文档库 最新最全的文档下载
当前位置:文档库 › 2011届高三数学一轮巩固与练习:正、余弦定理

2011届高三数学一轮巩固与练习:正、余弦定理

2011届高三数学一轮巩固与练习:正、余弦定理
2011届高三数学一轮巩固与练习:正、余弦定理

巩固

1.(2008年高考陕西卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若c =2,b =6,B =120°,则a 等于( )

A. 6 B .2 C. 3 D. 2

解析:选D.由正弦定理得6sin120°=2

sin C

∴sin C =1

2.

又∵C 为锐角,∴C =30°,∴A =30°, △ABC 为等腰三角形,a =c = 2.故选D.

2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,

b =1,△ABC 的面积为

3

2

,则a 的值为( ) A .1 B .2

C.3

2

D. 3 解析:选D.由已知得:12bc sin A =12×1×c ×sin60°=3

2?c =2,

则由余弦定理可得:a 2=4+1-2×2×1×cos60°=3?a = 3.

3.在△ABC 中,cos2B >cos2A 是A >B 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 解析:选 C.cos2B >cos2A ?1-2sin 2B >1-2sin 2A ?sin 2B sin B ?A >B .

4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若其面积S =14

(b 2+c 2

-a 2),则∠A =________.

解析:由已知得:12bc sin A =14(b 2+c 2

-a 2)?b 2+c 2-a 22bc

=sin A ,由

余弦定理可得cos A =sin A ?A =π

4

.

答案:π4

5.(原创题)在△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,且满足a +b +c =2+1,sin A +sin B =2sin C ,则c =________;若C =π

3

,则△ABC 的面积S =________. 解析:依题意及正弦定理得a +b =2c ,且a +b +c =2+1, 因此c +2c =2+1,c =1,

当C =π

3时,c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =1,

∴(a +b )2-3ab =1.

又a +b =2,因此2-3ab =1,

∴ab =13

则△ABC 的面积S =12ab sin C =12×13sin π3=3

12.

答案:1 3

12

6.(2009年高考浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=25

5

,·=3.

(1)求△ABC 的面积; (2)若c =1,求a 的值.

解:(1)因为cos A 2=25

5

所以cos A =2cos 2A 2-1=35,sin A =45. 又由·=3,得bc cos A =3,所以bc =5. 因此S △ABC =1

2bc sin A =2.

(2)由(1)知,bc =5,又c =1,所以b =5,

练习

1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,又a 、b 、c 成等比数列,且c =2a ,则cos B =( )

A.14

B.34

C.24

D.23

解析:选B.∵a ,b ,c 成等比数列,∴b 2=ac . 又由c =2a ,∴cos B =a 2+c 2-b 2

2ac

=a 2+4a 2-ac 2ac =5a 2-2a 24a 2=34

.

2.(2008年高考四川卷)△ABC 的三内角A 、B 、C 的对边边长分别为a 、b 、c .若a =5

2

b ,A =2B ,则cos B =( )

A.53

B.54

C.55

D.56

解析:选B.由正弦定理sin A a =sin B b ,又∵a =5

2

b ,A =2B ,

∴sin2B 52b =sin B b ,b ≠0,sin B ≠0,

∴2cos B 5

2=1,∴cos B =54.故选B.

3.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2c 2

=2a 2+2b 2+ab ,则△ABC 是( )

A .钝角三角形

B .直角三角形

C .锐角三角形

D .等边三角形

解析:选A.∵2c 2

=2a 2

+2b 2

+ab ,∴a 2

+b 2

-c 2

=-1

2

ab ,

∴cos C =a 2+b 2-c 22ab =-1

4<0.

所以△ABC 是钝角三角形.故选A.

4.在△ABC 中,A 、B 、C 所对的边分别为a 、b 、c ,如果c =3a ,B =30°,那么C 等于( )

A .120°

B .105°

C .90°

D .75°

解析:选A.依题意由正弦定理得sin C =3sin A ,又B =30°,∴sin C =3sin(150°-C )=

32cos C +32sin C ,即-12sin C =3

2

cos C ,∴tan C =- 3.又0°

5.满足A =45°,c =6,a =2的△ABC 的个数记为m ,则a m

的值为( )

A .4

B .2

C .1

D .不确定

解析:选A.由正弦定理a sin A =c

sin C

得sin C =c sin A a =6×

222=3

2.

∵c >a ,∴C >A =45°, ∴C =60°或120°,

∴满足条件的三角形有2个,即m =2.∴a m =4.

6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若b 2+c 2-bc =a 2,且a

b

=3,则角C 的值为( )

A .45°

B .60°

C .90°

D .120° 解析:选C.由b 2+c 2-bc =a 2得b 2+c 2-a 2=bc , ∴cos A =b 2+c 2-a 22bc =12

,∴A =60°.

又a b =3,∴sin A sin B =3, ∴sin B =33sin A =33×32=12,

∴B =30°,∴C =180°-A -B =90°.

7.在△ABC 中,已知BC =12,A =60°,B =45°,则AC =________.

解析:由正弦定理知AC sin B =BC sin A ,∴AC =sin B sin A ·BC =2

232·12=2

3

·12

=2·43=4 6.

答案:4 6

8.在△ABC 中,若AB =3,∠ABC =75°,∠ACB =60°,则BC 等于________.

解析:根据三角形内角和定理知 ∠BAC =180°-75°-60°=45°. 根据正弦定理得BC sin ∠BAC =AB

sin ∠ACB ,

即BC sin45°=3sin60°,∴BC =3sin45°sin60°=3×

223

2= 6. 答案: 6

9.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.

解析:如图由余弦定理得:cos B

B =π3,故AD =AB sin π3=2×3

2= 3.

答案: 3

10.已知△ABC 的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;

(2)若△ABC 的面积为1

6sin C ,求角C 的度数.

解:(1)由题意及正弦定理,得 AB +BC +AC =2+1. BC +AC =2AB ,

两式相减,得AB =1.

(2)由△ABC 的面积=12BC ·AC ·sin C =1

6

sin C ,

得BC ·AC =1

3.

由余弦定理,得cos C =AC 2+BC 2-AB 2

2AC ·BC

=(AC +BC )2-2AC ·BC -AB 22AC ·BC =1

2,

∴C =60°.

11.(2009年高考全国卷Ⅱ)设△ABC 的内角A 、B 、C 的对边长

分别为a 、b 、c ,cos(A -C )+cos B =32

,b 2

=ac ,求B .

解:由cos(A -C )+cos B =3

2及B =π-(A +C )得

cos(A -C )-cos(A +C )=3

2

cos A cos C +sin A sin C -(cos A cos C -sin A sin C )=3

2

sin A sin C =3

4

.

又由b 2=ac 及正弦定理得sin 2B =sin A sin C ,

故sin 2

B =34,

sin B =32或sin B =-3

2(舍去),

于是B =π3或B =2π

3.

又由b 2=ac 知b ≤a 或b ≤c , 所以B =π

3

.

12.△ABC 中,角A ,B ,C 对边的边长分别是a ,b ,c ,且a (cos B +cos C )=b +c .

(1)求证:A =π2

(2)若△ABC 外接圆半径为1,求△ABC 周长的取值范围. 解:(1)证明:∵a (cos B +cos C )=b +c

∴由余弦定理得a ·a 2+c 2-b 22ac +a ·a 2+b 2-c 2

2ab =b +c .

∴整理得(b +c )(a 2-b 2-c 2)=0.

∵b +c >0,∴a 2=b 2+c 2

.故A =π2

.

(2)∵△ABC 外接圆半径为1,A =π

2,∴a =2.

∴b +c =2(sin B +cos B )=22sin(B +π

4

).

∵0

4,∴2

∴4

故△ABC 周长的取值范围是(4,2+22].

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

(完整版)必修五正余弦定理习题练习

必修五正余弦定理习题练习 一.选择题(共5小题) 1.(2015?秦安县一模)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=() A.B.C.D. 2.(2016?太原校级二模)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若,a=2,,则b的值为() A.B.C. D. 3.(2016?大连一模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是() A.等腰三角形B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形 4.(2016?宝鸡一模)在△ABC,a=,b=,B=,则A等于()A.B.C. D.或 5.(2014?新课标II)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5 B.C.2 D.1 二.填空题(共6小题) 6.(2015?天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为______. 7.(2015?重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cosC=﹣,3sinA=2sinB,则c=______. 8.(2015?广东)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=______. 9.(2015?北京)在△ABC中,a=3,b=,∠A=,则∠B=______.10.(2015?安徽)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=______.11.(2013?福建)如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=,AB=3,AD=3,则BD的长为______.

高中数学教案必修四:正弦定理

课 题 1.1.1 正弦定理 授课人 雷 娜 授课时间 5月 日 年 级 高 一 班 次 1321、1322 教学目标 知识与技能: 通过对任意三角形边长和角度关系的探索,掌握正弦定理的 内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法: 让学生从已有的几何知识出发,共同探究在任意三角形中, 边与其对角的关系,引导学生通过观察,推导,比较,由特殊到 一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感、态度、价值观: 培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形 函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 内容分析 重 点: 正弦定理的探索和证明及其基本应用。 难 点: 已知两边和其中一边的对角解三角形时判断解的个数。 关 键: 掌握正弦定理的内容并能够灵活应用 教学方法 探究式教学 教 学 过 程 一、课题导入: 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。 能否用一个等式把这种关系精确地表示出来? 二、新课探究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, 则sin sin sin a b c c A B C === A B C B A C

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

正余弦定理练习题(答案)

1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 C .2 6.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 7.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积为( ) 或 3 或3 2 8.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) B .2 C. 3 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π 3,则A =________. 10.在△ABC 中,已知a =43 3,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________. 13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +c sin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +c sin A -2sin B +sin C =________. 15.在△ABC 中,已知a =32,cos C =1 3,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°, 航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A 2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b 、c ,且cos 2A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值. 20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.

高一数学余弦定理公式

正弦、余弦定理 解斜三角形 建构知识网络 1.三角形基本公式: (1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) (3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理: 2sin sin sin a b c R A B C ===外 证明:由三角形面积 111 sin sin sin 222S ab C bc A ac B === 得sin sin sin a b c A B C == 画出三角形的外接圆及直径易得:2sin sin sin a b c R A B C === 3.余弦定理:a 2 =b 2 +c 2 -2bccosA , 222 cos 2b c a A bc +-=; 证明:如图ΔABC 中, sin ,cos ,cos CH b A AH b A BH c b A ===- 222222 2 2 sin (cos )2cos a CH BH b A c b A b c bc A =+=+-=+- 当A 、B 是钝角时,类似可证。正弦、余弦定理可用向量方法证明。 要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

《解三角形》单元测试卷

高二数学必修5解三角形单元测试题 (时间120分钟,满分150分) 一、选择题:(每小题5分,共计60分) 1. 在△ABC 中,a =10,B=60°,C=45°,则c 等于 ( ) A .310+ B .() 1310- C .13+ D .310 2. 在△ABC 中,,c=3,B=300,则a 等于( ) A . C .2 3. 不解三角形,下列判断中正确的是( ) A .a=7,b=14,A=300有两解 B .a=30,b=25,A=1500有一解 C .a=6,b=9,A=450有两解 D .a=9,c=10,B=600无解 4. 已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为 ( ) A .41- B .41 C .32- D .3 2 5. 在△ABC 中,A =60°,b =1,其面积为3,则C B A c b a sin sin sin ++++等于( ) A .33 B .3392 C .338 D .2 39 6. 在△ABC 中,AB =5,BC =7,AC =8,则?的值为( ) A .79 B .69 C .5 D .-5 7.关于x 的方程02 cos cos cos 22=-??-C B A x x 有一个根为1,则△AB C 一定是 ( ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形 8. 7、已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .()10,8 B . ( ) 10,8 C . () 10,8 D .() 8,10 9. △ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60° B.120° C.60°或120° D.45° 10. 在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° C.0°<A <90° D.30°<A <60° 11.在△ABC 中,A B B A 22sin tan sin tan ?=?,那么△ABC 一定是 ( ) A .锐角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 12. 已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( ) A . 14 B .142 C .15 D .152

高中数学《余弦定理》教案

高中数学《余弦定理》 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 1.1.2余弦定理(1) 一、教学内容分析 《余弦定理》第一课时。通过利用平面几何法,坐标法(两点的距离公式),向量的模,正弦定理等方法推导余弦定理,正确理解余弦定理的结构特征,初步体会余弦定理解决“边、角、边”和“边、边、边”问题,理解余弦定理是勾股定理的特例,从多视角思考问题和发现问题,形成良好的思维品质,激发学生学习数学的积极性和浓厚的兴趣,培养学生思维的广阔性。 二、学生学习情况分析 本课之前,学生已经学习了两点间的距离公式,三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用多种方法探求余弦定理,学生已有一定的学习基础和学习兴趣。 三、教学目标 继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会多种方法特别是向量方法推导余弦定理的思想;通过例题运用余弦定理解决“边、角、边”及“边、边、边”问题;理解余弦定理是勾股定理的特例,理解余弦定理的本质。 四、教学重点与难点 教学重点:余弦定理的证明过程特别是向量法与坐标法及定理的应用; 教学难点:用正弦定理推导余弦定理的方法 五、教学过程: 1.知识回顾 正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即 正弦定理可以解什么类型的三角形问题? (1)已知两角和任意一边,可以求出其他两边和一角(AAS,ASA); (2)已知两边和其中一边的对角,可以求出三角形的其他的一边和另外两角(SSA)。 2.提出问题 已知三角形两边及其夹角如何求第三边? (SAS 问题) 在三角形ABC 中,已知边a,b,夹角C, 求边c C c B b A a sin sin sin = =

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

正弦余弦定理测试题

正弦余弦定理测试题 1、在ABC ?中。若1b =,3c =,23 c π ∠= ,则a= 。 2、已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A = . 3、在△ABC 中,角A ,B ,C 所对的边长分别为,,a b c ,若∠C=120°,c=2a ,则 A. a b > B. a b < C. a b = D. a 与b 的大小关系不能确定 4、在ABC ?中,角A B C 、、所对的边分别为a 、b 、c .若,2,2== b a 2cos sin =+B B ,,则 角A 的大小为____________________. 5、若△ABC 的三个内角满足sinA :sinB :sinC=5:11:13.则△ABC( ) (A)一定是锐角三角形. (B)一定是直角三角形. (C)一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形 6、在ABC V 中,D 为BC 边上一点, 3BC BD =,2AD =,135ADB ο∠=.若2AC AB =,则 BD=_____ 7、(本小题满分12分) 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (Ⅰ)求A 的大小; (Ⅱ)若sin B +sin C =1,试判断△ABC 的形状. 8、(本小题满分12分) 在△ABC 中,已知B=45°,D 是BC 边上的一点, AD=10,AC=14,DC=6,求AB 的长. 9、(本题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足 S = 34 (a 2+b 2-c 2 ). (Ⅰ)求角C 的大小; (Ⅱ)求sin A +sin B 的最大值.

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

高中数学必修5正余弦定理教案

高中数学必修5正余弦定理教案 ●教学目标 (一)知识目标 1.三角形的有关性质; 2.正、余弦定理综合运用. (二)能力目标 1.熟练掌握正、余弦定理应用; 2.进一步熟悉三角函数公式和三角形中的有关性质; 3.综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题. (三)德育目标 通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化. ●教学重点 正、余弦定理的综合运用. ●教学难点 1.正、余弦定理与三角形性质的结合; 2.三角函数公式变形与正、余弦定理的联系. ●教学方法 启发式 1.启发学生在求解三角形问题时,注意三角形性质、三角公式变形与正弦、余弦定理产生联系,从而综合运用正弦、余弦定理达到求解目的; 2.在题设条件不是三角形基本元素时,启发学生利用正、余弦建立方程,通过解方程组达到解三角形目的. ●教具准备 投影仪、幻灯片

第二张:例题1、2(记作§5.9.4 B) Ⅰ.复习回顾 师:上一节课,我们一起研究了正、余弦定理的边角转换功能在证明三角恒等式及判断三角形形状时的应用,这一节,我们将综合正、余弦定理、三角函数公式及三角形有关性质来求解三角形问题.首先,我们一起回顾正、余弦定理的内容(给出投影片§5.9.4 A). Ⅱ.讲授新课 师:下面,我们通过屏幕看例题.(给出投影片§5.9.4 B) [例1]分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cos α,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的. 解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则 α αααcos sin 222sin 2sin ?+=+=x x x x x 22cos +=∴α① 又由余弦定理可得x2=(x+1)2+(x+2)2-2(x+1)(x+2)cos α② 将①代入②整理得: x2-3x-4=0 解之得x1=4,x2=-1(舍) 所以此三角形三边长为4,5,6. 评述: (1)此题所求为边长,故需利用正、余弦定理向边转化,从而建立关于边长的方程; (2)在求解过程中,用到了正弦二倍角公式,由此,要向学生强调三角公式的工具性作用,以引起学生对三角公式的重视. [例2]分析:由于题设条件中已知两边长,故而联想面积公式S△ABC = 2 1AB ·AC ·sin A ,需求出sin A ,而△ABC 面积可以转化为S△ADC +S△ADB ,而S△ADC =21AC ·AD sin 2 A ,S△AD B =21AB ·AD ·sin 2A ,因此通过S△AB C =S△ADC +S△ADB 建立关于含有sin A ,sin 2A 的方程,而

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

高中数学《余弦定理》教案北师大版必修

江苏省邳州市第二中学高二数学 《余弦定理》教案 (二)教学重、难点 重点:余弦定理的发现和证明过程及其基本应用; 难点:勾股定理在余弦定理的发现和证明过程中的作用。 (三)学法与教学用具 学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角 教学用具:直尺、投影仪、计算器 (四)教学设想 [创设情景] C 如图1.1-4,在?ABC 中,设BC=a,AC=b,AB=c, 已知a,b 和∠C ,求边c b a A c B (图1.1-4) [探索研究] 联系已经学过的知识和方法,可用什么途径来解决这个问题? 用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r ,则 b r c r ()() 2 22 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-?r r r r r r r r r r r r r r r r r C a r B 从而 2222cos c a b ab C =+- (图1.1-5) 同理可证 2222cos a b c bc A =+- 2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 2222cos a b c bc A =+-

人教新课标版数学高二-人教A必修5练习 余弦定理(一)

1.1.2 余弦定理(一) 课时目标 1.熟记余弦定理及其推论; 2.能够初步运用余弦定理解斜三角形. 1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C . 2.余弦定理的推论 cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 2 2ab . 3.在△ABC 中: (1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°. 一、选择题 1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B 解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 2 2ab =72+(43)2-(13)2 2×7×43 =32.∴C =π6 . 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C 解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 2 2a =a =2. 4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B 解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.