文档库 最新最全的文档下载
当前位置:文档库 › 不同送风方式下室内气流组织及颗粒物分布的模拟实验研究

不同送风方式下室内气流组织及颗粒物分布的模拟实验研究

不同送风方式下室内气流组织及颗粒物分布的模拟实验研究
不同送风方式下室内气流组织及颗粒物分布的模拟实验研究

不同送风方式下室内气流组织及颗粒物分布的模拟实验研究随着经济发展和科技技术的不断提高,人类的生活水平也随之上升,人们对

生活物质方面的消费更加注重品质。空调系统给人们带来室内舒适的环境,也起到通风除污的效果,为人们工作和居住带来一个健康舒适的空间。在节能与健康的基础上,我们通过实验和模拟等方式来对空调系统进行研究,以提出新的观点

和方法,为人们的健康发展做出努力。本文首先介绍不同气流组织形式及气流组织形式的评价指标,详细介绍本文研究中所使用的实验系统及测量系统,并介绍

了仿真软件Fluent及模拟所应用的物理模型,本文采用RNG k-ε模型与壁面函

数法作为室内空气流动的湍流模型。

本文分别进行了双侧送上回和双顶送上回的实验,通过改变回风口位置和不同风机频率,研究室内气流组织变化情况。分别测得各实验工况下的室内速度场和温度场,并对数据进行整理分析,研究表明,对于改变风口位置实验,除送风口

射流对面墙附近位置以及风口位置的速度场和温度场有所变化,其他位置并无影响。而改变风机频率之后,室内的速度场和温度场有明显变化,但是气流组织形式基本不变。通过建模、划分网格,计算采用的边界条件假设尽量符合实验要求,

利用Fluent模拟软件进行计算,将实验和模拟结果进行分析和对比,找出实验中存在的误差,同时也验证了模型的可靠性。

应用该模型研究了室内存在挡板时不同送风方式下,室内颗粒物的扩散情况。通过改变颗粒物粒径大小以及颗粒物产生源的不同位置来进行对比和分析,计算了不同工况下室内的通风效率以及能量利用系数。以此来综合评价不同的气流组织形式在改善室内空气品质方面的差异。研究表明:挡板的存在影响侧送风气流流动,使得室内颗粒物不容易排出,由于顶送风位置与挡板在同一截面,所以顶送风受影响较小。

增大颗粒物直径,由于重力影响,大颗粒物有明显“惰性”,并不容易排出室内。降低颗粒物释放源位置后,侧送风变化效果并不明显,而顶送风则变化较大。

空调房间室内气流组织模拟(fluent)

模型[1] m s,送风温如图,房间左下角有一个空调,送风和回风方向如图所示。送风速度为1/ 度为25℃,壁面温度为30℃。 1.建立模型及网格划分 ①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。 ②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。 2.求解模型的设定 ①启动FLUENT。启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317

a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 ②求解器设置。这里保持默认的求解参数,即基于压力的求解器定常求解。如图: 下面说一说Pressure-based和Density-based的区别:

a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力 修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动 也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和Coupled Solver,其实也Pressure-Based Solver的两种处理方法; b.Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解 的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent 具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太 完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来 处理,使之也能够计算低速问题。Density-Based Solver下肯定是没有SIMPLEC, PISO这些选项的,因为这些都是压力修正算法,不会在这种类型的求解器中出现 的;一般还是使用Pressure-Based Solver解决问题。 基于压力的求解器适用于求解不可压缩和中等程度的可压缩流体的流动问题。而基于密度的求解器最初用于高速可压缩流动问题的求解。虽然目前两种求解器都适用于各类流动问题的求解(从不可压缩流动到高度可压缩流动),但对于高速可压缩流动而言,使用基于密度的求解器通常能获得比基于压力的求解器更为精确的结果。 -湍流模型,Define/Models/Viscous。 ③流动模型设置。这里使用的是kε -模型,这种模型应用较多,计算量适中, a.这里我们使用的湍流模型是Standard kε 有较多数据积累和比较高的精度,对于曲率较大和压力梯度较强等复杂流动模拟效 果欠佳。一般工程计算都使用该模型,其收敛性和计算精度能满足一般的工程计算 要求,但模拟旋流和绕流时有缺陷。 b.壁面函数的选择,我们这里选择的是,标准壁面函数法。其应用较多,计算量小, 有较高的精度。适合高雷诺数流动,对低雷诺数流动问题,有压力梯度、高度蒸腾 和大的体积力、低雷诺数和高速三维流动问题不适合。

043住宅房间通风气流模型试验相似理论

住宅房间通风气流模型试验相似理论 中国建筑科学研究院空调所王智超 西安建筑科技大学吴志勇李安桂 摘要根据相似理论的基本原理,导出了住宅房间通风气流模型试验的相似准则以及相似比例尺之间的关系,为搭建试验台打下理论基础。 关键词住宅房间自然通风机械通风模型试验相似理论 1 引言 对于大空间建筑和民用住宅房间室内气流组织的研究,主要有计算流体力学CFD模拟和模型试验两种方法。其中,模型试验方法是较为可靠的模拟方法,它借助相似理论,在等比或缩小比例的模型中通过测量来模拟和预测室内空气参数。通过模型模拟对原型所设想的气流流动状况进行可行性分析和合理性验证,从中发现原设计中的不足和缺陷,从而加以改进完善使得通风空调设计更合理科学。但它耗时多,投资高,有时存在较大的困难。 目前对于地下水电站,地铁等大型公共建筑通风气流已做过很多的模型试验,但对于民用住宅室内通风气流模型模拟国内做的很少。本文通过模型试验的方法对住宅房间进行通风模拟试验,研究室内空气温度和速度的分布流场,以及房间气流换气均匀性和通风效果等情况,从而和实测的结果进行对比。 2 住宅房间简介 测试的住宅房间位于北京市东城区兴化西里小区内,二室一厅,住宅面积约为65m2。其中主卧的几何尺寸长、宽、高为××2.8m,客卧尺寸为××2.8m,客厅尺寸为××2.8m。在两个卧室和客厅的外窗上面都装有一个ALDES自平衡式的进风口,卫生间装有一个排风扇,厨房装有一个抽油烟机。整个房间内的通风是靠自然通风和机械通风(自然进风、机械排风)相结合的方式来进行的。 3 室内外气象参数 北京地区属暖温带大陆性季风气候区,一年四季分明。室外气象参数的计算按《采暖通风与空气调节设计规范》(GBJ 19-87 2001版)计算的。室外气象参数如表1所示: 表1 室外计算气象参数 本实验是在中国建筑科学研究院实验室进行的,为了保证实验的准确性,试验过程中尽量保证试验条件与室外的平均温度,平均风速保持相等,使试验情况更接近真实情况。 4 模型试验相似理论 模型试验的理论基础是相似理论。而相似准则是使模型与原型相似所必须满足的条件,也是模型设计与模型试验的基本依据,以及模型试验结果转变为原型结果的基础。

实验一室内气流组织模拟实验 一、实验目的 通过室内气流组织模拟

实验一 室内气流组织模拟实验 一、实验目的 通过室内气流组织模拟实验,掌握常用风口、常见室内送回风口布置对室内气流分布、工作区温度速度均匀性的影响;掌握室内工作区温度和速度的测量方法、气流演示实验方法。 二、实验原理 室内气流组织的优劣直接影响室内热环境的舒适性和空调设计的实现,同时也直接影响空调系统的能耗量。通常室内工作区由余热而形成的负荷只占全室总负荷的一部分。另一部分产生于工作区之上。良好而经济的气流组织形式,应在保证工作区满足空调参数要求的前提下,使空调送风有效地排出工作区的余热,而不使工作区以外的余热带入工作区,从而达到不增加送风量且提高排风温度的效果,直接排除这部分热量,以提高空调系统的经济性。为此引入评价室内气流组织经济性指标——能量利用系数η: o n o p t t t t --= η 式中,t n 、t o 、t p 分别为室内工作区空气平均温度、送风温度及排(回)风温度。 通过实测获得能量利用系数η,以评价室内气流组织的经济性。 三、实验方法 1.气流组织测量方法 (1).烟雾法 将棉球蘸上发烟剂(如四氯化钦、四氯化锡等)放在送风口处,烟雾随气流在室内流动。仔细观察烟雾的流动方向和范围,在记录图上描绘出射流边界线、回漩涡流区和回流区的轮廓,或者采用摄影法直接记录气流形态。由于从风口射出的烟雾不大而且扩散较快,不易看清楚流动情况,可将蘸上发烟剂的棉花球绑在测杆上,放到需要测定的部位,以观察气流流型。这种方法比较快,但准确性差,只在粗测时采用。 (2).逐点描绘法 将很细的合成纤维丝线或点燃的香绑在测杆上,放在测定断面各测点位置上,观察丝线或烟的流动方向,并在记录图上逐点描绘出气流流型,或者采用摄影法直接记录气流形态。这种测试方法比较接近于实际情况。 应注意上述用于记录气流形态的摄影法对拍摄焦距、烟雾与背景的对比度等要求较高。 2.能量利用系数测量方法 分别在室内工作区、送回风口处布置温度测点,温度测量仪器采用热电偶测量,工作区温度应采用多点布置取其平均值,计算求得能量利用系数。 3.风口、气流组织的选择 目前环境室内可供测量的风口有散流器、双层百叶两种风口,可供观察的气流组织形式有上送上回、上送下回,其中散流器送风口有二个。 四、实验步骤 1. 选择一种风口形式及其气流组织方式,调整送风温度及其送风量至设定值,待稳定后进行实验;

第十一章 送、回风口的型式及气流组织形式

第二节送、回风口的型式及气流组织形式 一、送风口的型式 由前述可知,空调房间气流流型主要取决于送风射流。而送风口型式将直接影响气流的混合程度、出口方向及气流断面形状,对送风射流具有重要作用。根据空调精度、气流形式、送风口安装位置以及建筑装修的艺术配合等方面的要求,可以选用不同形式的送风口。送风口的种类繁多,按送出气流形式可分为四种类型。 1.辐射形送风口:送出气流呈辐射状向四周扩散。如盘式散流器、片式散流器等; 2.轴向送风口:气流沿送风口轴线方向送出。这类风口有格栅送风口、百叶送风口,喷口、条缝送风口等; 3.线形送风口:气流从狭长的线状风口送出。如长宽比很大的条缝形送风口; 4.面形送风口:气流从大面积的平面上均匀送出。如孔板送风口。 还有按送风口的安装位置分为顶棚送风口、侧墙送风口、窗下送风口及地面送风口等。还常常将格栅送风口、百叶送风口、条缝送风口等安装在侧墙上或风管侧壁上的送风口统称为侧送风口。下面介绍几种常见的送风口。 (一)侧送风口 此类风口常向房间横向送出气流,表5—2是常用的侧送风口形式。在百叶送风口内一般根据需要设置1—3层可转动的叶片。外层

水平叶片用以改变射流的出口倾角。垂直叶片能调节气流的扩散角,叶片平行时扩散角只有19℃,而叶片张开时(最边缘叶片与送风口 平面夹角为45℃),扩散角可增大至60℃(图5—11)。 送风口内层对开式叶片则是为了调节送风量而设置的。格栅送风口除可装横竖薄片组成格栅外,还可以用薄板冲制成带有各种装饰图案的空花格栅,气流通过有效面积可达53-73%。 (二)散流器 散流器是一类安装在顶棚上的送风口,可以与顶棚下表面平齐,也可以在顶棚下表面以下。散流器有圆形、方形或矩形的。盘式散流器的送风气流呈辐射状。片式散流器设有多层散流片,片的间距有固定的也有可调的。使送风气流呈辐射形或锥形扩散。还有将送风口和回风口做成一体的,分别与送、回风支管连接。,表5—3是常见的散流器型式。还有一种方形或矩形散流器,散流片的倾斜方向不同,各向散流片所占散流器的面积比例不同。可以根据需要安排气流的方向及分配各向送风量的比例,以适应各种建筑平面形状及散流器位置的要求。表5—4是这类散流器的型式及其在房间内布置示意。 (三)孔板送风口 空气经过开有若干圆形或条缝型小孔的孔板而进入室内,此风口称为孔板送风口。该风口和前述所有风口相比,其特点是送风均匀,速度衰减较快。图5-12所示为具有其稳压作用的送风顶棚的孔板送风口,空气由风管进入稳压层后,再靠稳压层内的静压作用经孔 口均匀地送入空调房间。

空调房间气流组织数值模拟和优化课程

毕业设计说明书 作者:学号: 学院: 系(专业):热能与动力工程 题目:空调房间气流组织数值模拟和优化指导者:讲师 (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 2012 年 6 月2 日 毕业设计(论文)中文摘要

毕业设计(论文)外文摘要 Title Numerical simulation of air-conditioned room air distribution and optimization Abstract Airflow-organizing in air-conditioned indoor air environment, air quality has an important effect is directly related to the indoor temperature, area, flow rate and air-conditioning energy consumption is an important part of the air-conditioned. Effective ventilation and airflow organization has an important significance for improving indoor air quality, to ensure the realization of healthy buildings, healthy comfort air conditioning. The main factors to affect the flow in room inlet velocity, the location of the air inlet into the return air relative position Firstly, the establishment of a physical model and mesh using Gambit software, and numerical simulations using Fluent software, said in an intuitive way the temperature field and velocity field of airflow under different air distribution program, analyzing the draw for office and other similar air-conditioned room, Side of the send side back, on sending the next time, on to send back, next to send back to the four air distribution are more appropriate. But the better Side of the send side back and on to send back on the air current forms of organization. Keywords:Airflow-organizing;Numerical simulation; Turbulence model;Temperature field;Velocity field.

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析 摘要:分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的室内空调室内气流的速度场和温度场进行了数值模拟,并对其结 果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。 结果表明,分层空调和置换通风是室内中较好的气流组织方式。 关键词:室内;气流组织;速度场;温度场;数值模拟;热舒适 引言 传统空调系统的气流组织是以送风射流为基础的,通过反复迭代检查温度和 速度。最后,找到合理的回风方案和参数。空调房间内的供气射流大多是多个非 等温湍流射流,一般设计方法是基于单股等温紊流射流的规律,射流约束修正系数、射流重合度和非等温射流的修正系数。介绍。这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些 情况下甚至有很大的误差。若简单地将这种方法用于空间空调系统的气流组织设计,是不合适的。 空间空调系统的气流设计没有成熟的理论和实验结论。主要研究方法是将气 流的数值分析与模型相结合。由于气流的数值分析涉及到各种可能的内部扰动、 边界条件和初始条件,所以可以完全反映房间内的气流分布,从而确定气流的最 佳方案。 1室内空气流动的有限元数值模拟 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在 解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设: 1)室内空气为低速不可压缩气体,且符合 Boussinesq 假设; 2)室内空气流动为准稳态湍流流动; 3)忽略能量方程中粘性效应引起的能量耗散。 2各种送风方式下大空间室内气流组织数值模拟 2.1研宄对象 本文的研宄对象为有内热源、尺寸为12 mX &4 mX5.0 m(长X宽X高)的长 方体建筑模型(如图1所示),风口设在外墙侧。人员和设备由于不断放出热量,对室内气流分布特性有重要影响,将其视作内热源处理。内热源模型为0.4 mX 1.2 mX 1.3 m(长X宽X高)的长方体。在内热源模型内部不求解控制方程,把它的内表面视作速度为0的壁面。考虑模型的对称性,取一个空调送风单元(3 mX 4.2 mX 5.0 m)进行模拟计算分析。本文主要讨论0.1 m和1.1m高度的情况,这 两个平面之间的区域可以代表工作区。 2.2边界条件的处理 室内温度设定为(26±2)°C,内墙的温度设定为26°C,外墙为26.5屋顶为26°C。人体和设备的发热功率之和为600 W。本文应用有限元的非统一网格,在 人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函 数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3常用送回风方式下室内气流组织模拟及气流分布特性评价

某综合体项目办公大堂空调气流组织的CFD模拟分析

某综合体项目办公大堂空调气流组织的CFD模拟分析 发表时间:2018-05-28T15:01:08.897Z 来源:《建筑学研究前沿》2017年第35期作者:张晓洁[导读] 高大空间建筑有体积大、空调负荷大、能源消耗量大、对空调质量要求高等特点,其气流组织方式和空调节能问题尤显重要。 摘要:高大空间建筑有体积大、空调负荷大、能源消耗量大、对空调质量要求高等特点,其气流组织方式和空调节能问题尤显重要。有效地通风和合理的气流组织对于改善室内空气品质,保证实现健康建筑、健康舒适性空调有着重要的意义。做好大空间内气流组织的CFD模拟分析,可以从人员舒适性角度考虑风口布置的合理性,满足大空间档次提升需求。同时可在室内精装设计阶段作为风口布置参考。关键词:高大空间;气流组织 CFD模拟分析;速度场;温度场 引言:空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,对通风空调技术也提出了更高的要求。在空调房间内,气流组织是通风和空调系统的重要组成部分,直接影响室内空调效果,是关系着房间工作区的温度、湿度基数、精度及区域温差、工作区的气流速度及清洁程度和人们舒适感的重要因素。随着计算机技术的发展,越来越多的项目在设计阶段利用CFD技术对空调房间气流组织进行优化和研究,从而了解由空调通风所形成的室内空气速度场、温度场、湿度场以及有害物浓度场等的分布情况,以制定出最佳的气流组织方案。本文以南宁某综合体项目办公大堂为例,对设计的空调送回风系统进行CFD模拟分析。 一、CFD技术简介 室内气流组织,是指一定的送风口形式和送风参数所带来的室内气流分布。在实际工程中,常用的气流组织形式有:侧送侧回、上送下回、上送上回、下送上回等。影响空调房间气流组织的主要因素是入口风速、进风口的位置、进回风口的相对位置等。由于影响因素较多,加上实际工程中具体条件的多样性,因此难于用简单的理论或经验表达式来综合上述诸多因素的影响。目前,在空间气流分布计算方面较多采用CFD技术进行模拟分析。 CFD是计算流体力学(Computational Fluid Dynamics)的简称,是流体力学和计算机科学相互融合的一门新兴交叉学科,它从计算方法出发,利用计算机快速的计算能力得到流体控制方程的近似解。CFD兴起于20世纪60年代,随着90年代后计算机的迅猛发展,CFD得到了飞速发展,逐渐与实验流体力学一起成为产品开发中的重要手段。CFD 技术具有成本低和能模拟较复杂或较理想的过程等优点,可以拓宽实验研究的范围,减少成本昂贵的实验工作量。在给定的参数下用计算机对现象进行一次数值模拟相当于进行一次数值实验。常用的CFD软件有:CFX、Fluent、Phoenics、Star-CD、comsol、star-ccm+、flow-3D、AUTODESK CFD。 二、项目概况 本综合体项目位于南宁市凤岭片区东盟商务区核心区内,北侧为民族大道,西侧为青秀路,东南侧临中新路。该项目为一栋超高层办公楼,总建筑面积约为28.73万平方米,地面以上九十层,地下三层,建筑高度为445米,集商业、办公、酒店为一体的超高层综合楼。 办公大堂位于项目首层,为三层通高,高度为16.75m,其中电梯厅区域为局部两层通高,高度为11.25m,总建筑面积为1473.24㎡。大堂空调采用全空气系统,选用两台风量为45789m3/h,冷量为136Kw的组合式空调机组,设置在二层空调机房内。空调送风口为均匀布置,回风口集中设置在电梯厅上空,大堂空调送回风口平面布置如下图所示:

气流组织实验指导书参考资料

室内气流组织测定 实验指导书 2008年3月 实验:室内气流组织测定 一、实验目的 1.通过对空调房间的温度、湿度、风速的测定,检查空气处理设备的实际工作能力及空调房间的温度场、速度场的分布情况,从而进一步理解空调房间的舒适度的概念。 2.通过对空调房间的各项指标的测试,了解空调房间的送风、回风口的配置。 3.学会测量仪器工具的使用方法。 二、实验仪器 红液温度计(0~150℃、±℃)、湿度计、QDF热球风速仪,单元式空气调节机组、玻璃钢冷却塔。 三、实验内容 1.空气状态参数测定 当空调系统运行基本稳定后,在室内工作区里选定一些具有代表性的点(一般不少于5个),所选的测定点应尽可能位于气流比较稳定而且空气混合比较均匀的断面上。测定点高度应离地面 1.5~2m,离外墙不少于0.5~1m,且须远离冷热源表面和不受阳光直射。再选取送风口和回风口的中心作为固定测点。选定测定点后,将温度计安

装在测定点位置,经3~5分钟后,待温度计读数稳定后才能读数记录。 测量湿度时,湿度计的安装方法和温度计相同,读数步骤也相同。 测定数据每隔0.5~1小时进行一次。 2.风量的测定 在稳定的空调房间内,我们可以通过对风口风速测定得到风量,进出风口的风速可直接用风速仪器测量,测量进出口风速时,风速仪要尽可能的靠近进出风口的中心位置,以减少误差。每隔0.5~1小时测量一次。 3.室内气流组织的测定 空气气流速度是指在工作区内的气流速度,一般要求普通空调房间工作区的风速不超过0.5m/s,这项测定可以选定用于测定室内空气状态的测定点位置同时进行。 四、数据处理 1.湿度 室内工作区的湿度可简化计算为各个测定点的湿度的算术平均值。 2.风速 室内工作区的风速可简化计算为各个测定点的风速的算术平均值。 3.温度 室内温度的计算: 式中,

大空间建筑室内气流组织数值模拟与舒适性分析

大空间建筑室内气流组织数值模拟与舒适性分析 发表时间:2019-04-30T10:40:18.810Z 来源:《基层建设》2019年第4期作者:王雷谢恩 [导读] 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。 中建三局第一建设工程有限责任公司湖北武汉 430040 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。根据ADPI指标对这几种送回风方式进行了热舒适性评价。结果表明,分层空调和置换通风是大空间建筑中较好的气流组织方式。 关键词:大空间建筑;气流组织;速度场;温度场;数值模拟 引言 常规空调系统气流组织的设计是以送风射流为基础,通过反复迭代对温度和速度进行校核,最后找到合理的送回风方案和参数。空调房间的送风射流大多属于多股非等温受限湍流射流,而一般的设计方法是在单股等温湍流送风射流规律的基础上,引入射流受限、射流重合和非等温射流修正系数,这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。若简单地将这种方法用于高大空间空调系统的气流组织设计,是不合适的。对于高大空间空调系统的气流组织设计,目前尚无成熟的理论和实验结论,主要研究手段是将气流数值分析和模型相结合。由于气流数值分析涉及室内各种可能的内扰、边界条件和初始条件,因此能全面地反映室内的气流分布情况,从而便于确定最优的气流组织方案。 1大空间气流组织的研究意义 对于现代的工艺空调车间,不但要满足工艺方面的要求,而且还要营造良好的室内人工环境。在生产过程中必须保证生产工艺所要求的温度、风速、湿度,为生产提供条件,同时也要求提供合适的新风量,保证一定的洁净度和噪声标准,为工作人员提供良好的工作环境。在各类工艺空调建筑内,空气调节是实现这些人工环境的最佳手段。在大空间空调中,经过处理的空气由送风口进入,与室内空气进行热湿交换,经过回风口排出。空气的进入与排出,必然引起室内空气的流动,而不同的空气流动状况有不同的空调效果,合理组织室内空气的流动,使室内空气的温度、湿度、流动速度等能更好地满足工艺要求,符合人们的舒适感觉。由此可见,大空间气流组织直接影响室内的空调效果,是关系到工作区的温湿度基数、精度及区域温差、工作区的气流速度及洁净度和人们舒适感觉的重要因素,是空气调节的重要环节,对其进行研究己口渐成为一项重要的课题。 2大空间建筑室内气流组织有限元法数值模拟 2.1物理模型假设 机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。在解决实际问题时,需要对物理模型进行一定的假设和简化处理。笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合Boussinesq假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中由于黏性作用引起的能量耗散。4)控制方程求解与罚函数的采用应用K-ε两方程模型模拟湍流,加上连续性方程、动量方程、能量方程组成控制方程组。方程组中空气密度ρ=1.1941kg/m3,黏度μ=1.81×10-5Pas,6个经验系数的取值如下:Cμ=0.09,C1=1.44,C2=1.92,σT=0.9~ 1.0,σK=1.0,σε=1.3。对流场控制方程用有限元法求解。为防止病态方程组出现,本文采用罚函数法。罚函数模型是压力速度模型的变形形式,把连续方程作为罚函数约束导入动量方程从而消去压力项,得到只有速度项的动量方程,即令p=-λp(v)(1)式中λp是罚参数。在求解其他变量之前,将压力从全部未知量中消去,这将减少求解未知量的数目。压力在其他变量求出后重新求得。 2.2各种送风方式下大空间室内气流组织数值模拟 2.2.1下送风方式(置换通风)室内气流组织模拟 置换通风气流组织的影响因素很多,例如热源的大小和位置、送风温度以及障碍物的高度和位置等。由于长方体内热源模型的假设不能很好反映置换通风的流动特点,所以在此将内热源简化为一个处于房间底部正中间的面积为0.4m×0.4m的面热源,热源温度为40℃。为了模拟热源气流的上升,假设送风速度为0.3m/s,考虑冷气流的特点,假定地面温度为22℃,其余边界条件与前文相同。置换通风的送风温差一般为2~4℃,本文取4℃,则送风温度为22℃,送风速度为0.25m/s,送风口尺寸为1.0m×0.5m。尺寸为1.0m×0.5m的回风口布置在屋顶靠近置换装置的一侧,回风速度为0.35m/s。模拟显示z=0.1m断面上平均温度为22.66℃,平均速度为0.025m/s。 2.2.2边界条件的处理 室内温度设定为(26±2)℃,内墙的温度设定为26℃,外墙为26.5℃,屋顶为26℃。人体和设备的发热功率之和为600W。本文应用有限元的非统一网格,在人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函数法。非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。 2.3五种送回风方式室内气流分布特性评价 对舒适性空调来说,评价标准不外乎舒适性和经济性两个方面,前者是对气流在工作区形成的温度场、速度场能否满足人员的卫生和舒适要求的评价,后者则考虑为消除工作区的余热,送风的耗冷量是否最低。对气流组织性能有多种评价指标,如温度不均匀系数kt,速度不均匀系数kv,符合给定条件测点比例数F,以及能量利用系数η等。 3送回风参数对地面附近温度场和速度场的影响 前面我们对子午胎车间在冬夏两季最不利情况下进行了气流组织模拟预测,并对其设计效果进行了评价,结果表明原来的设计将使车间内冬季温度偏高,夏季温度偏低,不利于节能。这一章中我们将对夏季最不利工况进行研究,模拟预测子午胎车间在不同送风参数和回风口高度下的温度场和速度场,对比分析找出最佳送风参数和回风口高度,力图得出同类大空间车间的设计规律。 4结论 从流场情况看,上送风的几种形式中,百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调有相似的气流流动规律,但分层空调较为节能;喷口送风工作区平均温度、速度均较低,垂直温差、不均匀系数均较小,能量利用系数较大;散流器顶送下回方式气流在整个空间的分布较均匀,可较好地减少内热源对周围环境的热影响(z=1.1m平面上最高温度值比其他方式小),但其平均速度较大,在风口下部的人有吹风感;百叶

空调房间室内气流组织模拟fluent

空调房间室内气流组织模拟(fluent)

————————————————————————————————作者:————————————————————————————————日期:

模型[1] m s,送风温度为?如图,房间左下角有一个空调,送风和回风方向如图所示。送风速度为1/ 25℃,壁面温度为30℃。 1.建立模型及网格划分 ①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。 ②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。 2.求解模型的设定 ①启动FLUENT。启动设置如图,这里着重说说DoublePrecision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。然而对于以下一些特定的问题,使用双精度求解器可能更有利。 [1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317

a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能 足够精确地表达各尺度方向的节点信息。 b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特 别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。 c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛 性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。 ②求解器设置。这里保持默认的求解参数,即基于压力的求解器定常求解。如图: 下面说一说Pressure-based和Density-based的区别:

气流组织计算

气流组织的校核 空气调节区的气流组织(又称为空气分布),是指合理地布置送风口和回风口,使得经 过净化、热湿处理后的空气,由送风口送入空调区后,在与空调区内空气混合、置换并进行热湿交换的过程中,均匀地消除空调区内的余热和余湿,从而使空调区(通常指离地面高度为2m 以下的空间)内形成比较均匀而稳定的温湿度、气流速度和洁净度,以满足生产工艺和人体舒适度的要求。同时,还要由回风口抽走空调区内空气,将大部分回风返回到空气处理机组(AHU )、少部分排至室外。 影响空调区内空气分布的因素有:送风口的形式和位置、送风射流的参数(例如,送风 风量、出口风速、送风温度)、回风口的位置、房间的几何形状以及热源在室内的位置等,其中送风口的位置和形式、送风射流的参数是主要的影响因素。 5.1 双层百叶风口的气流组织校核: 标间、套房、咖啡厅以及洽谈室内风机盘管加新风系统选取上送侧回的双层百叶风口送 风。选取三层十二号老人活动室为 例,进行气流组织的校核计算。该房间其空调区域室温要求为26℃,房间长为A=5m ,宽为B=4.2m ,高为H=4.0m ,室内全热冷负荷Q=3229W 。 ①:根据空调区域的夏季冷负荷、热湿比和送风温差,绘制空气处理的h-d 图,计算夏 季空调的总送风量Ls (m 3/h )和换气次数n (1/h ): ) (2.16.3hS hN Q LS -= ----------------- (5-1) H B A L n s **= ---------------- (5-2) 式中: Q ——空调区的全热冷负荷,W ; h N 、h S ——室内空气和送风状态空气的比焓值,kJ/kg ; A ——沿射流方向的房间长度,m ; B ——房间宽度,m ; H ——房间高度,m 。 通过计算可得: Ls =1038 m 3/h n=13 1/h ②:根据总送风量和房间的建筑尺寸,确定百叶风口上网型号、个数,并进行布置。送 风口最好贴顶布置,以获得贴附射流。送冷风时,可采取水平送出;送热风时,可调节风口外层叶片的角度,向下送出。 ③:按照下式计算射流到达空调区域时的最大速度V x (m/s ),校核其是否满足要求: x Fs c b s k k mv Vx = ---------------- (5-3) 式中: Fs ——送风口的计算面积,㎡;

洁净室气流组织

洁净室气流组织

————————————————————————————————作者: ————————————————————————————————日期: ?

洁净室气流组织 摘要:洁净室为了达到其所要求的洁净度级别需要三个条件:一是性能良好的高效过滤器,二是足够的送风量,三是合理的气流流型;而使用合理的气流流型能够有效地减少送风量。本文主要叙述洁净室涉及到的气流组织,以及矢流洁净室用于医院洁净病房空调的可行性,并阐述了空态下矢流洁净室内洁净度的测量结果、矢流洁净病房静态下气流场的测量结果和矢流洁净病房点污染源散发实验结果。 关键词:洁净室、气流组织、矢流洁净室 洁净室就其控制的对象来说,分工业洁净室和生物洁净室两大类。各类洁净室控制微粒污染的途径是相同的,这类途径主要体现在以下几方面[1]:1、有效地阻止室外的污染侵入室内或有效地防止室内污染物扩散至室外。这是洁净室控制污染的最主要途径,主要涉及空气净化处理的方法、室内的正压等。2、迅速有效地排除室内已经发生的污染,这主要涉及室内的气流组织,也是体现洁净室功能的关键。3、控制污染源,减少污染发生量,这主要涉及发生污染的设备的设置与管理和进入洁净室的人与物的净化。 洁净室气流组织的类型按其气流状态来区分,主要分为非单向流洁净室、单向流洁净室和矢流洁净室(也称辐流洁净室)[2]。 1、非单向流洁净室的工作原理(也称乱流洁净室原理) 非单向流洁净室的主要特点是从来流到出流从送风口到回风口之间气流的流通截面是变化的,洁净室截面比送风口截面大得多,因而不能在全室截面或者在全室工作区截面形成匀速气流。所以,送风口以后的流线彼此有很大或者越来越大的夹角,曲率半径很小,气流在室内不可能以单一方向流动,将会彼此撞击,将有回流、涡旋产生。这就决定非单向流洁净室的流态实质是突变流非均匀流。所以,概括地说,非单向流洁净室的作用原理是当一股干净气流从送风口送入室内时,迅速向四周扩散、混合,同时把差不多同样数量的气流从回风口排走,这股干净气流稀释着室内污染的空气,把原来含尘浓度很高的室内空气冲淡了,一直达到平衡。所以,气流扩散得越快,越均匀,稀释的效果就越好。非单向流洁净室的原理就是稀释作用。 2、单向流洁净室的工作原理(曾被称做层流洁净室) 在洁净室内,从送风口到回风口,气流流经途中的断面几乎没有什么变化,加上送风静压箱和高效过滤器的均压均流作用,全室断面上的流速比较均匀,在工作区内流线单向平行,没有

气流组织分布及计算

第10章 室内气流分布 10.1 对室内气流分布的要求与评价 10.1.1 概述 空气分布又称为气流组织。室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。 空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。 下面介绍对气流分布的主要要求和常用评价指标。 10.1.2 对温度梯度的要求 在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。 在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0.1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况); 美国ASHRAE55-92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况)。 10.1.3 工作区的风速 工作区的风速也是影响热舒适的一个重要因素。在温度较高的场所通常可以用提高风速来改善热舒适环境。但大风速通常令人厌烦。 试验表明,风速<0.5m/s 时,人没有太明显的感觉。我国规范规定:舒适性空调冬季室内风速≯0.2m/s ,夏季≯0.3m/s 。工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0.2-0.5m/s 。 10.1.4 吹风感和气流分布性能指标 吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。 1.有效吹风温度EDT 美国ASHRAE 用有效吹风温度EDT(Effective Draft Temperature)来判断是否有吹风感,定义为 )15.0(8.7)(EDT ---=x m x t t ν (10-1) 式中 t x ,t m --室内某地点的温度和室内平均温度,℃; v x --室内某地点的风速,m/s 。 对于办公室,当EDT=-1.7~l ℃,v x <0.35m/s 时,大多数人感觉是舒适的,小于下限值时有冷吹风感。 EDT 用于判断工作区任何一点是否有吹风感。 2.气流分布性能指标ADPI 气流分布性能指标ADPI (Air Diffusion Perfomance Index ),定义为工作区内各点满足EDT 和风速要求的点占总点数的百分比。 对整个工作区的气流分布的评价用ADPI 来判断。

不同送风方式下室内气流组织及颗粒物分布的模拟实验研究

不同送风方式下室内气流组织及颗粒物分布的模拟实验研究随着经济发展和科技技术的不断提高,人类的生活水平也随之上升,人们对 生活物质方面的消费更加注重品质。空调系统给人们带来室内舒适的环境,也起到通风除污的效果,为人们工作和居住带来一个健康舒适的空间。在节能与健康的基础上,我们通过实验和模拟等方式来对空调系统进行研究,以提出新的观点 和方法,为人们的健康发展做出努力。本文首先介绍不同气流组织形式及气流组织形式的评价指标,详细介绍本文研究中所使用的实验系统及测量系统,并介绍 了仿真软件Fluent及模拟所应用的物理模型,本文采用RNG k-ε模型与壁面函 数法作为室内空气流动的湍流模型。 本文分别进行了双侧送上回和双顶送上回的实验,通过改变回风口位置和不同风机频率,研究室内气流组织变化情况。分别测得各实验工况下的室内速度场和温度场,并对数据进行整理分析,研究表明,对于改变风口位置实验,除送风口 射流对面墙附近位置以及风口位置的速度场和温度场有所变化,其他位置并无影响。而改变风机频率之后,室内的速度场和温度场有明显变化,但是气流组织形式基本不变。通过建模、划分网格,计算采用的边界条件假设尽量符合实验要求, 利用Fluent模拟软件进行计算,将实验和模拟结果进行分析和对比,找出实验中存在的误差,同时也验证了模型的可靠性。 应用该模型研究了室内存在挡板时不同送风方式下,室内颗粒物的扩散情况。通过改变颗粒物粒径大小以及颗粒物产生源的不同位置来进行对比和分析,计算了不同工况下室内的通风效率以及能量利用系数。以此来综合评价不同的气流组织形式在改善室内空气品质方面的差异。研究表明:挡板的存在影响侧送风气流流动,使得室内颗粒物不容易排出,由于顶送风位置与挡板在同一截面,所以顶送风受影响较小。 增大颗粒物直径,由于重力影响,大颗粒物有明显“惰性”,并不容易排出室内。降低颗粒物释放源位置后,侧送风变化效果并不明显,而顶送风则变化较大。

室内污染物与健康及寝室空间气流组织的模拟

室内污染物与健康及寝室空间气流组织的模拟据调查人们的一生中约80%-90%的时间处在室内,室内环境质量不仅影响人体的舒适和健康,而且影响室内人员的工作效率。然而近几十年来,世界上不少国家都出现了室内空气品质问题。 存在于室内能影响空气品质的污染物常见的有CO2、NOx、VOCs、甲醛等。 在一定浓度范围内,CO2对人体没有伤害。但其浓度超过一定范围时就会使人体感到不适。我们有时会有这样的感受,早上起床时感觉到很闷,有种透不过气的感觉;学习、工作时有时注意力不集中,这除了与自身因素有关外,还与空气中CO2浓度过高有关。根据国内外专家研究,CO2与人体生理反应关系为CO2浓度 (ppm) 350—500350—10001000—20002000—5000大于5000 生理反应室外环境空气清新,呼 吸顺畅 空气混浊,呼 吸不畅,昏昏欲睡 头疼、嗜睡、 呆滞、注意力无法 集中 可能导致严重 缺氧,造成永久性 脑损伤,昏迷、甚 至死亡 氮氧化物主要对呼吸器官有刺激作用。由于氮氧化物难溶于水,因而能侵入呼吸道深部细支气管及肺泡,并缓慢溶于肺泡表面水中,形成亚硝酸、硝酸,对肺组织产生强烈的刺激及腐蚀作用,引起肺水肿。亚硝酸盐进入血液后,能引起组织缺氧。 甲醛主要来自于建筑装饰、装修材料和家具。科学研究表明甲醛对人体健康有很大危害。甲醛浓度达到0.1mg/m3时就有异味,人体就会产生不适感;达到0.3mg/m3时可刺激眼睛引起流泪;达到0.5mg/m3时引起咽喉不适或疼痛;浓度再高可引起恶心、呕吐、咳嗽、胸闷、气喘甚至肺气肿;当空气中甲醛浓度达到30mg/m3时,可当即致死。 VOCs是指熔点低于室温,室温下饱和蒸气压大于133.3Pa,沸点在50~250℃范围,一般在常温下能以气体形式存在于室内的一类有机化合物。TVOCs则是指各个VOCs的总和。室内空气中VOCs的主要来源有:隔热材料、板材及家具、涂料、日用化学品污染、厨房污染、人的活动污染。。VOCs能刺激人体感官,入感觉干燥;刺激眼黏膜、鼻黏膜、呼吸道和皮肤等;VOCs很容易通过血液一大

办公室空间的气流组织解决方案

办公室空间的气流组织解决方案 随着办公自动化的普及,办公人员越来越集中,办公设备负荷越来越大,所以大型办公室一般均配备了集中空调系统。这种办公室一般特点是空间面积大,人员和设备密度大,单位面积的冷负荷高。 由于自动化办公是近些年出现的特点,很少有人对其空调系统进行专项研究,尤其是室内气流组织方面。现在许多办公室都有如下问题: 1、夏季空调送风口下的人员抱怨空调太凉,有时必须加件秋装。 2、距离风口远的人员抱怨空调不够凉。 3、冬季办公室内区温度太高,而外区有比较冷。 上述问题1、2条明显是气流组织控制不好,造成室内温度场不均匀所致。第3条是系统设计未考虑到空调内外区独立控制所致。这里我们先来研究气流组织问题,首先看一下国内办公房间空调气流组织设计的现状。 第一、现在国内高度4m以下的下送风空调风口大量采用的是散流器,以铝合金的方形散流器居多,市场占有率在90%以上。 第二、设计人员在选择散流器时,基本上不进行气流组织计算,大多只是根据风口的送风量计算一下喉部尺寸。 第三、设计人员在布置散流器时,主要考虑与回风口的距离以减少气流短路,兼顾设备和送风管位置。很少考虑送风温差、送风高度、送风量及工作区域气流速度等因素。 从大量的应用实例调查来看,一般反映在散流器正下方水平1m~2m处有明显吹风感,说明目前国内常用的铝合金散流器不能达到的水平散流送风,而是向下的扩散送风。因此目前大部份的办公室室内气流组织如下图所示:

常规散流器送风的气流示意图 一般空调房间夏季设计工况为干球26℃,相对湿度60%,露点温度17.63℃。以国内常用的风机盘管+新风系统为例,室内的湿负荷由风机盘管承担,因此风机盘管的出风温度会达到露点温度一下,即低于17.63℃,甚至会达到15℃。而风口的送风温度基本等于盘管出风温度,即便是有一定的风管温升(考虑摩擦损失和传热损失)也不会高于19℃。因此低于19℃的送风没有与室内空气充分混合,吹到工作区域,就会使风口下方的人员感到气温太凉了。同时由于室内气流不均匀,引起温度场分布不均匀,其他区域很容易产生局部温度过热。 针对上述情况,推荐采用贴敷射流的风口,这类风口的特点是在较大的风量变化范围内维持水平贴敷送风,而风口下方的空气被卷吸向上。 经过空调设备处理后的低温风被贴敷吊顶水平送出后,与室内空气充分混合,再利用冷空气的沉降作用进入工作区域,形成的室内气流如下图: RA-N3送风气流示意图 选用这样的风口,可以降低工作区域气流速度,保证室内温度场分布均匀。同时由于风口下方气流被卷吸向上,因此风口下方人员没有吹风感。低速的气流和均匀的温度分布使得空间的舒适程度大大提高。 好的风口布置和选型,能够充分完成设计意图,降低噪音,节省能耗,提高舒适性。因此在进行风口选择时,不但要考虑送风量,同时还应考虑送风距离、送风温差、风口噪声、控制区域流速和风口的自平衡能力等。克兰茨在此方面有着多年的专业经验,善于解决各种条件下的气流组织方案,欢迎各方垂询。

相关文档
相关文档 最新文档