生培养基上直接选择营养缺陷型标记的克隆子。

4 碱金属离子转化

碱金属离子转化法是新近发展起来的一种芽孢杆菌转化方法。碱金属离子诱导转化B. subtilis的标准程序如下:收集处于对数生长中期的菌体,先用4.1 mol/L的KCl溶液在30 ℃处理,然后加入质粒,30 ℃静置30 min,加入等体积的70%的PEG6000溶液,缓慢混合,30 ℃保温10 min,再置于42 ℃水浴5 min,30 ℃冷却。上述PEG悬浮液经稀释后离心收获菌体,用新鲜培养基悬浮,并在37 ℃震荡培养2 h,扩增后的细菌培养液即可涂布选择性平板进行筛选。这种转化方法己知适用于B. subtilis NB22和短短小芽孢杆菌等菌株。在所有的金属离子中,只有达到饱和浓度的K+和Cs+离子有效,在一定浓度内其转化率与DNA 量成正比。这种方法的最大特点是线型质粒分子转化率虽然较环状分子低,但明显高于用线型质粒转化感受态细胞。对于染色体DNA片段而言,情况正好相反,也就是说,稀土金属离子转化法能特异性地转化质粒DNA。

5 质粒的其它转移方式

此外,在枯草芽孢杆菌之间,以及枯草芽孢杆菌和大肠杆菌之间,还可以细胞融合相互转移质粒。在苏云金芽孢杆菌中又发现了一种类似接合方式转移质粒的现象。

第二节:标准操作

第一种方法:电转化

实验试剂:GM:LB+0.5M 山梨醇;ETM:0.5M山梨醇,0.5M甘露醇,10%甘油;RM:LB+0.5M 山梨醇+0.38甘露醇

电转仪:eppendorf

方法(本人亲自验证,使用的菌株为WB600,质粒为PWB980,https://www.wendangku.net/doc/7811222809.html,/s/blog_60ea2d8f0100q173.html):

1)新鲜平板挑单菌落(小一点为好)接种于5ml LB培养基中,过夜培养.。

2)测量摇管内OD,控制好接种量,使接种完毕后培养基的OD在0.19-0.2之间。培养基为50ml GM。37℃,200rpm培养至OD600=1.0(大约3-4小时)左右。

3)取全部菌液冰水浴10 min,然后5000rpm,8min,4℃离心收集菌体。

4)用40ml预冷的电转缓冲液ETM洗涤菌体,5000rpm,8min,4℃离心去上清,如此漂洗3次。

5)将洗涤后的菌体重悬于等500μl的ETM中,每管分装60μl.

6)将60μl感受态细胞中加入1-6 μl质粒,冰浴孵育5min,加入预冷的电转杯(1mm)中,电击一次。电转仪设置:2.0kv(另外我还尝试过0.8kv,1.2kv),25μF200Ω,1mm,电击1次. (持续时间4.5ms-5ms之间)

7)电击完毕立即加入1ml 复苏培养基RM,37℃,200rpm,复苏3h后,涂板。37℃,过夜培养

第二种方法:Spizizen转化

取新鲜活化菌种一环接入装有5mLGM1培养基的试管中,37℃、200rpm培养过夜,取500μL菌液转接入相同的GM1培养基中,37℃、200rpm培养4-5小时使菌体生长达到对数期末期,然后取0.75mL GM1菌液接入装有5mLGM2培养基的试管中,37℃、200rpm培养1.5小时,制得感受态细胞,将待转化质粒DNA与1mL感受态细胞混匀后在37℃静置1小时,然后37℃,200rpm震荡培养1-1.5小时,取适量菌悬液涂布选择培养基,37℃培养24-48h后,挑选转化子。

10×Spizizen基本盐培养基(g/L):(NH4)2SO4 2,K2HPO4 8.3,KH2PO4 6,柠檬酸钠1.2,无离子水配制。0.1Mpa压力下灭菌20min。

Spizizen基本培养基:10×Spizzen基本盐培养基100ml/L,50%(w/v)葡萄糖10ml/L,色氨酸母液(5mg/ml)10ml/L,琼脂1.5%(w/v)。0.06Mpa压力下灭菌20min。

GM1培养基和GM2培养基:母液0.1Mpa压力下灭菌20min后按下表混合。

母液GM1培养基GM2培养基

40%葡萄糖100μL 100μL

20mg/mL酸水解酪素100μL 50μL

50mg/mL酵母抽提物100μL 0μL

20%(w/w)MgSO4.7H2O 5μL 40μL

10×Spizzen基本培养基500μL 500μL

H2O 3195μL3310μL

总体积5000μL 5000μL

第三种方法:原生质体法(Takashi)

1、活化:从活化24小时新鲜的CM平板上挑取单个菌落,接种于30ml CM液体培养基中,37℃过夜培养。

2、转接:次日取2%菌液接种于新的30ml CM液体培养基中,培养3h左右,至OD570为0.4~0.8。

3、收集菌体:取30ml菌液,4℃下3500rpm离心10min,弃上清。用10mlSMM洗涤两次。

4、制备原生质体:约用6ml SMM重悬,使OD570为2.0,加入溶菌酶(终浓度200μg/ml)在37℃慢摇作用30min,制备原生质体。

5、原生质体高渗悬液的制备:3500r/min离心15min,弃上清。用10ml SMM洗涤一次。原生质体重悬于300μl SMM中,得到“原生质体高渗悬浮液”。

6、转化:将待转化的40μl质粒DNA(约1μg)与10μl CaCl2溶液(2mol/l)混匀,再与50μL的2*SMM溶液混匀,加入100μl待转化菌株的“原生质体高渗悬浮液”,混匀后冰浴10min,加入40%的PEG4000溶液1800μl,混匀后冰浴1min后立即加入30ml HCP-1.5溶液以终止PEG4000的作用;3500r/min离心15min,弃上清,收集转化后的原生质体;用5 ml HCP-1.5溶液重新悬浮,30℃静置培养3~5h.。

7筛选:取500μl菌液转至5ml HCP-1.5半固体培养基中,混匀。加入kann(50μg/ml)抗性HCP-1.5再生平板中,37℃夹层培养。

CM培养基

葡萄糖1%,蛋白胨1%,酵母抽提物2%,牛肉膏0.5%,NaCl 0.5%,pH7.2,115℃灭菌15min

2*SMM培养基

蔗糖342.4g(1M),顺丁烯二酸4.46g(0.04M),MgCl2·6H2O 8.12g(0.04M)加去离子水定容至1000mL,pH7.5,115℃灭菌15min

HCP-1.5培养基

250ml琥珀酸钠(2M PH7.3),酪蛋白水解物5g,酵母抽提物5g,MgCl2·6H2O 1.9g,葡萄糖5g,K2HPO4 3.5g ,KH2PO4 1.5g,聚乙烯吡咯烷酮15g ,115℃灭菌15min

再生培养基:HCP-1.5培养基加2%琼脂

半固体HCP-1.5培养基:HCP-1.5培养基加0.8%琼脂

溶菌酶(一般用途)用水配制成50mg/mL溶菌酶溶液,分装成小份,保存于-20℃。

第四种方法:原生质体转化之二

1、活化:从活化24小时新鲜的LB平板上挑取单个菌落,接种于30mL LB液体培养基中,37℃过夜培养。

2、转接:次日取10%菌液接种于新的30mL LB液体培养基中,培养3h。

3、收集菌体:取30mL菌液,4℃3000rpm离心10min,弃上清。用20mL SMMP洗涤一次。

4、破壁:制备原生质体:用1mL SMMP(含0.1mg/mL溶菌酶),在37℃作用20min,制备原生质体。

5、原生质体高渗悬液的制备:3000r/min离心10min,弃上清。用10mL SMMP洗涤一次。

原生质体重悬于500μL SMMP中,得到“原生质体高渗悬浮液”。

6、转化:将待转化的质粒DNA50μL(约1μg)与等体积的2*SMM溶液混匀,加入500μL待转化菌株的“原生质体高渗悬浮液”,混匀后冰浴30min,室温放置10 min。

7复苏:取500μL菌液转至5mLSMMP摇管中,37℃,150rpm培养5h后,加入kann (50μg/mL)抗性再培养5h。涂布在kann(50μg/mL)抗性平板上挑选转化子。

2*SMM培养基:

蔗糖172.2g(0.5M),顺丁烯二酸 2.23g(0.02M),MgCl2·6H2O 4.06g(0.02M)加去离子水定容至1000mL,pH7.0,115℃灭菌15min

SMMP培养基:

蔗糖172.2g(0.5M),顺丁烯二酸2.23g(0.02M),MgCl2·6H2O 4.06g(0.02M),葡萄糖1%,蛋白胨1%,酵母抽提物1%,牛肉膏0.5%,NaCl 0.5%,K2HPO40.5%加去离子水定容至1000mL,pH7.0,115℃灭菌15min

CMR完全再生培养基:

蔗糖172.2g(0.5M),顺丁烯二酸2.23g(0.02M),MgCl2·6H2O 4.06g(0.02M),葡萄糖1%,蛋白胨1%,酵母抽提物1%,牛肉膏0.5%,NaCl 0.5%,K2HPO40.5%,调pH7.2~7.5,而后加入1.5%的琼脂粉,115℃灭菌15min.

溶菌酶(一般用途)用水配制成50mg/mL溶菌酶溶液,分装成小份,保存于-20℃。

溶菌酶(原生质体转化)普通溶菌酶0.22μm过滤灭菌后,用SMMP调制成1mg/mL的终浓度。

第五种转化方法:质粒混合法(BGSC推荐)

Competence development in B. subtilis is one of several stationary phase processes triggered by a nutritional downshift. Since the pioneering work of Anagnostopolous and Spizizen, number of protocols for preparing competent B. subtilis cells have appeared. The following method, modified by Ron Yasbin from protocols developed in the Frank Young lab at Rochester, was used routinely in Stan Zahler’s wonde rful bacterial genetics course at Cornell. This protocol assumes that you use a spectrophotometer that accepts 16×125 mm test tubes. If your spectrophotometer, like mine, works only with cuvettes, simply increase the culture volume to 10 or 20 ml in a 250-ml Erlenmeyer flask.

1. Streak recipient strain on one-half of a Tryptose Blood Agar Base plate. Incubate overnight (18 hr) at 37°C.

2. Inoculate a few colonies into 4.5 ml of Medium A in a 16×125 mm test tube that lacks visible scratches. Mix the contents of the tube thoroughly. Read its optical density at 650 nm in the spectrophotometer. Adjust the OD650 to be 0.1-0.2, maintaining the volume at 4.5 ml.

3. Incubate at 37°C with vigorous aeration. Read the OD650 every 20 min, plotting OD650 against time on semi-log paper. After a brief lag, the OD should increase logarithmically—that is, they should fall on a straight line. Note the point at the culture leaves log growth—the graph points fall below the straight line. In B. subtilis genetics, this point is known as t0. It should take 60-90 minutes of incubation and occur at OD650=0.4-0.6.

4. Continue incubation for 90 minutes after the cessation of log growth (t90). Transfer 0.05 ml of this culture into 0.45 ml of pre-warmed Medium B in a 16×125 mm test tube. Set up one tube for each transformation you intend to perform, plus an extra for a DNA-less control.

5. Incubate the diluted cultures at 37°C with vigorous aeration for 90 min. At this point, the cultures should be highly competent.

6. Add 1 μg of DNA to the competent cells and incubate at 37°C with aeration for 30 minutes.

7. Plate aliquots of the transformed cells onto selective agar.

10× Medium A base:

Yeast extract 10 g

Casamino acids 2 g

Distilled water to 900 ml

Autoclave, then add: 50% glucose, filter-sterilized 100 ml

10× Bacillus salts

(NH4)2SO4 20 g

K2HPO4·3H2O 183 g

KH2PO4 60 g

Na+citrate 10 g

MgSO4·7H2O 2 g

Water to 1000 ml

Medium A

Sterile water 81 ml

10× Medium A base 10 ml

10× Bacillus salts 9 ml

Medium B

Medium A 10 ml

50 mM CaCl2·2H2O 0.1 ml

250 nM MgCl2·6H2O 0.1 ml

第三章芽孢杆菌的表达系统

生物安全性要求我们的宿主菌最好具有非致病性。而绝大多数芽孢杆菌恰恰能满足这一要求,而且还具备了一些其他菌株所没有的优良特性。事实表明,芽孢杆菌可以作为一些原核生物、真核生物和哺乳动物等的外源蛋白的表达宿主。有的已经大规模投入生产。

蛋白质分泌(Protein Secretion)是指蛋白质经由细胞膜向细胞外运输的过程,又称为易位(Translocation)。蛋白质分泌是Bacillus的一大特点,蛋白质组学研究表明,B. subtilis 中至少有4种蛋白质分泌途径,大约有300个蛋白质可以被分泌到胞外。B. subtilis中主要的蛋白质分泌途径主要包括(1)Sec分泌途径和(2)Tat分泌途径,其它分泌途径有ABC 转运子途径(ABC Transporter),主要用于细菌素等分子的输出;(3)Com分泌途径,它与B.subtilis细胞感受态形成有关,负责此过程中外源DNA的结合和摄取,该过程是通过ComGC、ComGE、ComGD和ComGG这四个蛋白质实现的,经由该途径输出的蛋白质其前体信号肽由第四类信号肽酶(Type IV SPase)切割。微生物将蛋白质分泌到胞外是为了实现所需的生理功能。因B.subtilis蛋白质分泌功能发达,其主要的分泌途径可被用于外源蛋白质的高水平分泌表达。蛋白质分泌机理和应用技术是B. subtilis研究的重要课题。深入研究其分泌途径的机理,有可能克服其中存在的分泌瓶颈,将B.subtilis改造成为一个优秀的外源蛋白质分泌工厂。

第一节芽孢杆菌表达系统的优点(相对于大肠杆菌)

1、非致病性:除个别种(炭疽芽孢杆菌和腊样芽孢杆菌)外对人畜无害。

2、转化外源DNA的感受态系统也同样适用于转化重组DNA。

3、质粒和噬菌体都可以作为克隆的载体。

4、细胞壁的组成简单,只含有肽聚糖和磷璧质,因此在分泌的蛋白质产品中不会混杂有胞被内毒素(热源性脂多糖),而这一点是大肠杆菌无法比拟的。

5、能够大量分泌某些胞外蛋白,蛋白跨越细胞膜后,被加工和直接释放到培养基中而不发生聚集,回收和纯化蛋白较为简单。例如:α淀粉酶、蛋白酶及杀虫晶体蛋白等。

6、良好的发酵基础和生产技术,在相对简单的培养基中能生长到很高的密度。

7、没有明显的密码子偏爱性,同时表达产物也不容易形成包涵体:在E.coli表达系统中,若重组表达的外源蛋白质中含有大量连续的稀有密码子,则常常造成表达量低,或者翻译提前终止;而目标蛋白质产物形成包涵体会导致蛋白质不可溶,给分离纯化和回收目标蛋白质造成麻烦。而B.subtilis表达系统在这两个方面都不存在问题。

第二节芽孢杆菌的缺点

1、能够产生大量的胞外蛋白酶,往往造成表达产物的大量降解。

2、能自发形成感受的的菌株极少,感受态持续时间短暂,分子克隆效率低。

3、存在限制和修饰系统,重组质粒不稳定。

第三节助表达系统

芽孢杆菌拥有一套高效的分泌信号肽及分子伴侣系统(参考文献:Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Dijl JM (2000) Signal Peptide-Dependent Protein Transport in Bacillus subtilis: a Genome-Based Survey of the Secretome. Microbiol. Mol. Biol. Rev. 64: 515–547.),利用好这些有用的元件,就可以完成目的蛋白的高效分泌表达,从而避免讨厌的包涵体的形成!

第四节芽孢杆菌基因表达的主要特点

1、对数生长期后进入芽孢形成期,不同的芽孢形成阶段所表达的基因不尽相同。

2、多Sigma因子:RNA聚合酶全酶由5个亚基(α 2 β β’ )组成。σ因子的主要功能是帮助核心酶识别特定的启动子而结合到转录的起始部位,转录开始后就不起作用了。芽孢杆菌中已发现的σ因子有7种,而大肠杆菌只有2种。因而,大多数阴性菌的基因不能够在芽孢杆菌中直接表达而需要更换启动子等元件。

3、核糖体结合为点(RBS):枯草杆菌最典型的SD序列是―GGAGG‖,而大肠杆菌的为―AAGGA‖。

4、大肠杆菌分泌蛋白往往分泌到两层细胞膜之间,而芽孢杆菌只有一层细胞膜,因而可以大量分泌蛋白至培养基中。通过计算机分析,枯草杆菌有将近300个N端具有信号肽用来跨膜的蛋白。不过用来表达和分泌克隆基因的信号肽主要来自蛋白酶、淀粉酶和细胞壁表层蛋白等。

总的来讲,人们选择不同种的芽孢杆菌作宿主,一般都有着极强的应用研究的目的。目前许多实验室现在也在自主开发野生的芽孢杆菌表达系统,一是看中了其高效分泌表达的能力;另外,对于菌剂产品来讲,将外源基因在芽孢杆菌中表达,可以大大延长产品的货架期。

第四章枯草芽孢杆菌的转录翻译系统

构建表达载体常用的启动子序列比较

启动子名称-35区间隔序列长度-10区

Ptrp TTGACA 17 TTAACT

Ptyr-tRNA TTTACA 16 TA TGA T

Plac TTGACA 17 TA TGTT

PrecA CTGA TG 17 TA TAA T

Para TTGACA 17 TACTGT

λPL TTGACA 17 GA TACT

λPR TTGACA 17 GGTAA T

SPO1 TTGACT 17 CA TAA T

P43 AGAAA T 15 GCGA TT

GTGAAA 17 TAAAA T

SacB TTGCAA 17 TAGAA T consensus TTGACT 17 TA TAA T

枯草芽孢杆菌中的σ因子

σfactor Gene(s) Function -35 spa

cer

-10

σA(σ43,σ55) sigA,rpoD Housekeeping/earlysporul

ation

TTGACA 17 TA TAA T

σB(σ37)sigB General tress response RGGXTT

RA

14 GGGTA T

σC(σ32)unknown Postexponential

geneexpression AAA TC 15 TAXTGYTTZT

A

σD(σ28)sigD,flab Chemotaxis/autolysinflage

llar gene expression

TAAA 15 GCCGA TA T

σH(σ30)sigh,spoOH Postexponential

geneexpression;competen

ce andearly sporulation

genes RWAGGA

XXT

14 HGAA T

σL sigL Degradative enzyme

geneexpression

TGGCAC 15 TTGCANNN

σE(σ29)sigE,spoIIGB Early mother cell

geneexpression ZHA TAX

X

14 CA TACAHT

σ

F(σSPOIIAC) sigF,spoIIAC Early forespore cell

geneexpression

ZHA TAX

X

15 CA TACAHT

σG sigG,spoIIIG Late forespore cell

geneexpression

GHA TR 18 GGHRARHTX

σK sigK,spoIVCB

:spoIIIC Late mother cell

geneexpression

AC 17 CA TANNNTA

其中H指A/C;N指A/G/C/T;R指A/G;W指A/G/C;X指A/T;Y指C/T;Z指T/G.

第一节:转录系统

枯草芽孢杆菌σA因子所识别的启动子-35区和-10区与大肠杆菌类似,保守序列分别为“TTGACA”和“TA TAA T”。σA因子识别的启动子两区域之间的间距为17~18bp,而其他RNA聚合酶的则不定,多为15~16bp。一般来说,当该距离偏离17bp,无论大或小时,启动子都会变弱。

在枯草芽孢杆菌中,许多启动子的-35区上游富含A T,该A T丰富区被称为转录增强区,对基因转录非常重要;在-10区的上游含有一个重要的TGTG基序(-16),这个区域的突变会显著的减弱启动子的强。

另外,在-10区到+1之间通常也富含A T,该特点主要是便于转录起始时促进DNA的局部解链。对很多依赖于σA因子的枯草芽胞杆菌的启动子的研究表明,它们带有规范的存在与大肠杆菌启动子中的-10和-35序列。

至少在枯草芽胞杆菌中,有很多启动子在-10区的上游都含有一个重要的TGTG基序(-16)。这个区域的突变会显著的减弱启动子的强度。

上述启动子在-35区的上游还保留了很多的多聚A和多聚T的区域。虽然这个-16区在大肠杆菌中发现,但是这样的启动子常常缺乏-35区,而在枯草芽胞杆菌中则有-35区。

迄今发现的枯草芽孢杆菌启动子主要有两种形式:一是单个的启动子,多数在快速生长期表达;另一类为复合启动子(最常见的例如P43),它包括串联启动子和重叠启动子。重叠启动子有这样一些特征:(1)不同类型的两个启动子重叠;(2)两个启动子有不同的转录

起始位点或相同的起始位点;(3)启动子可能受时序调节。这类启动子在枯草芽孢杆菌感知外界环境变化,孢子形成等诸多方面发挥着重要作用。

终止子:一旦RNA聚合酶起始了转录,就会不停的合成核酸直到遇到转录终止位点。细菌DNA有两类转录终止位点:因子依赖型和非因子依赖型。在枯草芽孢杆菌基因转录终止方面,仅有少数基因得到很好的研究。它们的终止区都富含GC的倒转重复,后面跟着一串A(T),即非因子依赖型的转录终止。有资料显示,枯草芽孢杆菌的终止子在结构和序列上与大肠杆菌相似,并发现大肠杆菌的终止结构在枯草芽孢杆菌中同样起作用。目前外源基因表达中常用的终止子是来自大肠杆菌rRNA操纵子上的rrnT1T2以及T7噬菌体DNA上的Tφ。对于一些终止作用较弱的终止子,通常可以采用二聚体终止子串联的特殊结构,以增强其转录终止作用。终止子也可以象启动子那样,通过特殊的探针质粒从细菌或噬菌体基因组DNA中克隆筛选。

第二节:翻译系统

1.枯草芽孢杆菌mRNA的核糖体结合位点(RBS),也称为SD序列。其典型的SD 序列为“GGAGG”,与大肠杆菌的“AAGGA”有所不同。一般来说,mRNA与核糖体的结合程度越强,翻译的起始效率就越高,而这种结合程度主要取决于SD序列与16S rRNA的碱基互补性,其中以GGAG四个碱基序列尤为重要。对多数基因而言,上述4个碱基中任何一个换成C或T,均会导致翻译效率大幅度降低。

2.核糖体的16S rRNA3’端参与识别mRNA并起始翻译,而枯草芽孢杆菌的16SrRNA 3’端序列与大肠杆菌是不相同的,枯草芽孢杆菌的核糖体只能识别同源的mRNA,大肠杆菌的核糖体可以支持革兰氏阳性和阴性菌的mRNA指导蛋白质合成。因此,作为革兰氏阴性菌的大肠杆菌,其基因除个别的以外,一般的不能直接在属于革兰氏阳性菌的芽孢杆菌中表达,而芽孢杆菌的基因可以在大肠杆菌中表达。注:这是因为革兰氏阳性菌的核糖体30S亚基缺少S1蛋白,这可能涉及到核糖体结合位点的问题,另外阴性菌的启动子枯草芽孢杆菌不能够识别。

SD序列与起始密码子之间的序列也影响翻译效率,通常富含A+T的间隔区比富含G+C 的翻译效率高15-50倍。SD序列下游的碱基若为AAAA或UUUU,翻译效率最高;而CCCC 或GGGG的翻译效率则分别是最高值的50%和25%。紧邻AUG的前三个碱基成分对翻译起始也有影响,对于大肠杆菌β-半乳糖的mRNA而言,在这个位置上最佳的碱基组合是UAU或CUU,如果用UUC、UCA或AGG取代之,酶的表达水平低20倍。SD序列与起始密码子之间的精确距离保证了mRNA在核糖体上定位后,翻译起始密码子AUG正好处于核糖体复合物结构中的P位,这是翻译启动的前提条件。一般的,“GGAGG”的最后一个G和起始密码子的距离为7~9个碱基。在此间隔少一个或多一个碱基,均会导致翻译起始效率不同程度的降低。

起始密码子在枯草芽孢杆菌中,多数基因的起始密码子为AUG,少数为GUG或UUG,AUG仍为起始密码子的最优选择。大肠杆菌中的起始tRNA分子可以同时识别AUG、GUG 和UUG三种起始密码子,但识别频率并不相同,通常GUG为AUG的50%,而UUG只及AUG的25%。从AUG开始的前几个密码子碱基序列也至关重要,这一序列不能与mRNA 的5’端非编码区形成茎环结构,否则会严重干扰mRNA在核糖体上的准确定位。

第五章芽孢杆菌常用的宿主和载体

目前,芽孢杆菌中常用的载体主要有自主复制质粒、整合质粒和噬菌体三种。从芽孢杆菌中分离的自主复制质粒,除极少数以外(例如pBC16),均为无抗性标志的隐秘质粒。带有抗性标志的自主复制质粒主要来自其它G+细菌,特别是来自金黄色葡萄球菌的质粒。可复制质粒的复制子(Replicon)类型可分为滚环型复制子(Rolling-circle Replicon,或Rolling-circle Mechanism Replicon,简称RCM Replicon)和Theta型复制子(Theta Replicon)。RCM复制子质粒较典型的有pUB110、pC194和pE194,而Theta复制子质粒较典型的有pAM β1。最近发现的B.subtilis内源质粒pBS72含有一种新型的Theta复制子。除个别质粒外,RCM复制子质粒通常不稳定,在不含抗生素抗性基因的条件下易丢失,而Theta复制子质粒则要稳定的多,是重组表达系统构建的良好材料。迄今,已在上述质粒的基础上构建了双标记质粒、芽孢杆菌/大肠杆菌穿梭质粒、表达质粒、整合质粒和探针质粒等。绝大多数的载体在阳性菌中的拷贝数都相对低。

采用整合质粒将克隆基因整合到宿主染色体,是克服芽孢杆菌质粒不稳定性的一个有效的途径。整合的目的一般通过同源重组或者转座子插入来实现。这种质粒的基本结构是在大肠杆菌质粒的基础上增加一个芽孢杆菌的抗性标志,以及待整合的目的基因。它在大肠杆菌中进行基因克隆或亚克隆操作。整合质粒导入芽孢杆菌后,由于它没有芽孢杆菌质粒的复制起点而不能自主复制,只有插入到宿主体后,随着细胞复制而复制。在含有整合质粒中芽孢杆菌抗性标志的抗生素的培养基上,就可以很容易挑出这种整合体。整合质粒另一个重要的用途是用于目的基因的敲除。

整合型质粒是一类具有选择性标记并以限制性复制为特点的质粒,它是在对枯草芽孢杆菌分子遗传学研究的早期阶段发展出来的一种非常有用的克隆载体。选择性标记一般为对某种抗生素的抗性,限制性复制通常是指这类质粒在大肠杆菌中具有自主复制的功能,而在革兰氏阳性细菌(如枯草芽孢杆菌)中不能自主复制。因此在有选择性压力存在的条件下,当这种质粒被转化入枯草芽孢杆菌后,所有的转化子都将质粒整合进染色体或其他能够自主复制的DNA单元中。一般整合型质粒都带有和枯草芽孢杆菌染色体同源的DNA序列,并在同源位点处整合入染色体。如果整合型质粒中只带有一段同源DNA序列,它将通过坎贝儿机制和染色体发生一个单交换而全部整合到染色体中;当它带有两段在染色体上相距比较近的同源DNA序列时,则还可以和染色体发生双交换而部分整合在染色体中。整合型质粒在枯草芽孢杆菌分子遗传学的研究中通常有以下几种用途:

1).带有目的基因部分序列的整合型质粒可以通过单交换方式插入所研究的目的基因中而破坏其功能,因此可以用来构建目的基因的缺陷株,通过缺陷株的表型变化来研究目的基因的功能。

2).染色体步移。用合适的限制性内切酶处理带有整合型质粒的染色体后,然后将酶切处理过的染色体片段自连,往往可以得到带有旁侧序列的“新”整合型质粒。在早期的枯草芽孢杆菌遗传学研究中,这种载体在确定染色体图谱方面是非常有用的。

3).报告基因的融合。利用整合型载体可以很方便地将报告基因整合在染色体上,从而研究目的基因在单拷贝的自然状态下的转录和表达水平。

4).基因的异位整合。利用双交换整合,可以方便地把不同的基因整合在染色体的同一个“中立”位点上来比较它们在“中立”位点的转录和表达水平,这可以有效地排除不同的整合位点对转录所造成的干扰。

5).染色体上DNA序列的扩增。整合型质粒通过坎贝儿机制整合入染色体后,在所插入的质粒两侧具有同向重复序列,利用这种序列可以实现插入质粒在染色体上的串联扩增。

因此仅仅通过提高抗生素的浓度,就可以筛选到目的基因剂量增加的菌株。当细胞内的染色体进行复制时,其中一条染色体因为偶然发生分子内重组而使整合质粒从该条染色体上脱落下来,一旦脱落的质粒通过坎贝儿机制而整合入另一条染色体中,就导致了整合型质粒在该染色体上的串联扩增。随着扩增程度的增加,细胞内两条染色体之间在重复序列处的双交换重组也能导致其中一条染色体上重复序列扩增程度增加,而另一条染色体上的扩增序列则丢失。

不少噬菌体都可用作载体,如Φ105噬菌体,SPβ噬菌体及其它噬菌体。其中Φ105噬菌体应用较多,它是一个温和噬菌体,基因组约为39.2Kb,从中发展了不少载体。目的基因一般在体外―包装‖之后,经噬菌体介导(转导)而进入宿主菌进行表达。

实验室一些常用的枯草芽孢杆菌质粒:https://www.wendangku.net/doc/7811222809.html,/s/blog_60ea2d8f0100urvb.html

第六章芽孢杆菌应用实例

1 中国

全球最大的EGF(表皮生长因子)供应商——中国百胜斯(总部上海)

首席专家烫懋竑教授:百胜斯的产品:化妆品伊丽白露

百胜斯公司,是国内专业从事生物产品研究与开发的高科技公司,公司首席专家汤懋竑先生为中国科学院遗传研究所研究员,最终解决了EGF芽孢杆菌基因工程系统的蛋白酶多、不稳定等世界性技术难题,研究开发出了具有世界领先水平的―汤氏芽孢杆菌基因工程系统‖。采用该系统,EGF获得了高效稳定表达,大大降低了生产成本,从而占领了世界生物技术领域中的一个新技术制高点,为环保、工业、农业、医药业下游产品的进一步开发奠定了基础。

2 日本

文章很多,做得非常出色----短短芽孢杆菌表达系统。主要是运用了一段胞壁蛋白的信号序列来做表达,对各种表达瓶颈进行优化。他们也是主要用于生产EGF用于化妆品。日本人的短短芽孢杆菌的表达系统精细图示:五个串联启动子,两个SD序列,还有信号肽序列+结构基因。实际上后面应该还有强Terminator以防止通读。他们用本系统做过的蛋白:最高可达3.7g/L。很有意思,日本人还把EGF用在了羊身上!这样会使羊的表皮细胞快速分裂生长,最终结果导致羊毛变细!产出优质羊毛!

Brevibacillus brevis(短短芽孢杆菌):做得最早和做的最早的当属日本的S Udaka。有兴趣的可以搜索一下他所发表的文章。他对短短芽孢杆菌进行了一些非常详尽的研究,同时也建立了几套高效的转化方法,形成了自己特有的高效表达系统(后面实例将详细述及)。日本人还把短短芽孢杆菌的可以介导外源蛋白高效分泌表达的信号元件申请了许多专利保护了起来。

概念划分:短芽孢杆菌属是近年来刚刚从芽孢杆菌属独立出来的一个新属,地位与芽孢杆菌属是相当的,形象地来讲:已经不再是芽孢杆菌属的下级了,短短芽孢杆菌自然也独立出来形成一个新种。短短芽孢杆菌作为表达菌株的几个优点:1、几乎不向胞外分泌蛋白酶(枯草芽孢杆菌至少分泌8种不同的蛋白酶),利于目的蛋白的稳定性。2、细胞壁相对于枯草

杆菌来讲更薄,有利于外源蛋白的分泌。3、据研究其发酵液中存在着可以促进蛋白中二硫键形成的因子,可以促进外源蛋白的折叠。等等。

3 加拿大

Dr. Sui Lam Wong ,Associate Professor (加拿大卡加利大学)。是我们华人的骄傲!祖籍应该是香港,科研工作非常出色的前辈,发现了枯草芽孢杆菌的新的蛋白酶,分子伴侣研究等。该前辈发表了许多SCI。构建了敲除了8个蛋白酶基因的非常出色的枯草芽孢杆菌宿主菌WB800。

Dr. Sui Lam Wong 的研究方向和正在进行的内容:

1、Regulation of gene expression.

2、Molecular chaperone assisted, protein folding.

3、Extracellular proteases.

While the development and improvement of this microbial expression-secreted system are in progress, several medically important proteins including single-chain antibody, bacterial plasminogen activators (blood-clot dissolving agents) and interleukins are selected to evaluate this production system. Certain novel and desirable properties will be introduced into these molecules through genetic and protein engineering.

第七章芽孢杆菌的产品

第一节核苷类产品

随着60年代对呈味核苷酸研究的开展,发现枯草芽胞杆菌等可以在发酵液中积累核苷类物质,随后相继得到了一系列积累肌苷、鸟苷、腺苷、黄苷等嘌呤核苷的微生物菌株,并阐明了芽胞杆菌嘌呤核苷(酸) 的代谢途径,随后围绕菌种的选育和工艺的优化也进行了相当多的研究,取得了很大成就,形成和建立了完善的核苷(酸)工业,继氨基酸发酵之后又一重要的产业。

核苷生产株常见的缺陷及抗性有:组氨酸缺陷,硫胺素缺陷,腺嘌呤及黄苷酸缺陷(可选),8-杂氮鸟嘌呤抗性,6-巯基嘌呤抗性,磺胺胍抗性,蛋氨酸亚砜抗性等。

国内研究单位:华东理工大学,天津科技大学,江苏微生物研究所

国内企业:广东肇庆星湖

第二节核黄素

微生物发酵法生产核黄素至今已有约60年的历史,它具有生产工艺简单、原料廉价、对环境无污染等优点。真菌和细菌均可用于生产核黄素,主要生产菌种有棉囊阿舒氏酵母(Ashbya gossypii)、解朊假丝酵母(Candida famata)、阿舒氏假囊酵母(Eremothecium ashbyii)、酿酒酵母(Saccharomyces sp.)、枯草芽孢杆菌(Bacillus subtilis)和产氨棒状杆菌(Corynebactia aminogensis)等。

生产核黄素的枯草芽孢杆菌一般为经过基因工程改造后的菌株。

核黄素生产株一般在获得良好的鸟苷酸积累的性能后,通过获得8-氮鸟嘌呤(8-AG)、8-氮腺嘌呤(8-AA)、6-巯基鸟嘌呤(6-SG)、德夸菌素、甲硫氨酸亚砜和磺胺类药物等抗性,然后继续诱变获得核黄素结构类似物玫瑰黄素(roseflavin)的抗性突变株。最后将核黄素合成操纵子连接到质粒转入宿主菌表达,或者整合进入染色体上进行表达,最终得到能够积累核黄素的生产菌株。

常见的缺陷及抗性有:8-杂氮鸟嘌呤抗性,6-巯基嘌呤抗性,磺胺胍抗性,蛋氨酸亚砜抗性等。

国内研究单位:天津大学

国内企业:湖北广济药业

第三节微生物制剂/益生菌

芽孢杆菌是一类好氧菌,在一定条件下产生芽孢,和常用的乳酸菌等益生菌相比,芽孢杆菌具有以下优点和特点:①具有耐高温、耐酸碱、耐压等特点,能够耐受颗粒饲料加工的影响;②在贮藏过程以孢子形式存在,不消耗饲料的营养成分,可以保持饲料的质量;③进入肠道后,在肠道上部迅速复活,复活率接近100%;④芽孢杆菌能够产生蛋白酶、淀粉酶、脂肪酶以及多种氨基酸;⑤芽孢杆菌可以消耗大量的氧,维持肠道厌氧环境,抑制致病菌的生长,维持肠道正常生态平衡;⑥具有平衡和稳定乳酸杆菌的作用。

目前使用的菌株有枯草芽孢杆菌(Bacillus subtilis)、地衣芽孢杆菌(Bacillus licheniformis)、蜡样芽孢杆菌(Bacillus cereus)、东洋芽孢杆菌(Bacillus toyoi)等。

第四节工业酶制剂

芽孢杆菌枯草芽孢杆菌可利用的养料十分丰富,这就决定了其经过发酵可以产生种类和数量都极为可观的酶。研究资料表明,枯草芽孢杆菌能够产生蛋白酶、淀粉酶、纤维素酶、葡聚糖酶、植酸酶、果胶酶、木聚糖酶等十几种酶。在过去的十年里,利用基因工程技术,枯草芽孢杆菌几乎可以在短期内大量生产任何种源的新酶,从而可省略大量的原始菌种改造、驯化、毒理学实验等工作;利用蛋白质工程技术,能够在生产新酶之前对该酶的性质进行改良和调整,从而改善酶的活性或者赋予酶新的所需性质。这些新技术的应用使新酶种的开发周期大大缩短,难度和成本降低,产品更加稳定有效。

枯草芽孢杆菌酶是工业酶市场的主体,其生产的蛋白酶、淀粉酶是工业酶中应用最为广泛的酶,仅二者就占到了整个工业酶市场的50%。

国内研究单位:江南大学

国际企业:诺维信

第八章结语

总之,随着研究的不断深入,枯草杆菌蛋白分泌机制将得到更清楚的了解,许多新的分泌元件和蛋白酶都会被认识。相信在不久的将来影响枯草杆菌表达系统发展的问题会很好地被解决。除了上述的内容,关于芽孢杆菌分泌表达系统尚有其他问题有待进一步研究。首先需更深入地探索其分泌机制,透彻了解蛋白转运及折叠过程,尤其是分泌限速因素,对基因

工程菌株的构建工作有重要的指导作用。其次,应利用先进的发酵技术和蛋白的优化设计,补偿菌株自身的某些缺陷,提高目的蛋白的产率。另外,将各种改进策略有机地结合使用,应能更显著地提高外源蛋白的分泌效率。总之,近年来对在芽孢杆菌中分泌表达外源蛋白的研究取得了很大进展,建立了一系列有效的外源蛋白表达系统,尤其是B. subtilis 和B. brevis 表达系统,已在一些有价值的多肽生产上获得了成功,显示出良好的应用前景。

今后它还会向着不断完善和扩大芽孢杆菌宿主/载体表达系统,提供越来越多价廉物美的产品造福人类的方向前进。

据文献报道,已应用芽孢杆菌,但这些菌还不是基因工程菌的有以下领域:洗涤剂、食品工业、苎麻脱胶、纸浆、纺织、污水处理、原油降解、石油增产、除臭剂、浸提金属、利用秸秆产丙酮等、降解低密度乙烯塑料、角蛋白降解、几丁质降解、木材处理、降解木质素、生产高麦芽糖浆、酱油渣做鱼饲料、植物生长刺激物、草地、根结线虫的防治、抗真菌、控制小麦和其它作物的根瘤、增产菌、芽孢杆菌固氮、细胞壁表面蛋白、杀软体动物、耐热蛋白酶抑制剂质慢性肝炎、病毒病和艾滋病、抗肿瘤、降低酒后血液酒精浓度、抗高血脂等等。

附录一. 芽孢杆菌的相关经典文章

Bacillus subtilis WB600的构建:Engineering a Bacillus subtilis Expression-Secretion System with a Strain Deficient in Six Extracellular Proteases

枯草芽孢杆菌全基因敲除:Essential Bacillus subtilis genes

常用的枯草芽孢杆菌抗性盒:Antibiotic-resistance cassettes for Bacillus subtilis

P43启动子的介绍:Overlapping Promoters Transcribed by Bacillus subtilis sigma55 and sigma37 RNA Polymerase Holoenzymes during Growth andS tationary Phases

翻译,RBS的介绍:1. The influence of ribosome-binding-site elements on translational efficiency in Baciiius subtiiis and Escherichia coii in vivo 2. Bacillus subtilis Requires a "Stringent" Shine-Dalgarno Region for Gene Expression

无抗性标签质粒的整合:New integrative method to generate Bacillus subtilis recombinant strains free of selection markers

全基因组测序:Computerized genetic map of Bacillus subtilis

枯草芽孢杆菌的工业应用:Developments in the use of Bacillus species for industrial production 枯草芽孢杆菌的代表性综述:The Genus Bacillus—Nonmedical

最常见的枯草电转化方法:High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis

附录二. 枯草芽孢杆菌相关数据库

美国俄亥俄州立大学Bacillus遗传保藏中心https://www.wendangku.net/doc/7811222809.html,/

B.subtilis168的基因型查找:http://www.genome.jp/kegg-bin/show_organism?org=T00010

芽孢杆菌调控元件数据库:http://dbtbs.hgc.jp/

枯草芽孢杆菌专业论坛:https://www.wendangku.net/doc/7811222809.html,/BacillusBBS/

本人博客:https://www.wendangku.net/doc/7811222809.html,/hkfced

致谢及参考文献

1.枯草杆菌新型表达系统和遗传操作体系的建立及应用,张晓舟博士,南京农业大学

2.枯草芽孢杆菌食品级表达系统的构建和分泌表达研究,夏雨博士,江南大学

3.产核黄素枯草芽孢杆菌ribAH基因在ccpA基因位点的表达,叶碧莲,天津大学

4.鸟苷基因工程菌的构建及其发酵培养基优化,何逵夫,天津科技大学

5.特别感谢南京农业大学张晓舟博士,本文以他2004年在论坛上发表的一篇文章作为基

础,综合了国内一些高校所作的成果,再加上本人这几年对枯草芽孢杆菌的粗略理解,整理了这篇文章,如有不当之处,请指正。欢迎讨论,积极交流是推动学术发展的主要动力。

联系方式:hkfced@https://www.wendangku.net/doc/7811222809.html,

河岸hkfced,2012年03月

枯草芽孢杆菌试验方案

枯草芽孢杆菌浓度测定试验方案 一、材料准备 (1)实验仪器 培养皿、烧杯、天平、玻璃棒、移液枪(5ml 1ml 200ul)、枪头(黄、蓝)、电子天平、250ml锥形瓶、15ml试管、涂布棒、酒精灯、记号笔、封口膜、灭菌锅、漩涡震荡仪 (2)实验试剂 NA培养基: 牛肉膏、蛋白胨、琼脂、水、盐酸、氢氧化钠、无菌水 枯草芽孢杆菌(不同浓度梯度):101、102、103、104、105 (3)培养基配方 牛肉膏(3g)、蛋白胨(5g)、琼脂(20g)、水(1000ml)、无菌水(100ml)、盐酸、氢氧化钠(调节PH7.0-7.2),121°C下灭菌30 min。 二、实验步骤 (1)制备菌液 称取1.0g枯草芽孢杆菌转移至灭菌试管中,用移液枪分别移取9ml无菌水至试管,并用漩涡震荡仪震荡20-30秒保证完全混匀,标记为①; 用移液枪从①中移取1ml混匀菌液至一新试管,用移液枪分别移取9ml 无菌水,并用漩涡震荡仪震荡20-30秒保证完全混匀,标记为②;同理,分别进行稀释,得到③-⑧; (2)进行涂板 向每个培养皿中倒入约12ml50℃左右的灭菌的NA培养基,排除气泡;

待培养基凝固后,用移液枪分别从①-⑧中吸取200ul菌液,加至已灭菌的培养皿中,用涂布棒进行均匀涂抹,并标记; 每个样品做两个处理,每个稀释度重复3次; 将密封后的培养皿倒置于36℃的恒温培养箱内培养18h—24h,观察记录实验结果。 (3)菌落计数 以平板上出现30个——300个菌落数的稀释度平板为记数标准,并确定为稀释倍数: 当只有一个稀释度,其平均菌落数在30个-300个之间时,则以该平均菌落数乘以其稀释倍数; 若有两个稀释度,其平均菌落数30个-300个之间时,应按两者菌落总数之比值来决定。若其比例小于2应计数两者的平均数,若大于2则计数其中稀释较小的菌落总数; 若三个稀释度的平均菌落数大于300个,则应按稀释度最高的平均菌落数乘以稀释倍数; 若三个稀释度的平均菌落数小于300个,则应按稀释度最低的平均菌落数乘以稀释倍数。5.6若三个稀释度的平均菌落数不在30个-300个之间,则以最接近300个或30个的平均菌落数乘以稀释倍数。 (4)结果统计与计算 有效活菌总数按式(1)计算; A=B×C /D (1)

枯草芽孢杆菌发酵工艺2

(10)申请公布号 (43)申请公布日 (21)申请号 201510320760.5(22)申请日 2015.06.11 C12N 1/20(2006.01)C12R 1/125(2006.01) (71)申请人山东西王糖业有限公司 地址256209 山东省滨州市邹平县韩店镇驻 地西王工业园电厂路南侧(72)发明人王棣 王居亮 李伟 杨荣玉 唐海静 夏颖颖(74)专利代理机构济南舜源专利事务所有限公 司 37205 代理人宋玉霞(54)发明名称 一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法(57)摘要 本发明提供一种以玉米淀粉生产过程中的副产品玉米粗蛋白粉为原料生产枯草芽孢杆菌微生态制剂的生产方法,采用本方法在不添加其它碳源和氮源的条件下,单纯以玉米粗蛋白粉为营养源经过固态培养可以生产出活菌数为3000亿-5000亿/g 的枯草芽孢杆菌微生态制剂。生产过程不需要通压缩空气,不产生任何废水废气。减少了枯草芽孢杆菌微生态制剂的生产成本。且所得产品以玉米纤维低聚糖为载体具有益生元的功能提高了产品质量。 (51)Int.Cl. (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书4页 (10)申请公布号CN 104988088 A (43)申请公布日2015.10.21 C N 104988088 A

1.一种用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,步骤如下: (1)取玉米粗蛋白粉移入固体发酵罐中,加水调到料水比为1:0.7-0.9,加氧化钙调pH 到6.0-7.0; (2)打开循环水使固体发酵罐温度上升到80-90℃后,通入蒸汽消毒30分钟; (3)待原料冷却到40℃-44℃后,加入物料干基重量1/9-1/10培养15h以后的种子液,固含量为5%; (4)维持30-40℃培养50-60h,24h后每隔6h搅拌一次物料; (5)培养到50-60h后,物料明显粘湿,有较浓的枯草芽孢杆菌特有气味,升温到44-56℃继续培养12-22h; (6)共计培养72h后移出物料,65-80℃烘干物料; (7)烘干物料水份到小于6%后,粉碎物料; (8)将粉碎的物料进行包装,取样检测产品质量。 2.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(1)中,料水比是指:物料干基质量即无水的物料质量。 3.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的种子液为将枯草芽孢杆菌菌种在液体培养基中通气搅拌培养15小时以后的液体培养基和菌种的混合物,所述的液体培养基为:葡萄糖5%w/w,玉米浆10%w/w,硫酸镁0.03%w/w,碳酸钙调pH到7.0,其余为黄河水,所述的玉米浆干基含量为26%。 4.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)中,维持温度为33-38℃。 5.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(5)中,升温到45-50℃。 6.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,所述的步骤(4)(5)中,发酵过程罐体与空气相通,有空气过滤器装置过滤掉空气中的杂菌。 7.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,得到的枯草芽孢杆菌微生态制剂,活菌数3000-5000亿/g。 8.根据权利要求1所述的用玉米粗蛋白粉生产枯草芽孢杆菌微生态制剂的方法,其特征在于,采用的玉米粗蛋白粉的情况见表1, 表1 玉米粗蛋白粉指标 蛋白质%脂肪%纤维质%淀粉%灰分%木质素%水份%玉米皮1125412 2.612 粗蛋白10 2.41250 4.6—10 胚芽粕1825314 2.3— 。

浅谈枯草芽孢杆菌(参考内容)

浅谈枯草芽孢杆菌 1. 抗生作用 抗生作用是指拈抗微生物通过产生代谢产物在低浓度下就能够对病原微生物的生长和代谢产生抑制作用,从而来影响病原微生物的生存和活动。近半个世纪以来,人们从枯草芽孢杆菌不同菌株的代谢产物中分离纯化了多种有效的抗菌物质。 2 溶菌作用 枯草芽孢杆菌的溶菌作用主要表现在是通过吸附在病原菌的菌丝上,并随着菌丝生长而生长,而后产生溶菌物质造成原生质泄露使得菌丝体断裂;或者是产生抗菌物质通过溶解病原菌孢子的细胞壁或细胞膜,致使细胞壁穿孔、畸形等现象从而抑制孢子萌发。 3 诱导植物产生抗性及促进植物生长 诱导植物产生抗性作用是指枯草芽孢杆菌不但能够抑制植

物病原菌,而且还能够诱发植物自身抗病机制从而增强植物的抗病性能的作用。什么是PGPR国际上把土壤中能促进植物生长的根际自生细菌通称为植物促生根圈细菌(Plant growth promoting rhizobaceria),简称为PGPR。 其中以枯草芽孢杆菌的抗逆性最强、功能最多、适应性最广、效果最稳定。枯草芽孢杆菌能够产生类似细胞分裂素、植物生长激素的物质,促进植物的生长使植物抵抗病原菌的侵害。 4保护环境。 枯草芽孢杆菌大量应用于生物肥料。当作用于作物或土壤时,能够在作物根际或体内定殖,并起到特定肥料效应。目前,微生物肥料在培肥地力,提高化肥利用率,抑制农作物对硝态氮、重金属、农药的吸收,净化和修复土壤,降低农作物病害发生,促进农作物秸秆和城市垃圾的腐熟利用。提高农作物产品品质和食品安全等方面表现出了不可替代的作用。

5 枯草芽孢杆菌对土壤中的菲与苯并芘的吸附及生物降解功能 土壤与其相连的水环境称为土壤-水环境系统,其中存在着大量的土壤固有微生物,并在表面存在生物膜,因为生物膜形成了隔离层,有机污染物在接触到支撑生物膜的固体基底之前,必须首先到达并且穿过这个隔离层,这样就强烈地改变矿物颗粒或基底的吸附行为,对吸附作用有重要的影响,近年的研究表明,由于受污染影响,导致土壤中含有多环芳烃(PAHs),沉积物中PAHs主要为原油污染以及工业或民用煤不完全燃烧所致,枯草芽孢杆菌对菲与苯并芘的吸附及生物降解研究,研究表明以枯草芽孢杆菌为接种微生物,对菲与苯并芘都可进行吸附或生物降解,48h液相PAHs浓度达到平衡时,微生物对菲消除了98%,对苯并芘消除85%;接种的样品48h吸附等温线均呈线形,能较好地符合线性方程;在接种微生物情况下,沉积物与土壤对菲和苯并芘吸附特征均发生较大变化,对菲的吸附量增大约35倍,而对苯并芘的吸附量却降低了2/3左右;未接种微生物的土壤和沉积物对菲解吸率为20%,接种的样品组为2.9%,而对苯并芘的解吸结果与菲相反,未接种

枯草芽孢杆菌实验报告

微生物技术综合实验 年级:13级生物工程(专升本)班级:2013011201 学号:1301014026 姓名:徐红贞 指导老师:刘凤霞教授 日期:二零一三十月五号

目录 1实验目的及原理 (1) 1.1实验目的 (1) 1.2实验原理 (1) 2实验材料 (1) 2.1实验仪器 (1) 2.2实验试剂 (1) 2.3培养基 (2) 2.3.1 生长培养基 (2) 2.3.2鉴定培养基 (2) 2.3.3摇瓶培养基 (2) 3试验方法 (2) 3.1仪器的准备 (2) 3.2培养基的配置 (2) 3.3初步筛选及鉴定 (2) 3.3.1采集土样 (3) 3.3.2富集培养 (3) 3.3.3稀释分离、纯化 (3) 3.3.4初筛 (3) 3.4复筛及鉴定 (4) 3.4.1革兰染色 (4) 3.5酶活力的测定 (4) 3.5.1摇瓶培养 (4) 3.5.2酶液稀释 (4) 3.5.3酶液测定 (4) 4结果分析 (5) 4.1平板涂布分离 (5) 4.2平板划线分离 (5) 4.3初筛 (5) 4.4复筛 (5) 4.5摇瓶培养 (6) 4.6酶活力测定 (6) 5参考资料 (7) 6附录 (8)

微生物上游技术综合实验 枯草芽孢杆菌的分离、纯化、筛选及鉴定 1.实验目的及原理 1.1实验目的 (1)学习从土壤中分离、纯化枯草芽孢杆菌的原理和方法。 (2)学习掌握枯草芽孢杆菌的鉴定方法。 (3)掌握微生物的摇瓶培养方法及淀粉酶活力的测定的原理和方法。 (4)培养学生综合应用微生物实验方法的能力。 (5)培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 1.2实验原理 选择合适与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物的环境,从而淘汰一些不需要的微生物。 将土壤稀释液倒在不同类型的培养基平板上,在适宜的环境中培养几天,细菌或是其他的微生物便能在平板上生长繁殖,形成菌落。将初次筛选得到的微生物接到淀粉培养基上培养,因为只有能够产生淀粉酶的细菌才能够利用培养基中的淀粉成分来完成自身的生命活动,才能够生存。故在淀粉部分不显现蓝色,出现透明圈,可以通过透明圈的大小来初步判断培养物中是否有产淀粉酶微生物及产淀粉酶的能力。 2. 实验材料 2.1实验仪器 无菌玻璃涂棒无菌移液管接种环无菌培养皿土样电子天平三角瓶烧杯试管酒精灯擦镜纸载玻片吸水纸恒温摇床恒温培养箱高压蒸汽灭菌锅玻璃珠显微镜无菌铲胶头滴管记号笔试管架棉塞牛皮纸报纸细绳无菌纸袋电炉搪瓷缸分光光度计恒温水浴锅白瓷皿等。 2.2 实验试剂 ○1碘液储备液:称取22.0g碘化钾溶于约300mL水中,加入11.0g碘,搅拌溶液,移入500mL容量瓶,用水定容,贮于棕色瓶中备用(每月配制一次)。 ○2碘液使用液:称取20.0g碘化钾,溶于约300mL水中,移入500mL容量瓶中,

枯草芽孢杆菌使用技术

枯草芽孢杆菌使用技术 制剂:1000亿活芽孢/克可湿性粉剂毒性:低毒级 枯草芽孢杆菌特点: 1、绿色环保――对人畜微毒、对环境无污染、对作物安全(本剂虽属细菌活体杀菌剂,但不会侵染作物引起病 害,亦不会对作物产生药害) 2、高效广谱――对水稻稻瘟病,西瓜、黄瓜、草莓、番茄等多种作物白粉病、灰霉病,马铃薯晚疫病,大豆、油菜菌核病,瓜类、谷物、三七等作物根腐病等多种真菌性病 害具有优良防效。 3、增产提质――枯草芽孢杆菌还能够分泌促进作物生长的活性物质,使植株叶片浓绿肥厚,提高作物免疫力,增产提质效果显著,发酵过程中产生多种氨基酸,对作物有生 长调节的作用。 枯草芽孢杆菌防治机理 1、竞争作用:通过生物间争夺氧气、营养物质及竞争

排它性,形成局部生物优势种群,防止其它菌侵入;同时争夺周围菌的营养,抑制病原菌生长―起到疫苗的作用。 2、溶菌作用:枯草芽孢杆菌吸附于病原菌的菌丝上,随着菌丝生长而生长,从而消耗病原菌的营养,使病原菌菌丝发生断裂、解体、细胞质消解,使病原菌失去进一步侵染 能力―起到寄生作用。 3、生物拮抗作用:枯草芽孢杆菌生长过程中能产生细菌素(枯草菌素、多粘菌素、制霉菌素、短杆菌素)、有机酸、天然脂肽类化合物等,对病原菌抑制其生长或溶解其细胞壁、使细胞穿孔、畸形,最终杀死病原菌,。 4、杀灭作用诱导作物产生抗病性、促进作物生长,增产提质。据统计,使用枯草芽孢杆菌可有效增产 5.6-20.2%。 枯草芽孢杆菌使用方法 1、稻瘟病、纹枯病、稻曲病。施药方法:水稻孕穗破口期和齐穗期各施药一次。每亩用枯草芽孢杆菌10克均匀 喷雾,喷药药间隔7-12天,

2、枯草芽孢杆菌与咪鲜胺、三环唑、井冈霉素等混用,有明显的相互增效作用。在病害集中、急性暴发时,更能显 示出混用的效果。 枯草芽孢杆菌使用注意事项 1、本品用量少,为减少浪费,兑药时应用小容器将所需用量药剂充分溶解后再倒入喷雾器中,加水至喷雾器最佳 水平线进行喷雾; 2、早上10点前或下午4点后施药,避免阳光直射,杀死芽孢。尤其是4点后用药,夜间潮湿的环境更有利于芽孢 萌发。 3、不能与铜制剂、链霉素等杀菌剂及碱性农药混用; 4、病害初期或发病前施药效果最佳,施药时注意使药 液均匀喷至作物各部位。

枯草芽孢杆菌酶在发酵工艺上的应用

枯草芽孢杆菌酶在发酵工艺上的应用 王伟王上俞志敏丛丽娜* (大连工业大学生物工程学院辽宁大连 116034) 摘要:枯草芽孢杆菌(Bacillus subtilis)是当今工业酶的主要生产菌种之一,由于其产酶量高、种类多、安全性好、环保等优点在现代发酵工业生产中被广泛应用,其发酵生产的酶在工业、医学、食品、饲料、洗涤、纺织、皮革、造纸、水产养殖等领域均发挥着十分重要的作用。 关键词:枯草芽孢杆菌;发酵;酶 B. subtilis enzyme used in the fermentation process WANG Wei WANG Shang YU Zhi-Min CONG Li-Na* (School of Biological Engineering,Dalian polytechnic University,Dalian,Liaoning 116034, China) Abstract:Bacillus subtilis (Bacillus subtilis) is one of today's major producing strain of industrial enzymes,enzyme production because of its high volume,variety,safety, environmental protection,etc.are widely used in modern industrial production fermentation,fermentation enzymes produced in the fields of industry,medicine,food, feed,wash,textile,leather,paper,aquaculture and other have played a very important role. Keywords:Bacillus subtilis; fermentation; Enzyme 长期以来,枯草芽孢杆菌一直是工业微生物的主力军之一,它的使用可追溯到一千多年前,早在日本平安时代(794~1192年)日本人就已经利用枯草芽孢杆菌在大豆中采用固态发酵的方法生产他们的传统食品——纳豆,开创了利用枯草芽孢杆菌的历史[1]。由于其具有发酵周期短、产物丰富、可利用开发价值高以及作为食品药品安全性好等显著优点,使得它的应用一直延续至今,并在过去的一百多年中有了长足的进步。近年来,由于分子生物学的飞速发展,新的分子手段和技术的不断介入使得枯草芽孢杆菌的研究利用进入了新时期,在食品加工、农业生产、能源开发等方面不断地涌现新突破,在工业微生物中的地位不断得到

枯草芽孢杆菌产淀粉酶试验要点

枯草芽孢杆菌产α-淀粉酶发酵试验 化学与生命科学学院 摘要:以枯草芽孢杆菌(BacilusSubtilisBF—7658)为实验菌株,通过种子扩大培养,选出生长力旺盛的菌株进行液体摇瓶发酵。通过测定不同发酵时间生产的酶活,来初步估计发酵最佳时期和终点。 关键词:枯草芽孢杆菌,α-淀粉酶,液体摇瓶发酵,酶活 淀粉酶是能够分解淀粉糖苷键的一类酶的总称,包括α-淀粉酶、β-淀粉酶、糖化酶和异淀粉酶。芽孢杆菌主要用来产生α-淀粉酶和异淀粉酶,其中α-淀粉酶又称淀粉1,4-糊精酶,能够切开淀粉链内部的α-1,4-糖苷键,将淀粉水解为麦芽糖、含有6 个葡萄糖单位的寡糖和带有支链的寡糖;而异淀粉酶又称淀粉α-1,6-葡萄糖苷酶、分枝酶,此酶作用于支链淀粉分子分枝点处的α-1,6-糖苷键,将支链淀粉的整个侧链切下变成直链淀粉。通过发酵实验,我们可以以酶活为依据,初步估计发酵的最佳时期和发酵终点。 实验材料和方法 一、实验材料: (一)实验菌株:以枯草芽孢杆菌(BacilusSubtilisBF—7658) (二)培养基: 1、种子培养液 葡萄糖 1% Tryptone(胰蛋白胨):1%, Yeast Extract(酵母提取物):0.5%, NaCl(氯化钠):1% 调pH7.2 若配置固体培养基,则再加入1.5% 琼脂。 2、产淀粉酶发酵培养液 玉米粉 2 .0 % 黄豆饼粉1 .5% CaCl 2 0 .02 % MgSO4 0 .02% NaCl 0 .25% K2HPO4 0 .2% 柠檬酸钠0 .2% 硫酸铵0 .075% Na2HPO4 0 .2 % 调节pH 值7 .0

枯草芽孢杆菌的发酵

枯草芽孢杆菌的发酵学院:化工学院 专业:生物工程 班级:生物10-2 :霞

摘要 枯草芽孢杆菌是我国农业部允许作为饲料添加剂的15种菌种之一 ,其已被越来越多地制成饲用微生态制剂。因其制剂是无毒、无残留、无污染的“绿色”添加剂,故具有广阔的发展前景,并已在畜牧业、饲料业广泛应用,显示巨大的社会效益和生态效益。通过摇床培养筛选出较适宜于枯草芽孢杆菌发酵的培养基配方,发酵培养基配方确定后,在摇床条件下,通过对温度、初始pH值、初始接种量、装液量、摇床转速等发酵条件的摸索,确定最佳发酵条件。在摇瓶条件下优化发酵培养基和发酵工艺后,采用发酵罐进行发酵培养,对枯草芽孢杆菌在液体发酵过程中的菌体数量、pH值、总糖含量和总氮含量四个因素随时间的变化进行了观察。 枯草芽孢杆菌,是芽孢杆菌属的一种。单个细胞 0.7~0.8×2~3微米,着色均匀。无荚膜,周生鞭毛,能运动。革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。菌落表面粗糙不透明,污白色或微黄色。枯草芽孢杆菌菌体生长过程中产生的枯草菌素、多粘菌素、制霉菌素、短杆菌肽等活性物质,这些物质对致病菌或源性感染的条件致病菌有明显的抑制作用。枯草芽孢杆菌迅速消耗环境中的游离氧,造成肠道低氧,促进有益厌氧菌生长,并产生乳酸等有机酸类,降低肠道pH值,间接抑制其它致病菌生长。枯草芽孢杆菌菌体自身合成α-淀粉酶、蛋白酶、脂肪酶、纤维素酶等酶类,在消化道中与动物体的消化酶类一同发挥作用,能合成维生素 B1、B2、B6、烟酸等多种B族维生素,提高动物体干扰素和巨噬细胞的活性,在饲料中应用广泛。它还可以用来改善水质,应用在污水处理和环境保护中。和其它微生物混合使用,还可以用于生物肥料和土地改良等 关键词:枯草芽孢杆菌生长发酵活菌数

枯草芽孢杆菌生产工艺

枯草芽孢杆菌生产工艺-实验室操作 1. 培养基 1.1 种子培养基蛋白胨1 %,酵母浸出物0. 5 %,氯化钠1 % ,自然pH。 1.2 基础发酵培养基蔗糖1 %,蛋白胨1 %,磷酸氢二钠0. 2 %,磷酸二氢钠0. 2 %,pH 7. 0。 1.3 主要试剂 蔗糖、葡萄糖、淀粉、玉米淀粉、麦芽糖、酵母浸出物、胰蛋白胨、牛肉膏、尿素、氯化铵、硫酸锰、硫酸镁、磷酸二氢钠、磷酸氢二钠、硫酸亚铁、氯化钠和氯化钙。 1.4 仪器设备 控温摇床、高压蒸气灭菌锅、电子天平、pH 测定仪、无菌操作台和紫外分光光度计。 2.方法 2. 1培养方法 2. 1. 1菌种活化 将保存的菌种转接到斜面培养基,37 ℃培养24 h,备用。 2. 1. 2种子液的制备 取一环活化的菌种,接入装量为50 mL种子培养基的250mL三角瓶中,37℃,180 r/ min 培养18 h。 2. 1. 3摇瓶培养 分别取1 mL 种子液,接入盛有50 mL 发酵培养基的200 mL三角瓶中(接种量为2 % ,V/ V) 。置摇床中,30 ℃振荡培养12 h,转速为160 r/ min 3. 培养条件 3.1碳源 以葡萄糖、蔗糖和麦芽糖为碳源时枯草芽孢杆菌的生长明显优于可溶性淀粉和玉米淀粉。最佳碳源是葡萄糖,其次是蔗糖。 3.2氮源 氮源为有机氮源时枯草芽孢杆菌的生长明显优于无机氮源。最适氮源是酵母浸出物,从发酵成本考虑,酵母浸出物、胰蛋白胨及氯化铵组成的复合氮源较合适。

4.发酵条件 4.1生长曲线 接种12 h后细菌数量开始减少,枯草芽孢杆菌进入生长衰亡期。因此,采用8~12 h 时的菌液作为菌种较合适,此时枯草芽孢杆菌为对数生长末期,既可保持高的细胞活力,又可获得尽可能多的细胞数。 4.2 初始PH 在初始pH 5. 5~8范围内枯草芽孢杆菌均可良好生长,pH 为6. 0 时生长最好,说明枯草芽孢杆菌对pH 的适应性较宽,但随pH 的增大,活菌数呈下降趋势。 4.3温度 枯草芽孢杆菌在25~40℃均可良好生长,其生长的最适温度为35℃。 4.4装液量及接种量 枯草芽孢杆菌为需养菌,在生长过程中需要大量的氧气,装液量不可过多,培养液与容器体积比可设定为2:25;接种量3 % (V/ V) 较适合其生长。 5.干燥方式 采用喷雾干燥和低温冷冻干燥。低温冷冻干燥更利于芽孢的形成,但其操作复杂、成本高,不利于规模化工业生产。而喷雾干燥同样可产生高芽孢率,且成本相对低,更适合工业生产。

微生物生理生化反应实验报告

山东大学实验报告2012年 12 月 4日 姓名系年级 2011级生科2班组别四 科目微生物学实验题目微生物的生理生化反应 微生物的生理生化反应 一、【实验目的】 1. 证明不同微生物对各种有机大分子物质的水解能力不同,从而说明不同微生物有着不同的酶系统。 2.掌握进行微生物大分子物质水解试验的原理和方法。 3.了解糖发酵的原理和在肠细菌坚定中的重要作用。 4.掌握通过糖发酵鉴别不同微生物的方法。 5. 了解吲哚和甲基红试验的原理以及其在肠道细菌鉴定中的意义和方法。 二、【实验仪器与试剂】 菌种:枯草芽孢杆菌、大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌、普通变形杆菌、产气肠杆菌培养基:培养基:固体淀粉培养基、固体油脂培养基(大分子水解试验);葡萄糖发酵培养基、乳糖发酵培养基(内装有倒置的德汉氏小管)(糖发酵试验);蛋白胨水培养基(吲哚试验);葡萄 糖蛋白胨水培养基; 试剂:卢戈氏碘液、乙醚、吲哚试剂、甲基红试剂、蒸馏水、 仪器:酒精灯、接种针、培养皿、试管、试管架、烧杯、量筒、德汉氏小管 三、【实验原理】 1.在所有生活细胞中存在的全部生物化学反应称之为代谢,代谢过程主要是酶促反应过程,由于各种 微生物具有不同的酶系统,所以他们能利用的底物不同,或虽利用相同的底物但产生的代谢产物却不同,因此可以利用各种生理生化反应来鉴别不同的细菌,尤其是在肠杆菌科细菌的鉴定中,生理生化试验占有重要的地位。 2.淀粉的水解:由于微生物对淀粉这种大分子物质不能直接利用,必须靠产生的胞外酶将大分子物质 分解才能被微生物吸收利用.胞外酶主要为水解酶,通过加水裂解大的物质为较小的化合物,使其能被运输至细胞内.如淀粉酶水解淀粉为小分子的糊精,双糖和单糖;而淀粉遇碘液会产生蓝色,因此能分泌胞外淀粉酶的微生物,则能利用其周围的淀粉,在淀粉培养基上培养用碘处理其菌落周围不呈蓝色,而是无色透明圈,据此可分辨微生物能否产生淀粉酶。 3.油脂的水解:在油脂培养基上接种细菌,培养一段时间后观察菌苔的颜色,若出现红色斑点,则说 明此中菌可产生分解油脂的酶。 4.糖发酵试验:糖发酵试验是常用的鉴别微生物的生化反应,在肠道细菌的鉴定上尤为重要.绝大多数 细菌都能利用糖类作为碳源和能源,但是它们在分解糖类物质的能力上有很大的差异.有些细菌能分解某种糖产生有机酸(如乳酸,醋酸,丙酸等)和气体(如氢气,甲烷,二氧化碳等);有些细菌只产酸不产气. 例如大肠杆菌能分解乳糖和葡萄糖产酸并产气。产酸后再加入溴甲酚指示剂后会使溶液呈黄色,且德汉氏小管中会收集到一部分气体。若细菌不能使糖产酸产气,则最后溶液为指示剂的紫色,且德汉氏小管中无气体。 5.IMVC实验主要用于快速鉴别大肠杆菌和产气肠杆菌。 (1)吲哚试验:是用来检测吲哚的产生,在蛋白胨培养基中,若细菌能产生色氨酸酶,则可将蛋白胨中的色氨酸分解为丙酮酸和吲哚,吲哚与对二甲基苯甲醛反应生成玫瑰色的玫瑰吲哚。但并 非所有的微生物都具有分解色氨酸产生吲哚的能力,所以吲哚实验可以作为一个生物化学检测

北京理工大学2005年《微生物学》期末试题

北京理工大学2005年《微生物学》期末试题 一、名词解释(每题3分,共计18分) 1、L型细菌 2、菌落 3、鉴别性培养基 4、发酵 5、基因突变 6、BOD5 二、填空题(每空1分,共计30分) 1、微生物学的奠基人是__________。 2、__________繁殖是放线菌的主要繁殖方式。 3、分生孢子梗状如扫帚是__________的重要分类特征。 4、病毒粒的基本结构是_______________。 5、烟草花叶病毒是________________对称体制的典型代表。 6、噬菌体的繁殖一般可分为五个阶段__________、__________、 _____________、_________和__________。 7、温和噬菌体的3种存在形式有____________、____________和游离态。 8、微生物的6大营养要素是______________、_____________、____________、____________、____________和水。 9、在营养物质运输中既消耗能量又需要载体的运输方式是__________________________。 10、按照对培养基成分的了解作分类,培养基可分为____________、_______________和 ______________。 11、筛选营养缺陷型的四个环节是____________、____________、____________和 ____________。 12、根据下图中五类对氧关系不同的微生物在半固体琼脂柱中的生长状态,依次写出它们的 名称__________________、___________________、_________________、________________和________________。 三、判断题并改错(每题1分,共计5分,在括号内对的划“√”,错的划“×”) 1、大肠杆菌和枯草芽孢杆菌属于单细胞生物,唾液链球菌和金黄色葡萄球菌属于多细胞生 物。() 2、遗传型相同的个体在不同环境条件下会有不同的表现型。() 3、低剂量照射紫外线,对微生物几乎没有影响,但以超过某一阈值剂量的紫外线照射,则 会导致微生物的基因突变。() 4、一切好氧微生物都含有超氧化物歧化酶(SOD)。() 5、一般认为各种抗性突变是通过适应而发生的,即由其所处的环境诱发出来的。()

微生物鉴定常用的生理生化试验实验报告

山东大学实验报告2017年12月4日 ___________________________ 科目:微生物学实验题目:微生物鉴定常用的生理生化试验姓名:丁志康 一、目的要求 1.证明不同微生物对各种有机大分子的水解能力不同,从而说明不同微生物有着不同的 酶系统。 2.掌握进行微生物大分子水解试验的原理和方法。 3.了解糖发酵的原理和在肠道细菌鉴定中的重要作用。 4.掌握通过糖发酵鉴别不同微生物的方法。 5.了解IMViC反应的原理及其在肠道细菌鉴定中的意义和方法。 二、基本原理 1、生物对大分子的淀粉、蛋白质和脂肪不能直接利用,必须靠产生的胞外酶将大分子物质分解才能被微生物吸收利用。胞外酶只要为水解酶,通过加水裂解大的物质为较小的化合物,使其能被运输至细胞内。如淀粉酶水解淀粉为小分子的糊精、双糖和单糖;脂肪酶水解脂肪为甘油和脂肪酸;蛋白酶水解蛋白质为氨基酸等。这些过程均可通过观察细菌菌落周围的物质变化来证实;淀粉遇碘液会产生蓝色,但细菌水解淀粉的区域,用碘测定不在产生蓝色,表明细菌产生淀粉酶。脂肪水解后产生脂肪酸可改变培养基的pH,使pH降低,加入培养基的中性红指示剂会使培养基从淡红色变成深红色,说明胞外存在着脂肪酶。 2、糖发酵试验是常用的鉴别微生物的生化反应,在肠道细菌的鉴定上尤为重要。绝大多数细菌都能利用糖类作为碳源和能源,但是它们在分解糖类物质的能力上有很大的差异。有些细菌能分解某种糖产生有机酸(如乳糖、醋酸、丙酸等)和气体(如氢气、甲烷、二氧化碳的等);有些细菌只产酸不产气。例如大肠杆菌能分解乳糖和葡萄糖产酸并产气;伤寒杆菌分解葡萄糖产酸不产气,不能分解乳糖;普通变形杆菌分解葡萄糖产酸产气,不能分解乳糖。发酵培养基含有蛋白胨,指示剂(溴甲酚紫),倒置的德汉氏小管和不同的糖类。当发酵产酸时,溴甲酚紫指示剂可由紫色(pH6.8)变为黄色(pH5.2)。气体的产生可由倒置的德汉氏小管中有无气泡来证明。 3、IMViC反应是吲哚试验、甲基红试验、伏-普试验和柠檬酸试验4个试验的首字母缩写。这四个实验主要是用来快速鉴别大肠杆菌和产气杆菌,多用于水的细菌检查。 (1)吲哚试验:某些细菌有色氨酸酶,能分解蛋白胨中的色氨酸形成吲哚(靛基质),吲哚能与对二甲基氨基苯甲醛作用生成玫瑰吲哚而呈红色。 (2)甲基红试验:某些细菌在糖代谢过程中,分解葡萄糖产生丙酮酸,丙酮酸进一步被分解成为甲酸、乙酸、琥珀酸等,使培养基pH下降至4.5以下,加入甲基红指示剂可呈红色。如细菌分解葡萄糖产酸量少,或产生的酸进一步转化为其他物质(如醇、醛、酮、气体和水),培养基pH在5.4以上,加入甲基红指示剂呈橘黄色。本试验常与V-P试验一起使用,因为前者呈阳性的细菌,后者通常为阴性。 (3)伏-普(二乙酰)试验:某些细菌能发生如下转换:葡萄糖→丙酮酸(脱羧)→乙酰甲基甲醇→2,3—丁烯二醇,在有碱存在时氧化成二乙酰,后者和胨中的胍基化合物起作用产生粉

抗生素标记枯草芽孢杆菌实验

利福平标记枯草芽孢杆菌实验 1、实验材料 1.1试剂 利福平溶液:用95%乙醇配制10mg/mL的利福平溶液,配好后经0.22um无菌滤膜除菌。 1.2培养基 NA(牛肉膏蛋白胨培养基)培养基:牛肉膏5.0g,蛋白胨10.0g,氯化钠5.0g,蒸馏水1.0L,琼脂18.0g,pH7.0-7.2 200μg/mL利福平NA培养基:NA培养基经高温灭菌,冷却至50-55℃时加入利福平(1LNA培养基加入20mL10mg/mL利福平溶液)。 液体培养基为对应固体培养基不添加琼脂,其余成分一致。 2、抗生素标记试验 首先制备利福平浓度为100μg/mLNA平板,检测枯草芽孢杆菌天然抗药性。 根据天然抗药性检测结果,进行抗生素标记实验(杜立新等,2004),取纯化好的枯草芽孢杆菌单菌落接种到含有5ug/mL利福平NA液体培养基中,150r/min,28℃培养,待出现浑浊后稀释菌液,取三个不同浓度的稀释液100μL 加到含有相同浓度抗生素的NA细菌平板,涂匀,继代培养一次,待长出单菌落后转入下一高浓度的利福平NA培养基,依次经过利福平5、10、20、40、80、120、160、200ug/mLNA液体培养基诱导,直至筛选出能耐受的最高利福平浓度200ug/mL。筛选耐药枯草芽孢杆菌能否应用于研究,还必须验证其耐药的稳定性及拮抗性能。耐药稳定性试验参考吴春胜等(1994)方法。(1)将筛选的枯草芽孢杆菌在利福平含量依次升高的NA培养基上连续传代6次,观察其是否始终有菌落出现。(2)将筛选枯草芽孢杆菌接种至不含利福平NA培养基中,连续传代3-5次,然后将其涂布于含200μg/mL利福平的NA培养基上,观察其是否有菌落出现。(3)将抗药菌株置于4℃的低温中保藏2-3周,然后接种于含200μg/mL 利福平的NA液体培养基上进行培养,观察是否出现浑浊,并在含200μg/mL利福平的NA培养基上划线培养,观察其是否有菌落出现。

枯草芽孢杆菌使用说明

枯草芽孢杆菌(活菌数200亿/400亿) 一、枯草杆菌概述:枯草芽孢杆菌是芽孢杆菌属的一种。单个细胞 0.7~0.8×2~3微米,着色均匀。无荚膜,周生鞭毛,能运动。革兰氏阳性菌,芽孢0.6~0.9×1.0~1.5微米,椭圆到柱状,位于菌体中央或稍偏,芽孢形成后菌体不膨大。菌落表面粗糙不透明,污白色或微黄色,在液体培养基中生长时,常形成皱醭。需氧菌。可利用蛋白质、多种糖及淀粉,分解色氨酸形成吲哚。在遗传学研究中应用广泛,对此菌的嘌呤核苷酸的合成途径与其调节机制研究较清楚。广泛分布在土壤及腐败的有机物中,易在枯草浸汁中繁殖,故名。 二、枯草芽孢杆菌的作用机理:枯草芽孢杆菌大量应用于生物肥料。当作用于作物或土壤时.能够在作物根际或体内定殖,并起到特定肥料效应。目前,微生物肥料在培肥地力,提高化肥利用率,抑制农作物对硝态氮、重金属、农药的吸收,净化和修复土壤,降低农作物病害发生,促进农作物秸秆和城市垃圾的腐熟利用.保护环境。以及提高农作物产品品质和食品安全等方面表现出了不可替代的作用。 三、枯草芽孢杆菌的使用说明: 特点:1.肠道定殖能力强。 2.耐氧化、耐高温、耐酸碱、耐挤压和耐温度变化,满足不同的肥料生产需求。 3.绿色、安全、高效、较少抗生素药物的使用。 成分含量:枯草芽胞杆菌有效活菌数大于200亿/克 用法用量:

贮藏:阴凉、干燥处密封保存。 保质期:密封保存不少于18个月。 四、枯草芽孢杆菌的应用范围:枯草芽孢杆菌不仅在肥料中应用比较广泛,在污水处理及生物肥发酵或发酵床制作中应用也相当广泛,是一种多功能的微生物。 1、市政和工业污水处理,工业循环水处理,腐化槽、化粪池等处理,畜牧养殖动物废料、臭味处理,粪便处理系统,垃圾、粪坑、粪池等处理; 2、畜牧、家禽、特种动物及宠物养殖,水产养殖; 3、可以与多种菌种混配,在农业生产中具有重要作用。

第4章 微生物的生长

第4章微生物的生长 本章的学习目的与要求 ⑴掌握微生物生长的概念,个体生长与群体生长的关系。 ⑵掌握衡量微生物群体生长的指标,微生物生长量的测定方法。 ⑶了解微生物的群体生长规律和环境因素对微生物生长的影响。 1. 微生物生长 1.1微生物生长的概念 一个微生物细胞在合适的外界环境条件下,不断地吸收营养物质,并按其自身的代谢方式进行新陈代谢。如果同化作用的速度超过了异化作用,则其原生质的总量(重量、体积、大小)就不断增加,于是出现了个体的生长现象。如果这是一种平衡生长,即各细胞组分是按恰当的比例增长时,则达到一定程度后就会发生繁殖,从而引起个体数目的增加,这时,原有的个体已经发展成一个群体。随着群体中各个个体的进一步生长,就引起了这一群体的生长,这可从其重量、体积、密度或浓度作指标来衡量。所以: 个体生长→个体繁殖→群体生长 群体生长=个体生长+个体繁殖 这里需要强调的是,上述微生物生长的阶段性,对于单细胞微生物来说是不明显的,往往在个体生长的同时,伴随着个体的繁殖,这一特点,在细菌快速生长阶段尤为突出,有时在一个细胞中出现2或4个细胞核;除了特定的目的以外,在微生物的研究和应用中,只有群体的生长才有实际意义,因此,在微生物学中提到的“生长”,均指群体生长。这一点与研究高等生物时有所不同。 微生物的生长繁殖是其在内外各种环境因素相互作用下的综合反映,因此,生长繁殖情况就可作为研究各种生理、生化和遗传等问题的重要指标;同时,微生物在生产实践上的各种应用或是对致病、霉腐微生物的防治,也都与它们的生长繁殖和抑制紧密相关。下面对微生物的生长繁殖及其控制的规律作较详细的介绍。 1.2微生物生长量的测定 既然生长意味着原生质含量的增加,所以测定生长的方法也都直接地以此为根据,而测定繁殖则都要建立在计数这一基础上。 1.2.1 稀释平板菌落计数法 是一种最常用的活菌计数法。取一定体积的稀释菌液与合适的固体培养基在其凝固前均匀混合,或涂布于已凝固的固体培养基平板上。在最适条件下培养后,从平板上(内)出现的菌落数乘上菌液的稀释度,即可计算出原菌液的含菌数。在一个9cm直径的培养皿平板上,一般以出现50~500个菌落为宜。 这种方法在操作时,有较高的技术要求。其中最重要的是应使样品充分混匀,并让每支移液管只能接触一个稀释度的菌液。有人认为,对原菌液浓度为109个/mL的微生物来说,如果第一次稀释即采用10-4级(用10μL菌液至100mL无菌水中),第二次采用10-2级(吸1mL上述稀释液至100mL无菌水中),然后再吸此菌液0.2mL进行表面涂布和菌落计数,则所得的结果最为精确。其主要原因是,一般的吸管壁常因存在油脂而影响计数的精确度(有时误差竟高达15%)。这一稀释过程的示意图详见实验技术。

枯草芽孢杆菌发酵探讨

[转载]枯草芽孢杆菌发酵探讨 枯草芽孢杆菌是我国农业部允许作为饲料添加剂的两 种芽孢杆菌之一,已被越来越多地研制成饲用微生态制剂。因其制剂是无毒、无残留、无污染的“绿色”添加剂,故具有 广阔的发展前景,并已在畜牧业、饲料业广泛应用,显示巨大的社会效益和生态效益。枯草芽孢杆菌具有很强的蛋白酶、脂肪酶、淀粉酶等活性,能产生抗菌素,在动物肠道内具有较强生物夺氧能力。这些特性对促进动物营养的消化吸收、提高动物的饲料转化率、防病和促进生长起到重要作用。鉴于此,国内外专家学者对研究开发枯草芽孢杆菌制剂用于畜禽养殖日趋关注,从而也促进了这一产业的迅猛发展,但在现阶段的工业化生产中,存在着制约枯草芽孢杆菌发酵的诸多因素。 1、枯草芽孢杆菌的生物学特点 杆菌:一般(0.7~0.8)×(2.0~3.0)μm,电子显微镜测 量为(0.5~0.6)×(1.1~3.5)μm,革兰氏阳性,运动, 有长而又丰富的周生鞭毛。 芽孢:椭圆形,中生或偏中生,即使孢囊膨大也不显著。 生长温度:最高温度45~55℃;最低温度5~20℃。 阳性反应:接触酶;V-P反应;在7%的氯化钠中生长;pH5.7生长;分解葡萄糖、阿拉伯糖、木糖和甘露醇产酸;水解淀

粉;利用柠檬酸作为碳源;还原硝酸盐为亚硝酸盐;分解酪素;石蕊牛奶产碱胨化。 阴性反应:厌氧生长; 卵黄反应:在葡萄糖洋菜上或酪氨酸洋菜上形成可溶性黑色素;28℃4星期水解马尿酸盐;利用丙酸盐并分解酪氨酸。在55℃生长的菌株被0.02%的叠氮化合物抑制。 变化的性质:在V-P液中产酸(pH5.0~8.0);对溶菌酶的抗性;在10%的氯化钠中生长。2、芽孢杆菌制剂的作用机理2.1可产生酶类和营养物质 研究表明芽孢杆菌能够分泌大量的胞外酶,如蛋白酶、脂肪酶、淀粉酶等,有助动物对饲料的降解、消化,提高饲料利用率。饲料中未被消化的蛋白质和一些含氮物质在肠道中被大肠杆菌和其他细菌脱梭生成具有潜在的毒性的腐胺、吲哚、酚类等物质。一些芽孢杆菌可产生氨基氧化、SOD酶、分解硫化氢的酶以及其他抗菌物质如过氧化氢,起到杀菌作用,从而减少动物体内有害物质的产生。研究表明一些芽孢杆菌产生SOD酶,SOD可以清除生物体内活性氧自由基,减少其对细胞的毒害作用,使生物体免受伤害。芽孢杆菌在 生长繁殖过程中可以产生挥发性脂肪酸,如乙酸、丙酸、丁酸等,一些脂肪酸可降低动物肠道的pH,从而为乳酸菌的 生长创造条件,并且抑制病菌的生长。其中丙酸还可以参与三梭酸循环,为动物的新陈代谢提供能量。同时,能够产生

微生实验报告 2012.10.10 实验一 细菌的简单染色和革兰氏染色

微生实验报告 姓名: xx 专业年级:2011级生物技术 学号:1032 实验二细菌的简单染色和革兰氏染色 一、实验目的 学习细菌的简单染色法和革兰氏染色法的实验原理和实验操作。 二、实验原理 用于生物染色的染料主要有碱性染料、酸性染料和中性染料三大类。碱性染料的离子带正电荷,能和带负电荷的物质结合。因细菌蛋白质等电点较低,当它生长于中性、碱性或弱酸性的溶液中时常带负电荷,所以通常采用碱性染料(如美蓝、结晶紫、碱性复红或孔雀绿等)使其着色。酸性染料的离子带负电何,能与带正电荷的物质结合。当细菌分解糖类产酸使培养基pH值下降时,细菌所带正电荷增加,因此易被伊红、酸性复红、或刚果红等酸性染料着色。中性染料是前两者的结合物,又称复合染料,如伊红美蓝、伊红天青等。 简单染色法是只用一种染料使细菌着色以显示其形态的方法,简单染色一般难于辨别细菌细胞的构造。 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)两大类,是细菌学上最常用的鉴别染色法。该染色法之所以能将细菌分为G+菌和G—菌,是由这两类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多的易被乙醇溶解的类脂质,增加了细胞壁的通透性,使处染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经番红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔

径缩小,通透性降低,草酸铵结晶紫与碘的复合物不易被脱掉,因此细菌仍保留处染时的紫色。 三、实验器材 1、菌种: 金色葡萄球菌、枯草芽孢杆菌、大肠杆菌。 2、染色剂和试剂: 草酸铵结晶紫染液,卢哥氏碘液,95%酒精,番红复染液,复红染液,吕氏美蓝染液,显微镜擦拭液(乙醚: 乙醇=7:3),xx柏油。 3、器材: 废液缸,洗瓶,载玻片,接种环,酒精灯,擦镜纸,双层瓶,显微镜。 四、实验方法 (一)简单染色 1.涂片: 取干净载玻片一片,在载玻片的左右各加一滴生理盐水,按无菌操作法取菌涂片,左边涂金黄色葡萄球菌,右边涂大肠杆菌,做成浓菌悬液。再取干净载玻片一块将刚制成的金黄色葡萄球菌浓菌悬液挑1~2环涂在左边制成薄的涂片,将大肠杆菌的浓菌悬液取1~2环涂在右边制成薄涂片。亦可直接在载玻片上制薄的涂片,注意取菌不要太多。 2.晾干: 让涂片自然晾干。 3.固定:

相关文档
相关文档 最新文档