文档库 最新最全的文档下载
当前位置:文档库 › 变压器设计

变压器设计

变压器设计
变压器设计

变压器设计

一.变压器设计简介:

变压器是用来变换交流电压、电流而传输交流电能的一种静止的电器设备。它是根据电磁感应的原理实现电能传递的。变压器有很多的类型有很多种,我这次设计的是电力变压器,主要是对电力输配电和对用户配电的一种电压转换。①设计要求:满足在户外低温环境下使用,满足未来五年内电力发展的需要。②变压器用途:用在农村电网的城市居民照明。

我设计计算的是单相柱上式配电变压器,主要参数如下:

二、铁芯计算

1、铁芯材料:选用国标35Q145冷轧硅钢片,叠片系数:97.0=d f

2、铁芯直径:每柱容量:254

100

2ri z ==?∑=

zh h m p P 铁芯直径的估算:mm 3.1162552425.00=?=?=zh D P K D 取120mm 3、铁心中磁通(Φm )及磁通密度( Bm )计算

普通电力变压器设定t m B e 105.4,757.13-m ?=Φ=

4、铁心重量计算

铁心柱重:Kg S H m G tx zh zh zh 08.1241065.737.101800210440=????=????=--ρ 铁轭重量:Kg M m G tx e 459.01065.7300210440e =???=???=--ρ(800mm 和 300mm 为目测)

铁心重量:Kg G G G G e zh 639.1431.19459.008.124tx =++=++=? 5、空载损耗:W G P K P tx P 5.231639.143535.105.1tx 00=??=??= (535.1tx =P ,375.1=tx q )

6、空载电流:()[]

%45.110/2%zh 0=????+?++=??x j j tx e zh P q n S q K G G G I 7、铁芯温升: 一般为60K

二、线圈计算

1、线圈材料:选用纸包圆铜线 标称直径()00.1d =mm 标称截面积

()

7854.0mm 2=S 绝缘外径()30.1=mm D t 绝缘重量 (3.0t =δ)时59.6%=t C 2、线圈型式:圆筒式(层式)线圈 多层圆筒式线圈: 常用于容量 <630 kVA, 电压 3~35 kV 级的高压线圈。

3、低压线圈每相匝数:9.1127240/dy =÷==t dy e U W 取整为2匝

4、电压比偏差:529224010000127/2121=÷?==U U n n

%0019.0%10010000)10000529289.1(%100/)e (%=?÷-

?=?-?=U U W V t 满足≤±0.25%

5、线圈导线总截面积计算 采用圆筒式 径向并联数(m b)×轴向并联数(n b ) =1×1

2

q 7854.07854.0111mm s n n m S b b =

÷??=???= 6、 线圈电流密度计算 因使用铜导线,铜导线一般取 2

q /3mm A J =

7、 线圈平均匝长计算:由37.202

=P R π得mm R 47p =

295.010*******

3=???=??=--ππp pt R L

8、 线圈每相导线长度:m L L W L pt q q 6.1123.0=+?=+?=

9、 线圈导线电阻计算 :Ω=÷?=?=043.07854.06.102135

.0/q q q k S L R ρ 10、 线圈导线重量计算:

Kg S L m G x q q x 0112.0109.87854.06.111033q =????=????=--ρ

三.主纵绝缘

1、高压电压10KV 圆筒式线圈的主绝缘表(同设计手册) 高压电压:10kv 工频耐压:45kv 雷电冲击:105kv

内外线圈之内主绝缘距离:A 12 13mm ;A``c1 10mm; δc1 3mm;A`c1 0mm ;

外线圈至铁腭距离:H j1 30mm;h j1 20mm; δe 2mm ; 内线圈至铁腭最小距离:H`j2≥25

2、高压电压10KV 圆筒式线圈的纵绝缘表(同设计手册) 出线方式:端部出线 总段数:0.45 绝缘水平(KV ):

四、阻抗计算

1、短路阻抗:ref Z Z Z /100%= 由已知条件得短路阻抗为3.5%

110010/2

r 2

ref =÷==P U Z

2、短路阻抗允许偏差:有两个独立绕组的变压器,或多绕组变压器中规定的第一对独立绕组主分接阻抗值≥10%时, 允许偏差±7.5 %当阻抗值<10%时,允许偏差±10 %;其他分接当阻抗值≥10%时, 允许偏差±10 % 当阻抗值<10%时, 允许偏差±15 %。

3、电阻分量计算:()165.01001001650100/%r k =?÷==P P R k %

4、短路阻抗计:()()%5.3%%%2

2k =+=

k k R X Z

五、负载损耗计算

1、绕组导线电阻损耗:W R I P q x R 3.4043.010m 2

2

=?=??=

2、层式绕组的附加损耗系数: 层式绕组的附加损耗系数(K f %),其中包括导线的涡流损耗及在油箱等结构件中的 杂散损耗系数, 一般估计为: ≤ 200kVA K f % = 3 % 左右

3、绕组附加损耗:W P K P R f 129

.03.4100%3)100/%(f =?÷=?= 4、引线损耗:W P K P R y 043.03.41001()100/%(y =÷÷=?=)

六、温升计算

1、变压器在连续额定容量稳态下的正常温升限值规定

2、变压器的正常环境温度和冷却介质温度应符合下列条件:

最高气温 + 40℃; 最热月平均温度 + 30℃;

最高年平均温度 + 20℃;

最低气温 -25℃ (适用于户外式变压器); 最低气温 - 5℃ (适用于户内式变压器);

水冷却入口处的冷却水最高温度 + 25℃; 海拔不超过1000m 。 2、层式绕组的散热面:∑=-?=n

j kj

sj

sj

zh

H

R K m S 1

6qc 102π

取2m =zh ,85.0sj =K ,7854.0sj =R ,cm 80kj =H ,所以20067.0m S qc = 3、层式绕组的热负载:

()()2qc qc m /98.6410067.0100%313.4/100/%1q W S K P f R =÷÷+?=+=

七、引线绝缘

1、引线外包绝缘及夹持附加绝缘的规定 电压等级 ≤20KV 变压器参考容量 ≤500KVA

线引线材质 原有导线或 纸包圆铜线 分接线引线材质 原有导线或 纸包圆铜线 每边绝缘厚 225.4÷ 每边附绝缘厚 2mm

每边伸出夹持件最小长度 15mm 附绝缘宽度 100mm 附绝缘材质 电缆纸

之前虽然学过电力变压器这门课程,但学到的都是表皮。通多做这次大作业才发现,之前上课学的简直就是闹着玩,所学课本参考价值很小。为此我特意去图书馆借了两本有关电力变压器的专业书籍来学习,本想照着书去找个例子来自己做做,等真正计算时才发现自己想的太简单了,现在的所学根本是不可能完成一台完整变压器的计算任务的,更不必说是去设计了。计算过程按照老师所给的《变压器速查速算手册》进行的,计算过程与选定变压器的技术数据存在误差,而且很多参数都不确定,都是自己参考估计的,例如变压器的窗高M 0和H 0 等;一部分数据计算出来也有很大的误差,应该是数据带入的问题。

总体来说报告还存在很多的不足,在写报告过程中,也看到了自己很多的不足,同时提高了自己的逻辑思考能力和公式编辑能力。很感谢张老师对我的教诲。感谢这次设计作业对我的锻炼。

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.wendangku.net/doc/7814653377.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

怎样配置住宅小区配电变压器

怎样科学配置住宅小区配电变压器 1 前言 在经济和文化持续发展,大力构建和谐社会的今天,人们的衣、食、住、行的条件正在逐步得到改善,住宅生活小区的用电成为人们关注的重要话题。既要使居民家庭用好电,又要使供电企业的供电经济、高效,尽可能地把各种电气损耗降到最低限度。因此,供电企业必须加强用电营销的精细化管理,同时,供电企业和用电单位在规划、勘察及设计用电负荷时,要切合实际加以分析并严格遵守有关的电力规程和设计规范,科学分析、计算变压器配置,合理地选择变压器容量,切实做到供电部门经济运行,同时也减轻用户不合理的投资及不必要的电损负担。不但是对新的住宅区要规范设计,而且还要对一些现有的老住宅小区变压器配置方法进行分析,对已不能适应当前实际情况的变压器配置,有必要进行重新调整,以实现供电部门与用电户的双赢。 2 推广配电室或箱变 长期以来,住宅小区供电方式一般都在附近10kV变压器台区(供电部门公变或用电单位专变)低压侧直接引电源至小区,而且一个变压器台区所带的负荷也比较大,大多数变压器台区同时供应几个小区和一些零散的住宅群的生活用电,造成变压器台区经常过载。尤其是在冬、夏季用电高峰期更加严重,甚至导致变压器过载,直至烧毁变压器现象的发生。另外,人们对供电可靠性要求也不断提高。因此,我们对新建住宅小区的供电方式应该有所改变,必须根据目前广大居民的用电需求及负荷特性进行科学的规划。 (1)新建住宅区内建设配套配电室 配电室由高低压开关柜室和变压器室组成,高、低压进出线均采用电缆并敷设于电缆沟、桥架或电缆保护管内;同时,还要在变压器的高压侧设熔断器(容量较小时)或断路器(容量较大时),低压侧设立框架式或塑壳式断路器并合理设定保护参数,以便对变压器进行有效的保护。如果一些住宅小区公用面积较小,也可以采用箱式变电站(简称箱变)。这样,就能有效地保护变压器,大大提高供电的安全性、可靠性和稳定性。 (2)选择多种供电方式。 第一种方案:10kV高压侧双电源进线(该方式可以通过10kV进线高压开关柜互投装置来实现主备电源互为备用),经出线开关柜后接至变压器;低压侧采用单母线分段,正常情况下分段运行。第二种方案:10kV高压侧单电源进线,低压侧单母线分段或不分段。前一种方式可靠性较高,但投资大,适用于较高档的住宅小区,特别是有高层建筑的小区;后一种方式可靠性较前一种低,但投资比较节省。从目前的情况来看,后一种方式的供电可靠性已能够满足普通的生活用电,一般采用后种方式,但考虑以后的发展,配电室应该预留有安装备用电源高、低压进线柜的位置。综合以上两点,当前新建住宅小区应该配套建立配电室或箱变;同时,10kV电源进线应该预留进线位置(以保证供电可靠性),首期可以根据实际情况只接入1回10kV进线。 3 预测用电负荷 单位住宅小区用电负荷的特点必须考虑楼层的高低、是否安装电梯、消防水泵等设施,是否设置中央空调等因素。还要考虑除住宅外,是否存在社区办学校(幼儿园)、商场、娱乐场所等公共事业。根据这些实际情况来综合预测住宅的用电负荷。 目前,我国大部分地区新建住宅小区的套房为2房2厅、3房2厅,极少数为4房2厅。套房面积普遍为90~130m2,少数在140m2以上。随着住宅家用电器拥有量的迅速增加,特别是微波炉、电磁炉、消毒柜、电热水器等大功率电器进入普通家庭,以往常规考虑4~6kW的设计功率已不能满足现代家居的要求,根据对某城市家庭用电器的调查统计,得出

大功率电源设计

《电力电子技术》课程设计说明书 大功率电源设计 院、部:电气与信息工程学院 学生姓名: 指导教师: 专业: 班级: 完成时间:2014年5月29日

摘要 主要介绍36kW 大功率高频开关电源的研制。阐述国内外开关电源的现状.分析全桥移相变换器的工作原理和软开关技术的实现。软开关能降低开关损耗,提高电路效率。给出电源系统的整体设计及主要器件的选择。试验结果表明,该装置完全满足设计要求,并成功应用于电镀生产线。 关键词:高频开关电源;全桥移相;零电压开关;软开关技术

ABSTRACT The analysis and design of 36 kW high frequency switching power supply are presented.The present state of switching power supply is explained.The operating principle of full bridge phase—shifted converter and realization of soft switching techniques are analysed.Soft switching can reduce switching loss and increase circuit s efficiency.Integer designing of power supply system and selection of main device parameters are also proposed.The experiment results demonstrate the power supply device satisfies design requirements completely.It has been applied in electric plating production line success—fully. Keywords:high frequency switching power supply;full bridge phase—shifted;zero voltage switching;soft switching tech— nlques

变压器设计1

干式铁心电抗器 一、基本原理 电抗器是一个电感元件,当电抗器线圈中通以交流电时,产生电抗(X L )和电抗压降(U L =I L X L )。 空心电抗器线圈中无铁心,以非导磁材料空气或变压器油等为介质,其导磁系数很小 (1≈μ) ,磁阻(C r )很大,线圈电感(L )、电抗(X L )及电抗压降(U L )均小; 铁心电抗器的线圈中放有导磁的硅钢片铁心材料,硅钢片导磁系数大,磁阻小,其电感(L )、电抗(X L )及电抗压降(U L )均大。另外,铁心电抗器铁心柱上放有气隙(或油隙),改变气隙长度,会改变磁路磁阻,从而得到所需电感值(L )、电抗(X L )及电抗压降(U L )。 铁心电抗器线圈通过交流电,产生磁通分两部分,如图所示。一部分是通过铁心之外的线圈及空道的漏磁通(q Φ),它产生线圈漏抗(X Lq )及漏抗压降(U Lq = I L X Lq );另一部分是通过铁磁路(铁心及气隙)的主磁通(T Φ),它将在线圈中感应一个电势E ,其E ?可以 视为一个电压降,如忽略电阻电压降,此压降可认为是主电抗压降(U LT ) 。等值电路如图所示。 电抗压降(U L )的通式: C C L C C L C L L L L L l A W fI l A W fI r W I L I X I U 28022 109.72?×==== =μμπωω (V) 式中: L I —通过电抗器线圈的电流(A) L X —电抗器电抗(Ω) L —电抗器电感(H) W —线圈匝数 C r —磁阻(H -1 ),C r =C C A l 0μμ μ—相对导磁系数,如空气或变压器油μ=1 0μ—绝对导磁系数,cm H /104.080?×=πμ C l —磁路长度(cm) C A —磁路面积(cm 2 ) 磁通与磁势图 U LT 等值电路图

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

配电变压器节能设计选型

配电变压器节能设计选型 发表时间:2017-03-28T09:31:58.897Z 来源:《电力设备》2017年第2期作者:汪一波 [导读] 本文对于配电变压器节能设计选型进行了有效探讨。 (北京大学北京 100871) 摘要:变压器经济运行是采取各种措施减少各种损失来提高变压器的运行效率。变压器损耗可分为空载损失和负荷损失两部分,运行中的空载耗损是恒定的。若负载损耗发生变化,压力调节器的工作效率也随之变化。尽管配电变压器是一个高效的设备,但由于其数量庞大,以及空载耗电的固定性,变压器本体的节能潜力巨大。因此,本文对于配电变压器节能设计选型进行了有效探讨。 关键词:配电变压器;节能设计;选型 前言 在学校高速发展的今天,电力成为我们平时生产生活中最重要的能源之一。现在国家对公共机构节能要求越来越高,节能减碳工作势在必行。校内变压器数量现达到140余台,总装机容量10万KVA,应用节能变压器可以有效的降低用电量,而变压器的工作环境、负荷大小不一样,选择合理的变压器型号又成为重中之重。 1变压器的分类 除了干式变压器和油浸式变压器外,变压器还有很多分类方法,下面简单介绍几种: 1.1根据变压器相数,可将其分为三相变压器和单相变压器。三相变压器主要用于三相电力系统中,容量大且运输受限的情况下,也可使用三台单相式变压器组成变压器组来替代三相变压器。 1.2根据变压器绕组数,可将其分为双绕组变压器和三绕组变压器。每相铁芯上有原绕组和副绕组两个绕组的称之为双绕组变压器,它的应用相对广泛。当容量变压器在5600kVA以上时,一般采用三相绕组变压器,以实现三种电压输电线的连接。 1.3根据变压器结构,可将其分为芯式变压器和壳式变压器。铁芯式变压器的绕组处于铁芯的外围,壳式变压器的铁芯处于绕组外围。它们在结构有细微的区别,但是在原理是相似的。 2配电变压器节能设计 通过前文分析不难看出配电变压器节能的重要性和必要性,配电变压器节能是提升供配电系统社会效应、经济效益、环境效益的必经之路。下面通过几点来分析配电变压器的节能措施。 2.1用新工艺、新材料降低损耗 2.1.1改进工艺。通过改进工艺来降低运行损耗,最主要的是控制变压器的硅钢片精度。为此,可通过数控加工,利用自动化技术来精确控制硅钢片的形状、规格、厚度等。目前,加工精度达到0.18mm,就可大大降低变压器的空载损耗。 2.1.2重设结构。降低变压器损耗的重要手段之一是重设结构布局。目前,常见的结构布置方式有新型绕组和新型线圈。传统的绕组结构,在抗谐波、节能方面的效果不理想;若根据不同的配电电压来确定绕组结构,则可控制绕组的损耗,如漏磁走向的控制可采用自粘型换位导线。新型线圈结构是控制涡流损耗的理想手段,按涡流流向选择合理的纵向或横向的布置方式,可有效降低涡流损耗,进而达到理想的运行效果。 2.1.3新材料应用。制造变压器时,若选择的材料质量不好,其电阻率就会产生变化,引起损耗,同时变压器中铜铁材料的用量较大且用于关键部件,因此材料的质量将直接影响变压器的传输效率。新材料的突破使得优化变压器材料成为可能,将原有的铜铁材料替换为新型材料,能有效降低损耗,提高转换效率,制成高效节能变压器。磁体材料的优化,也是解决磁滞损耗的理想方法,如非晶合金,相比传统材料制成的磁体,在磁化和消磁性能方面明显胜出。利用非晶合金制作铁芯,能有效控制损耗,提高效益,但成本高,并未大面积推广。 2.1.4新型导线。使用无氧铜制作的导线,可有效降低变压器线圈内阻,从而降低铁损和铜损。如高温超导配电变压器,就是利用超导线材替换了铜芯线材,有效降低了损耗,同时还使变压器具备理想的抗短路性能。 2.2注意干式变压器的负载控制 目前我校对干式变压器的应用还比较多,但这种变压器过负荷时阻抗电压增幅较大,负载损耗十分严重。因此,建议对干式变压器的使用范围和使用数量进行控制,对已使用干式变压器的区域进行定期维护,提高变压器稳定性,避免过负载的发生,这样才能有利于电力节能的实现。 2.3优化配电变压器的选型 目前我国市面上的主流节能配电变压器主要有S7、S9、S11等等,这一系列变压器经过不断技术改良,其空载损耗有明显下降。电力工程中配电变压器的选型应注意优选,要综合考虑电网经济运行参数,根据变压器容量利用率来选择,以降低配电变压器运行中的无功损耗与有功损耗。虽然使用大容量变压器会增加一次性投资量,但却可以降低损耗,节约后续运行成本,所以建设中应根据优化需求来选择型号,电压偏移较大的区域应选择SZL7和SZ9系列,若对电能质量要求较高的区域应选择S11,若雷灾区,要选择防雷配电变压器。 2.4合理配置电网的补偿装置,合理安排补偿容量 2.4.1增加无功补偿的设备,以提高功率的因数 在线路中可以合理的运用电容器来实现提高电网中的无功补偿的能力,电容器充电、放电两大基本功能就可以帮助线路中提高无功功率补偿的能力,从而提高供电系统中的功率因数,降低供电变压器以及输送线路的损耗,提高供电效率。 2.4.2无功功率的合理分布 对于无功功率也要高度的重视,无功功率的存在降低了发电机和电网的供电效率,所以对于无功功率要合理的配置,减少无功功率的运输距离,除此之外还要注意其他方式的损耗进行计算和补偿。 2.4.3合理计划并联补偿电容器的运行 从大量的经验中表现出变压器的节能降耗主要是投入使用电容器。但是人们只是意识到了电容器的积极作用却忽视了其也会造成电网整体的损耗,所以在现实的节能降耗中要考虑整体的耗能来合理的设计电容器的投入。

最新变压器设计及计算要点

变压器设计及计算要 点

变压器设计及计算要点 —蒋守诚— 一概述 1. 变压器发展史 (1) 发明阶段(1831~1885) 变压器是利用电磁感应原理来变换电能的设备,故变压器一定在电磁感应原理发现后出现。 1831年英国人法拉第(M.Farady)在铁环上缠绕两个闭合线圈, 在一个线圈中突然接上或断开电池, 另一个线圈所接仪表指针发生偏转, 从而发现电磁感应原理。 1837年英国人曼生(Masson)用薄铁片做电磁线圈的铁心, 从而减少损耗。 1881年法国人爱维(Jaewin) 发现磁滞现象, 美国人斯坦曼茨(C.P.Steimetz)发现磁滞损耗是磁密的1.6次方成正比例。 1882年英国人格拉特 ( Goulard)和吉普斯(J.D.Jibbs)制成15kVA1.5kV的开路铁心的单相变压器。同年法栾(S.Z.Ferranti)和汤姆生 (A.Tomson) 制成电流互感器。 1884年英国人戈普生兄弟开始采用具有闭合铁心的变压器作照明电源。 1884年9月16日匈牙利人布拉提(O.Blathy)和但利(M.Dery)和齐彼尔斯基K.Zipernovsky)在匈牙利的甘兹(Ganz)工厂制造一台1400 VA 120 / 72 V 40 Hz单相闭合磁路的变压器。至1887年底甘兹(Ganz)工厂就生产24台总容量达3000 kVA。 1885年才把这种电器叫做”变压器”。 (2) 完善阶段(1886~1930) 1887年英国人配莱(Belry)发明了单相多轭的分布式铁心。 1888年俄国人多利沃—多勃罗沃尔斯基 ( M.O.Dolivo-Dobrowolsky ) 提出交流三相制。并于1890年发明了三相变压器。同年布朗(Brown)又制造出第一台油冷、油绝缘变压器。 1890年德国人威士顿(Wenstrom)做成对称三相铁心。 1891年德国西门子(Siemens Sohucrerf) 做成不对称三相铁心。美国人斯汀兰(W.Stanley)在西屋公司(Westing House) 做成单相壳式铁心。瑞士的勃朗—鲍佛利(B.B.C)公司的创始人勃朗(E.F.Brown) 做成三相壳式铁心。 1891年德国生产30kVA的油浸变压器(1878年美国人勃劳克斯(D.Brdoks)开始用油做绝缘。) 1900年德国人夏拉(Schalley)做成三相五柱式铁心。 1900年英国人哈特菲尔德(Hodfeild)发明了硅钢片, 1903年开始用硅钢片制造变压器铁心。 (德国在1904年, 美国在1906年, 俄国在1911年, 日本在1922年分别用硅钢片制造变压器铁心) 1905年德国人洛果夫斯基(W. Rowgowski)研究漏磁场提出漏磁系数。 1915年华纳(K.W.Wagner)研究线圈内部电磁振荡的基本理论,提出了过电压保护一种方式。 1922年美国人维特(J. M. Weed)研究过电压理论时, 提出了过电压保护另一种方式。 1930年前后变压器的基本理论已基本形成。 (3) 提高阶段(1930~至今) 1930年以后变压器进入改进提高阶段, 即采用新材料、改进结构、改进工艺、不断扩大变压器的使用范围。

胆机输出变压器制作图解

胆机输出变压器制作图解 所以叫烂牛,是因为铁心是采用经挑选的二手旧铁心,全部材料成本撑死不足100元,设备也落后,一台不足30元的手动绕线机,绕制手法也比较原始与传统。但以价论声,性价比倒也不俗,效果不说出色,也过的去,可以满足一般普通受众的要求,故整理贴上,以期对初入胆坛而囊中羞涩同学有所帮助。 1、做线框,0.4mm弹性纸两层,见图1; 图1 做线框 2、线框绝缘,缠绕0.08电缆纸和0.12黄腊绸各一层,用只胶带粘住,见图2; 图2 线框加绝缘纸 3、用0.08电缆纸包裹初级漆包线线头,出线端打折(防止绕开头几匝时拉出线头),用纸胶带粘住,见图3;

图3 引出线头 4、绕初级线圈第一段,等线圈压住线头和纸框绝缘层时,扯掉纸胶带,见图4; 图4 初级绕线 5、绕满一层后,用纸胶带粘住线尾,在线圈两端用牛皮封箱带裁成的窄胶带粘贴防塌护边,见图5; 图5 加防塌贴边 6、加层间绝缘0.05电话纸一层,加纸时,先在绝缘纸靠头位置剪一豁口,把漆包线通过豁口拉到上一层开始的一边,用纸胶带粘住绝缘层后,再在绝缘纸靠尾部的位置剪一豁口,引出漆包线绕下一层,这就是所谓的Z型绕法。参见图6、图 7、图16—图18;

图6 加层间绝缘纸 图7 Z型绕法 图16 Z型绕法分解一

图17 Z型绕法分解二 图18 Z型绕法分解三 7、在绕完一段初级还有50匝左右的位置,压入6—8毫米宽对折的电缆纸条。待绕完后将线尾穿入纸条,把纸条拉紧进行收尾,见图8; 图8 初级第一段收尾 8、焊接出线焊片,套黄蜡套管,包裹0.08电缆纸绝缘,见图9—图10;

图9 引出焊片 图10 焊片套黄腊管垫绝缘纸 9、组间绝缘,缠绕0.08电缆纸2层,0.12黄蜡绸1层,黄蜡稠夹在电缆只中间,见图11; 图11 组间加绝缘纸 10、绕次级第一段,用黄蜡套管套住线头和焊片,并包裹电缆纸后再绕,见图12;

大型变压器施工设计方案

某大型变压器施工方案 1大型变压器施工方案 主变压器就位技术方案 本工程的主变压器布置在A排墙外,型号为SFP10-240000/220。根据业主提供的资料,变压器重量为147吨。用300吨履带吊在主臂工况下即能完成主变卸车和就位安装等工作。 (1)施工方法 1)基础检查 a 首先验收土建施工的变压器基础,测量出变压器本体中心线,并与图纸所给尺寸认真核对,无误后方可进行下一步施工。 b 因为变压器是用大型拖车运抵变压器安装现场,在就位前应认真核对高低压侧方向,避免安装就位后调换方向。 2)本体就位 a 卸载前的检查 首先对装卸用钢丝绳和挂钩进行选择,而钢丝绳和挂钩将依照被起吊物体尺寸和重量来确定。并且在使用之前必须检查钢丝绳和挂钩是否完好无损。(见表一和表二) 表一:钢丝绳的安全负载(针对大型变压器考虑安全系数:6) 直径安全负载直径安全负载直径安全负载 毫米吨毫米吨毫米吨

表二:挂钩的安全负载(针对大型变压器考虑安全系数:6)直径安全负载直径安全负载直径安全负载毫米吨毫米吨毫米吨

卸载前应当测量和记录冲击值,这个数应小于3G。 不得使钢丝绳或其他物体碰到冲击记录器,阀门等。 如果干燥气体压力小于0.05kg/cm2或冲击记录器数值大于3G,检查结果应通 知给 业主,当取下遮盖物时不得给冲击记录器以任何撞击。 主变压器卸车、吊装就位均采用CC1800/300履带吊,履带吊布置在公路的西南侧,主变基础外。待主变运输至施工现场后,停靠在履带吊附近,保证主变中心距履带吊回

转中心不超过10m,利用履带吊独自卸车,并在起吊能力允许的范围内,安装好主变底部滚轮,然后转杆,行走至变压器基础处,直接将主变放置在就位的轨道上。 施工中要求履带吊站车位置地基坚实、平整并垫上路基板。CC1800履带吊吊装主变使用的工况为:主臂工况,主臂长度为48.0m,作业半径10m,额定起吊量为186t,负荷率为79%。 (2)主变就位图

工频变压器设计计算

工频变压器的设计计算 赵一强2010-9-15 ,这个 U2), 从上可知,变压器是通过铁芯的磁场来传递电功率的。借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。 二、变压器特性参数和设计要求 1、磁通密度B和电流密度J 磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。 4Gs 。 H的关系曲线,在

图3中,Bs —饱和磁感应强度; Bs —过压保护磁感应强度 Bm —最大磁感应强度(计算值) 导磁率: H B ΔΔ= μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。 对于磁性材料,要求Bs 、μ 越高越好。Bs 高,变压器体积可减小;μ高,变压器空载电流小。 另外,还要求电阻率ρ高,这样损耗小、发热小。 ⑵ 电流密度J 电流密度J : 电路单位截面积的电流量,单位 :安/厘米2(A/cm 2)。 变压器绕组导线的电阻:q l R cu ρ= 电流导线中所产生的损耗(铜损): l IJ R I P cu cu cu ρ2 == 可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。 2、铁心、导线和绝缘材料 ⑴ 铁心形状和材料 铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相), 冲片的有EI 、CI 型;这是我们常用两种冲片。 铁心材料牌号:硅钢(含硅量在2.3~3.6%) 冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。 冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。 ⑵ 线圈导线材料 油性漆包线Q 0.05~2.5 耐温等级 A 105℃ 塑醛漆包线QQ 0.06~2.5 耐温等级 E 120℃ 聚酯漆包线QZ 0.06~2.5 耐温等级 B 130℃ 耐压均在600V 以上。最常用的是QZ 漆包线。 线圈允许的平均温升⊿τm =线圈绝缘所允许的最高工作温度-最高环境温度-(5—10K ), 通常不超过60℃。5—10K 是考虑线圈最高温度与平均温度之差,功率大取大值。 ⑶ 层间绝缘材料 500V 以下不需要层间绝缘。各绕组间应垫绝缘0.03 聚酯薄膜2~3层。 3、 电源变压器的主要技术参数 ⑴ 输出功率(视在功率、容量、V A 数) ⑵ 输出电压及电压调整率和要求 ⑶ 电源电压、频率及变化范围 ⑷ 效率 ⑸ 空载电流及空载损耗 ⑹ 绕组平均温升 ⑺ 输入功率因数

配电变压器保护配置设计

配电变压器保护配置设计 摘要:文章简要说明配电变压器各种保护配置类型,通过分析比较,提出加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性。 关键词:配电变压器;熔断器;负荷开关;断路器 中图分类号:tm41文献标识码:a 文章编号:1009-0118(2012)09-0278-01 变压器是配电网的主要设备,应用面广量大,其安全运行直接影响整个系统的可靠性。目前,配电变压器保护配置方面还存在许多问题,其中配电变压器与保护不匹配或存在动作死区,造成越级跳闸、拒动导致的事故相当多,因此,加强配电变压器保护优化配置,合理选择保护方案,可以提高配电变压器保护动作可靠性,有效防止主线路出口断路器保护误动。 一、配电变压器采用熔断器作为保护 熔断器是配电变压器最常见的一种短路故障保护设备,它具有经济、操作方便、适应性强等特点,被广泛应用于配电变压器一次侧作为保护和进行变压器投切操作用。所以一般配电变压器容量在400kva以下时,采用熔断器保护,高压侧使用跌落式熔断器作为短路保护,低压侧使用熔断器作为过负荷保护。 使用跌落式熔断器确定容量时,既要考虑上限开断容量与安装地点的最大短路电流相匹配,又要考虑下限开断容量与安装地点的最

小短路电流的容量关系。目前,户外跌落式熔断器分为50a、100a、200a三种型号,200a跌落式熔断器的开断容量上限是200mva,下限是20mva,其选择是按照额定电压和额定电流两项参数进行,也就是熔断器的额定电压必须与被保护配电变压器额定电压相匹配,熔断器的额定电流应大于或等于熔体的额定电流,可选为额定负荷电流的1.5-2倍,此外,应按被保护系统三相短路容量,对所选定的熔断器进行效验,保证被保护设备三相短路容量小于熔断器额定开断容量上限,但必须大于额定开断容量的下限。笔者曾经参与过事故调查,发现部分配电变压器所配置熔断器的额定开断容量(一般指上限)过大,或者在线路末段t接的配电变压器,选定熔断器造未经过短路容量效验,造成被保护变压器三相短路熔断器熔断时难以灭弧,最终引起容管烧毁、爆炸,导致主线路跳闸事故。 二、配电变压器采用负荷开关加熔断器组合电器作为保护 负荷开关加熔断器组合电器可以开断至31.5ka的短路电流,其基本特征是依赖熔断器熔断触发撞针动作于负荷开关。配电变压器短路有单相、两相、三相短路,无论哪种故障,任意一相熔断后,撞针触发负荷开关的脱扣器,负荷开关三相联动,及时隔离故障点,防止缺相运行,顺序是先熔断熔丝,后断负荷开关。采用负荷开关加熔断器组合电器作为配电变压器保护,经济实用,既可以开断负荷电流,实现安全操作需要,还可以在10ms内开断短路电流,切除故障并限制短路电流,能够有效保护配电变压器短路故障。

反激式电源变压器设计(DCM断续式)

反激式电源变压器设计 峰值电流:IP=2PO/Uin*Dmax*η单位;A PO:输出功率。 Uin:最小直流输入电压。 Dmax:最大占空比。一般为0.45. η:效率。 一次侧电感量:LP= (Vin*Dmax)^2/2*Pin*Fs*Krf 单位;H Dcm: Krf=1 CCM: Krf=0.3-0.5 一次侧匝数:NP=100*IP*LP/ BM *AE AE:平方厘米 BM:高斯 LP:UH IP: A 二次侧匝数:NS=NP*(UO+UF)/UR UR=UIN*DMAX/1-DMAX UO:输出电压。 UF:输出二极管压降。 UR;反射电压。 DMAX:最大占空比。一般为0.45 反馈匝数:NV=NS*(UV+UFV)/(VO+VF) NV:反馈圈数 NS:次级圈数 UV:反馈电压。 UFV:反馈二极管压降 磁芯气隙:LG={(0.4/3.14)*IP*NP}/BM LG:磁路气隙,单位:CM。 BM:最大磁感应强度;单位:MT。 一次侧电流有效值:IPRMS=IP*√DMAX/3 二次侧电流有效值:IPRMS=(2*IO/1-DMAX)*√DMA X/3 最大磁通密度:BM=100*IP*LP/NP*AE AE:平方厘米 BM:高斯 LP:UH

IP;安倍 1特期拉=1000 毫特斯拉=10000高斯 初级线径:OD=L*(BW-2*M)/NP L:初级层数 BW:骨架宽度MM M:安全边距MM 有效骨架宽度:BE=D*(B-2M) D=层数 B=骨架宽度单位:MM 导线外径DPM:DPM=BE/NP 单位;MM 导线电流验证:J= 1.28*IRMS/DPM^2 IRMS=有效值电流(A) DPM=无绝缘线外径(MM)

移相全桥大功率软开关电源的设计

移相全桥大功率软开关电源的设计 移相全桥大功率软开关电源的设计 1引言 在电镀行业里,一般要求工作电源的输出电压较低,而电流很大。电源的功率要求也比较高,一般都是几千瓦到几十千瓦。目前,如此大功率的电镀电源一般都采用晶闸管相控整流方式。其缺点是体积大、效率低、噪音高、功率因数低、输出纹波大、动态响应慢、稳定性差等。 本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好 的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产。 2主电路的拓扑结构 鉴于如此大功率的输出,高频逆变部分采用以IGBT为功率开关器件的全桥拓扑结构,整个主电路,包括:工频三相交流电输入、二极管整流桥、EMI滤波器、滤波电感电容、高频全桥逆变器、高频变压器、输出整流环节、输出LC滤波器等。 隔直电容Cb是用来平衡变压器伏秒值,防止偏磁的。考虑到效率的问题,谐振电感LS只利用了变压器本身的漏感。因为如果该电感太大,将会导致过高 的关断电压尖峰,这对开关管极为不利,同时也会增大关断损耗。另一方面,还会造成严重的占空比丢失,引起开关器件的电流峰值增高,使得系统的性能降低。 图1主电路原理图 3零电压软开关 高频全桥逆变器的控制方式为移相FB2ZVS控制方式,控制芯片采用Unitrode公司生产的UC3875N。超前桥臂在全负载范围内实现了零电压软开关,滞后桥臂在75%以上负载范围内实现了零电压软开关。图2为滞后桥臂IGBT的驱动电压和集射极电压波形,可以看出实现了零电压开通。

开关频率选择20kHz,这样设计一方面可以减小IGBT的关断损耗,另一方面又可以兼顾高频化,使功率变压器及输出滤波环节的体积减小。 图2IGBT驱动电压和集射极电压波形图 4容性功率母排 在最初的实验样机中,滤波电容C5与IGBT模块之间的连接母排为普通的功率母排。在实验中发现IGBT上的电压及流过IGBT的电流均发生了高频震荡,图3为满功率时采集的变压器初级的电压、电流波形图。原因是并联在IGBT模块上的突波吸收电容与功率母排的寄生电感发生了高频谐振。满载运行一小时后,功率母排的温升为38℃,电容C5的温升为24℃。 图3使用普通功率母排时变压器初级电压、电流波形 为了消除谐振及减小功率母排、滤波电容的温升,我们最终采用了容性功率母排,图4为采用容性功率母排后满功率时采集的变压器初级的电压、电流波形图。从图中可以看出,谐振基本消除,满载运行一小时后,无感功率母排的温升为11℃,电容C5的温升为10℃。 图4使用容性功率母排后变压器初级电压和电流波形 5采用多个变压器串并联结构,使并联的输出整流二极管之间实现自动均流为了进一步减小损耗,输出整流二极管采用多只大电流(400A)、耐高电压(80V)的肖特基二极管并联使用。而且,每个变压器的次级输出采用了全波整流方式。这样,每一次导通期间只有一组二极管流过电流。同时,次级整流二极管配上了RC吸收网络,以抑止由变压器漏感和肖特基二极管本体电容引起 的寄生震荡。这些措施都最大限度地减小了电源的输出损耗,有利于效率的提高。 对于大电流输出来说,一般要把输出整流二极管并联使用。但由于肖特基二极管是负温度系数的器件,并联时一般要考虑它们之间的均流。二极管的并联方

配电室设计规范

10kV及以下变电所设计规范 GB50053-94 第二节对建筑的要求 第6.2.1条高压配电室宜设不能开启的自然采光窗,窗台距室外地坪不宜低于1.8m;低压配电室可设能开启的自然采光窗。配电室临街的一面不宜开窗。 第6.2.2条变压器室、配电室、电容器室的门应向外开启。相邻配电室之间有门时,此门应能双向开启。 第6.2.3条配电所各房间经常开启的门、窗,不宜直通相邻的酸、碱、蒸汽、粉尘和噪声严重的场所。 第6.2.4条变压器室、配电室、电容器室等应设置防止雨、雪和蛇、鼠类小动物从采光窗、通风窗、门、电缆沟等进入室内的设施。 第6.2.5条配电室、电容器室和各辅助房间的内墙表面应抹灰刷白。地(楼)面宜采用高标号水泥抹面压光。配电室、变压器室、电容器室的顶棚以及变压器室的内墙面应刷白。 第6.2.6条长度大于7m的配电室应设两个出口,并宜布置在配电室的两端。长度大于60m 时,宜增加一个出口。当变电所采用双层布置时,位于楼上的配电室应至少设一个通向室外的平台或通道的出口。 第6.2.7条配电所,变电所的电缆夹层、电缆沟和电缆室,应采取防水、排水措施。 4.10 对有关专业的要求 4.10.1 可燃油油浸电力变压器室的耐火等级应为一级。非燃(或难燃)介质的电力变压器室、高压配电装置室和高压电容器室的耐火等级不应低于二级。低压配电装置和低压电容器室的耐火等级不应低于三级。 4.10.2 有下列情况之一时,变压器室的门应为防火门: (1)变压器室位于高层主体建筑物内。 (2)变压器室附近堆有易燃物品或通向汽车库。 (3)变压器位于建筑物的二层或更高层。

(4)变压器位于地下室或下面有地下室。 (5)变压器室通向配电装置室的门。 (6)变压器室之间的门。 4.10.3 变压器室的通风窗,应采用非燃烧材料。 4.10.4 配电装置室及变压器室门的宽度宜按最大不可拆卸部件宽度加0.30m,高度宜按不可拆卸部件最大高度加0.30m。 4.10.5 有下列情况之一时,油浸变压器室应设置容量为100%变压器油量的挡油设施或设置能将油排到安全处所的设施: (1)变压器室附近有易燃物品堆积的场所。 (2)变压器室下面有地下室。 (3)变压器室位于民用主体建筑物内。 4.10.6 配变电所中消防设施的设置:一类建筑的配变电所宜设火灾自动报警及固定式灭火装置;二类建筑的配变电所可设火灾自动报警及手提式灭火装置。 4.10.7 当配电装置室设在楼上时,应设吊装设备的吊装孔或吊装平台。吊装平台、门或吊装孔的尺寸,应能满足吊装最大设备的需要,吊钩与吊装孔的垂直距离应满足吊装最高设备的需要。 4.10.8 高压配电室和电容器室,宜设不能开启的自然采光窗,窗户下沿距室外地面高度不宜小于1.80m。临街的一面不宜开窗。 4.10.9 变压器室、配电装置室、电容器室的门应向外开,并装有弹簧锁。装有电气设备的相邻房间之间有门时,此门应能双向开启或向低压方向开启。 4.10.10 配变电所各房间经常开启的门窗,不应直通相邻的酸、碱、蒸汽、粉尘和噪声严重的建筑。 4.10.11 当变压器室、电容器室采用机械通风且周围环境污秽时,宜加空气过滤器。 4.10.12 变压器室、配电装置室、电容器室等应有防止雨、雪和小动物从采光窗、通风窗、门、电缆沟等进入屋内的措施。 4.10.13 配电装置室、电容器室和各辅助房间的内墙表面均应抹灰刷白。配电装置室、变压

胆机输出变压器制作图解学习资料

胆机输出变压器制作 图解

胆机输出变压器制作图解 所以叫烂牛,是因为铁心是采用经挑选的二手旧铁心,全部材料成本撑死不足100元,设备也落后,一台不足30元的手动绕线机,绕制手法也比较原始与传统。但以价论声,性价比倒也不俗,效果不说出色,也过的去,可以满足一般普通受众的要求,故整理贴上,以期对初入胆坛而囊中羞涩同学有所帮助。 1、做线框,0.4mm弹性纸两层,见图1; 图1 做线框 2、线框绝缘,缠绕0.08电缆纸和0.12黄腊绸各一层,用只胶带粘住,见图2; 图2 线框加绝缘纸 3、用0.08电缆纸包裹初级漆包线线头,出线端打折(防止绕开头几匝时拉出线头),用纸胶带粘住,见图3;

图3 引出线头 4、绕初级线圈第一段,等线圈压住线头和纸框绝缘层时,扯掉纸胶带,见图4; 图4 初级绕线 5、绕满一层后,用纸胶带粘住线尾,在线圈两端用牛皮封箱带裁成的窄胶带粘贴防塌护边,见图5; 图5 加防塌贴边

6、加层间绝缘0.05电话纸一层,加纸时,先在绝缘纸靠头位置剪一豁口,把漆包线通过豁口拉到上一层开始的一边,用纸胶带粘住绝缘层后,再在绝缘纸靠尾部的位置剪一豁口,引出漆包线绕下一层,这就是所谓的Z型绕法。参见图6、图 7、图16—图18; 图6 加层间绝缘纸 图7 Z型绕法 图16 Z型绕法分解一

图17 Z型绕法分解二 图18 Z型绕法分解三 7、在绕完一段初级还有50匝左右的位置,压入6—8毫米宽对折的电缆纸条。待绕完后将线尾穿入纸条,把纸条拉紧进行收尾,见图8; 图8 初级第一段收尾 8、焊接出线焊片,套黄蜡套管,包裹0.08电缆纸绝缘,见图9—图10;

反击式开关电源变压器设计

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定 了电源的占空比。可能朋友们不理解什么是原边感应电压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(*80+90)=0.47 第二步,确实原边电流波形的参数. 原边电流波形有三个参数,平均电流,有效值电流,峰值电流.,首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊.这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值,一是平均值,二是有效值,三是其峰值,平均值就是把这个波形的面积再除以其时间.如下面那一条横线所示,首先要确定这个值,这个值是这样算的,电流平均值=输出功率/效率*VS,因为输出功率乘以效率就是输入功率,然后输入功率再除以输入电压就是输入电流,这个就是平均值电流。现在下一步就是求那个电流峰值,尖峰值是多少呢,这个我们自己还要设定一个参数,这个参数就是KRP,所谓KRP,就是指最大脉动电流和

变压器设计

应用领域: ?逆变焊机电源 ?通讯电源 ?高频感应加热电源 ? UPS电源 ?激光电源 ?电解电镀电源 性能特点: ?高饱和磁感应强度----有效缩小变压器体积 ?高导磁率、低矫顽力-提高变压器效率、减小激磁功率、降低铜损 ?低损耗-降低变压器的温升 ?优良的温度稳定性-可在-55~130℃长期工作 铁基纳米晶铁芯与铁氧体铁芯基本磁性能对比 纳米晶铁芯铁氧体铁芯 基本参数 饱和磁感强度Bs 1.25T 0.5 剩余磁感Br(20KHz) <0.20 0.2 铁损(20KHz/0.2T)(W/Kg) <3.4 7.5 铁损(20KHz/0.5T)(W/Kg) <30 — 铁损(50KHz/0.3T)(W/Kg) <40 — 磁导率(20KHz)(Gs/Oe) >20,000 2,000 矫顽力Hc(A/m) <1.60 6 饱和磁致伸缩系数(×10-6) <2 4 电阻率(μΩ.cm) 80 106 居里温度(℃) 560 <200 铁芯叠片系数 >0.70 — 纳米晶主变铁芯一代产品 安泰非晶生产的第一代逆变主变压器铁芯,带材厚度30μm,适合20KHz条件下工作。磁芯设计最大功率=重量最小值x10

产品规格 铁芯尺寸保护盒尺寸 有效截面 积 磁路长 度 重量最小 值 建议适用焊机 电流 od(mm) id (mm) ht(mm) OD (mm) ID (mm) HT (mm) (cm2) (cm) (g)(A) ONL-503220 50 32 20 53 28 23 1.35 12.8 125 120, 140, 160 ONL-644020 64 40 20 66 37 23 1.68 16.3 200 160, 180 ONL-704020 70 40 20 73 38 24 2.16 17.3 270 180, 200 ONL-704025 70 40 25 72 37 28 2.63 17.3 330 180, 200 ONL-755025 * 75 50 25 77 47 28 2.19 19.6 310 180, 200 ONL-805020 80 50 20 82 46 23 2.1 20.4 300 160, 180, 200 ONL-805 025 80 50 25 85 44 30 2.63 20.4 390 200, 250, 300 ONL-1006020 100 60 20 105 56 23 2.8 25.1 510 315, 350, 400 ONL-1056030 105 60 30 110 56 35 5.06 25.9 945 315, 350, 400 ONL-1206030 120 60 30 125 57 35 6.3 28.3 1280 400, 500, 630 ONL-1206040 * 120 60 40 125 57 45 8.4 28.3 1710 500, 630 ONL-1207020 120 70 20 125 67 25 3.5 29.8 750 350, 400, 500 ONL-1207025 120 70 25 125 67 30 4.38 29.8 940 315, 350, 400 ONL-1207030 120 70 30 125 67 35 5.25 29.8 1130 500, 630, 800 ONL-1207040 * 120 70 40 125 67 45 7 29.8 1500 500, 630, 800, ONL-1308040 130 80 40 136 76 45 7 33 1660 500, 630, 800 ONL-17011050 * 170 110 5 0 176 104 56 10.5 43.96 3320 1000, 1250, 1600 注:可以根据用户要求提供其它规格的铁芯。 纳米晶主变铁芯二代产品 相比一代逆变主变压器铁芯,二代铁芯减小了发热量,在同等工作条件可以选择更加小型化的铁芯,满足焊机行业轻量化、小型化的发展要求。

相关文档
相关文档 最新文档