文档库 最新最全的文档下载
当前位置:文档库 › 超超临界机组介绍

超超临界机组介绍

超超临界机组介绍
超超临界机组介绍

超超临界锅炉介绍

国家政策情况

节能调度

一、基本原则和适用范围

(一)节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。

(二)基本原则。以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。

(三)适用范围。节能发电调度适用于所有并网运行的发电机组,上网电价暂按国家现行管理办法执行。对符合国家有关规定的外商直接投资企业的发电机组,可继续执行现有购电合同,合同期满后,执行本办法。

二、机组发电序位表的编制

(四)机组发电排序的序位表(以下简称排序表)是节能发电调度的主要依据。各省(区、市)的排序表由省级人民政府责成其发展改革委(经贸委)组织编制,并根据机组投产和实际运行情况及时调整。排序表的编制应公开、公平、公正,并对电力企业和社会公开,对存在重大分歧的可进行听证。

(五)各类发电机组按以下顺序确定序位:

1.无调节能力的风能、太阳能、海洋能、水能等可再生能源发电机组;

2.有调节能力的水能、生物质能、地热能等可再生能源发电机组和满足环保要求的垃圾发电机组;

3.核能发电机组;

4.按“以热定电”方式运行的燃煤热电联产机组,余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组;

5.天然气、煤气化发电机组;

6.其他燃煤发电机组,包括未带热负荷的热电联产机组;

7.燃油发电机组。

(六)同类型火力发电机组按照能耗水平由低到高排序,节能优先;能耗水平相同时,按照污染物排放水平由低到高排序。机组运行能耗水平近期暂依照设备制造厂商提供

的机组能耗参数排序,逐步过渡到按照实测数值排序,对因环保和节水设施运行引起的煤耗实测数值增加要做适当调整。污染物排放水平以省级环保部门最新测定的数值为准。

据测算,目前全国小型机组总容量约为1.15亿千瓦,如全面实施节能发电调度,加上“十一五”关停5000万千瓦小机组,到2010年可实现一年节约9000万吨原煤,减排二氧化碳2.16亿吨,二氧化硫220万吨。

目前我省超临界机组的现状

锅炉简介

我省华润电力常熟有限公司、国电常州发电有限公司、扬州第二发电有限公司扩建工程为哈锅炉型;镇江发电有限公司、国华太仓发电有限公司、沙洲发电有限公司为上锅炉型及华能太仓电厂为东锅炉型。技术来源分别为三井巴布科克能源公司、美国ALSTOM能源公司及日本巴布科克-日立公司。

三厂锅炉皆为超临界参数变压运行本生直流锅炉,采用单炉膛、π型布置、一次中间再热、平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构,采用煤水比和两级减温水调节过热汽温,水冷壁为膜式水冷壁,下部水冷壁及灰斗采用螺旋管圈,上部水冷壁为垂直管屏。

哈锅从炉膛出口至锅炉尾部,烟气依次流经上炉膛的屏式过热器、末级过热器、水平烟道中的高温再热器,然后至尾部双烟道中烟气分两路,一路流经前部烟道中的立式和水平低温再热器、省煤器,一路流经后部烟道的一级过热器、省煤器,采用烟气挡板调节再热汽温;

上锅从炉膛出口至锅炉尾部,烟气依次流经上炉膛的分隔屏过热器、后屏过热器、水平烟道中的高温再热器和高温过热器,然后至尾部单烟道中低温再热器和省煤器,用燃烧器摆动调节再热汽温;

东锅从炉膛出口至锅炉尾部,烟气依次流经上炉膛的屏式过热器、末级过热器、水平烟道中的高温再热器,然后至尾部双烟道中烟气分两路,一路流经前部烟道中的两级水平低温再热器,一路流经后部烟道的一级过热器、两级水平省煤器,采用烟气挡板调节再热汽温。

哈锅的炉型在常二主蒸汽温度为543℃,在国电常州为571℃。

启动系统型式

三厂的启动系统皆为内置式,从小类别来看,哈锅为再循环泵型,上锅为大气扩容型,东锅为疏水扩容器型。

设计煤种

常二和镇电为神府东胜烟煤,华太为神华烟煤。

燃烧系统

哈锅燃烧器采用三井巴布科克公司的低NOx轴向旋流煤粉燃烧器(LNASB),燃烧器采用前后墙布置方式,对冲燃烧。前后墙上在标高18.351、22.194、26.037m、29.880上各布置4排燃烧器,每排各有4只LNASB燃烧器,共32只LNASB燃烧器。在最上层煤粉燃烧器上方,前后墙标高33.388m处各布置1排燃尽风口,每排布置7只,共14只燃尽风。每只LNASB燃烧器装有1支1.2t/h的油枪用于点火、暖炉和低负荷稳燃。制粉系统采用冷一次风机正压直吹式制粉系统,每台锅炉配置4台BBD4360型双进双出钢球磨煤机,每台磨煤机带一层燃烧器,每端带前墙或者后墙的四只燃烧器。

上锅采用美国阿尔斯通能源公司的摆动式四角切圆CFS-Ⅰ型低NOx同轴燃烧系统,其主要组件为紧凑燃尽风(CCOFA)、可水平摆动的分离燃尽风(SOFA)、预置水平偏角的辅助风喷嘴及强化着火(EI)煤粉喷嘴。主风箱设有6层带燃料风的EI喷嘴,相邻两层煤粉喷口间布置一组辅助风喷嘴,其中包括上下2只CFS喷嘴和中间的1只直吹风喷嘴。在主风箱上部设有2层CCOFA喷嘴,在主风箱下部设有1层火下风(UFA)喷嘴。在主风箱上方设有5层SOFA 喷嘴。主燃烧器喷嘴和SOFA燃烧器分别由一台气动执行器集中带动作上下摆动。在燃烧器二次风室中配置了三层共12支3.575t/h的Y型蒸汽雾化喷嘴轻油枪。制粉系统采用冷一次风机正压直吹式制粉系统,每台锅炉配置6台HP1003型中速磨煤机,每台磨煤机带一层4只燃烧器。

东锅燃烧器采用日本巴布科克-日立公司的HT-NR3型旋流煤粉燃烧器,燃烧器采用前后墙布置方式,对冲燃烧。前后墙上各布置3排燃烧器,每排各有6只HT-NR3燃烧器,共36只HT-NR3燃烧器。在最上层煤粉燃烧器上方,前后墙各布置1排燃尽风口,每排布置8只,包括6只中心燃尽风口和2只侧燃尽风口,共16只燃尽风。每只HT-NR3燃烧器装有1支250kg/h 机械雾化点火油枪,每只前墙中、下排及后墙中排燃烧器装有1支2.2t/h蒸汽雾化启动油枪。制粉系统采用冷一次风机正压直吹式制粉系统,每台锅炉配置6台HP1003型中速磨煤机,每台磨煤机带前墙或者后墙的6只燃烧器。

哈锅和上锅燃烧系统主要设计参数

东锅燃烧系统主要设计参数

主要辅助配备

7

燃烧系统对比与分析

三台锅炉都采用空气分级燃烧技术,该技术是美国在20世纪50年代首先发展起来的,是目前使用最为普遍的低NOx燃烧技术之一。空气分级燃烧的基本原理为:将燃烧所需的空气量分成两级送入,使第一级燃烧区内过量空气系数在0.8左右,燃料先在缺氧的富燃料条件下燃烧,使得燃烧速度和温度降低,因而抑制了热力型NOx的生成,同时燃烧生成的CO与NO进行还原反应,以及燃料N分解成中间产物相互作用或与NO进行还原反应,抑制了燃料型NOx的生成;在第二级燃烧区内,将燃烧用空气的剩余部分以二次空气输入,成为富氧燃烧区,此时空气量虽多,一些中间产物被氧化生成NO,但因火焰温度低其生成量不大,从而最终空气分级燃烧可使NOx生成量降低30%~40%。空气分级燃烧可以分成两类,一类是炉内空气分级燃烧,另一类是燃烧器空气分级燃烧。炉内空气分级燃烧又可以分为采用紧凑式燃尽风(简称CCOFA)喷口和分离式燃尽风(简称SOFA)喷口技术。

哈锅和东锅采用由前后墙对冲布置的低NOx旋流燃烧器和分离式燃尽风喷口组成的燃烧系统,而上锅采用由CFS-Ⅰ型四角切圆的低NOx直流燃烧器和紧凑式及分离式燃尽风喷口组成的燃烧系统。

哈锅煤粉燃烧器区域化学当量比为1.05,SOFA化学当量比为0.14;东锅煤粉燃烧器区域化学当量比为0.8,SOFA化学当量比为0.34。东锅采用低氧燃烧(简称LEA)技术,炉膛出口过量空气系数为1.14,相应的氧量仅仅为2.58%。这两个厂的锅炉同层或同一垂直线上相邻两只旋流燃烧器旋向相反,加强烟气混和,提高炉内氧量利用率,再加上前后墙布置方式,能有效降低炉膛出口烟气流场不均匀性。

面向前墙来看,上锅前墙左角为#1角,后墙左、右角分别为#2、#3角,前墙右角为#4角。上锅每角燃烧器从下到上依次为AA层火下风喷口、AⅠ层端部风喷口、A层煤粉燃烧器及周界风喷口、AⅡ层CFS喷口、AB层带油枪辅助风喷口、BⅠ层CFS喷口、B层煤粉燃烧器及周界风喷口、BⅡ层CFS喷口、BC层不带油枪辅助风喷口、CⅠ层CFS喷口、C层煤粉燃烧器及周界风喷口、C Ⅱ层CFS喷口、CD层带油枪辅助风喷口、DⅠ层CFS喷口、D层煤粉燃烧器及周界风喷口、DⅡ层CFS喷口、DE层不带油枪辅助风喷口、EⅠ层CFS喷口、E层煤粉燃烧器及周界风喷口、EⅡ层CFS 喷口、EF层带油枪辅助风喷口、FⅠ层CFS喷口、F层煤粉燃烧器及周界风喷口、FⅡ层端部风喷口、CCOFAⅠ喷口、CCOFAⅡ喷口、SOFAⅠ喷口、SOFAⅡ喷口、SOFAⅢ喷口、SOFAⅣ喷口、SOFA Ⅴ喷口。#1/#3角CFS喷口形成φ8228的假想切圆,#2/#4角CFS喷口形成φ11655的假想切圆;#1/#3角其它喷口形成φ2043的假想切圆,#2/#4角其它喷口形成φ1716的假想切圆,皆呈顺时

针方向旋转。煤粉燃烧器区域化学当量比为0.72,CCOFA化学当量比为0.12,SOFA化学当量比为0.36。SOFA喷口可以在水平方向上手动调节角度,其水平摆角范围为-15°~+15°,对应假想切圆直径从逆时针的#1/#3角8147mm和#2/#4角4529mm到顺时针的#1/#3角4200mm和#2/#4角7843mm,可以通过调节SOFA水平摆角来消除主燃烧器余旋,从而提高炉膛出口烟气流场均匀性。

燃烧器

旋流燃烧器实际上是高强度扰动式燃烧器,因而也是高NOx燃烧器,但是只要采取一些空气调节手段,推迟燃料与空气的混合,就能使其转变为低NOx燃烧器,而且这种燃烧器还具有燃烧稳定,在相当低的燃烧速度下不至于出现过多未燃物损失的优点。哈锅和东锅采用低NOx双调风旋流燃烧器,其结构见下图。

哈锅LNASB燃烧器结构图

东锅HT-NR3型燃烧器结构图

哈锅LNASB燃烧器采用直流一次风和旋流的二、三次风,并配中心风。燃烧器一次风管内靠近炉膛端部布置有铸造的整流器,用于在煤粉气流进入炉膛前对其进行浓缩。整流器的浓缩作用和二次风、三次风调节协同配合,以达到在煤粉燃烧初期减少NOx生成量之目的。燃烧器风箱为每个LNASB燃烧器提供二次风和三次风,每个燃烧器设有1个风量均衡挡板,用以使进入各个燃

烧器的分风量保持平衡。二次风和三次风通过燃烧器内同心的二次风、三次风环形通道在煤粉燃烧的不同阶段分别送入炉膛,燃烧器内设有套筒式档板用来调节二次风和三次风之间的分配比例。二次风和三次风通道内布置有各自独立的旋流装置,三次风旋流装置为不可调节的型式,固定在燃烧器出口最前端位置;而二次风旋流装置为沿轴向可调节的型式,调整旋流装置的轴向位置即可调节二次风的旋流强度。燃烧器设有中心风管,其内布置油枪,一股小流量的中心风通过中心风管送入炉膛,以提供油枪用风,井且在油枪停运时防止灰渣在此部位集聚。

东锅HT-NR3燃烧器采用直流一次风、直流二次风和旋流三次风。一次风喷口内靠近炉膛端部布置锥形煤粉浓缩器;燃烧器风箱为每个HT-NR3燃烧器提供二次风和三次风。内二次风道上设有一个套筒式挡板,用于调节二次风和三次风之间的分配比例;三次风旋流装置设计成可调节的切向叶片型式,并设有执行器以实现程控调节,调整旋流装置的调节导轴即可调节三次风的旋流强度。由于该燃烧器没有设置中心风管,故而在一次风粉管最后一个弯头前设置了冷却风管,以便燃烧器停用时冷却喷口,并在启动油枪投运时提供根部风。

上锅煤粉燃烧器采用强化着火(简称EI)煤粉喷嘴,其特点是采用出口部分收缩设计能使煤粉聚集在喷口出口中心部位,在喷口内设置格栅和在喷口外设置周界风以加强卷吸烟气能力,并与水平偏转25°的低风量CFS喷口配合,推迟一次风粉气流与二次风的混和并在水冷壁附近形成富氧气氛,从而使火焰稳定在喷嘴出口一定距离内,使挥发分在富燃料的气氛下快速着火,保持火焰稳定,从而提高锅炉无辅助燃料低负荷稳燃能力,有效降低NOx的生成,延长焦碳的燃烧时间,提高锅炉燃烧效率,防止炉内结渣和高温腐蚀。

燃烬风

哈锅燃烬风口包含2股独立的气流:中央部位的气流是非旋转的气流,它直接穿透进入炉膛中心;外圈气流是旋转气流,用于和靠近炉膛水冷壁的上升烟气进行混合。

东锅燃尽风喷口包含6个中心燃尽风喷口(AAP)和两个侧燃尽风喷口(SAP)。中心燃尽风喷口(见下图)由一次风,二次风,三次风组成。一次风为直流风,二、三次风为旋流风。一次风通过手柄调节套筒位置来进行风量的调节;二、三次风通过风量挡板和切向旋流叶片实现风量和旋流强度调节。侧燃烬风喷口(见下图)由一次风和二次风组成,一次风为直流风,二次风为旋流风。一次风通过手柄调节套筒位置来进行风量的调节;二次风通过调节切向旋流叶片实现旋流强度的调节。

东锅中心燃尽风喷口结构图

东锅侧燃尽风喷口结构图

上锅燃尽风喷口包括两层CCOFA喷口和五层SOFA喷口,都采用四角切圆直流燃尽风布置方式,设计风速为57m/s。在主燃烧器上布置CCOFA,能及时补充氧量,提高焦碳燃尽率,同时通过控制CCOFA份额,可以降低NOx生成量增幅,然后再通过布置SOFA,进一步提高焦碳燃尽率,控制炉膛温度水平,再次降低NOx生成量增幅,从而达到提高锅炉燃烧效率和降低NOx排放浓度这双重目的。主燃烧器风箱底部和顶部标高分别为24373mm和36785mm,SOFA风箱底部和顶部标高分别为42288mm和45910mm,下CCOFA紧贴上端部风布置,两层CCOFA间距为110mm,第一层SOFA与上CCOFA之间的距离为5595mm,CCOFA间距为110mm。CCOFA化学当量比为0.12,其中下CCOFA为0.04,上CCOFA为0.08;SOFA化学当量比为0.36,五层SOFA均分。

省内600MW级超临界机组锅炉NO x排放浓度一览表

制粉系统

超临界机组采用双进双出磨煤机首次是在华润常熟二厂。双进双出磨煤机对于煤种适应性好,而中速磨煤机对于煤质比较敏感。

双进双出磨煤机配超临界直流炉主要解决负荷风量测量的问题以及负荷风携带煤粉的比例问题。因为直流炉投入协调控制时粗调是按照煤水比来控制的。对于中速磨煤机给煤机煤量就是入炉煤量。对于双进双出磨煤机由于有一个可以储存20t的筒体,只有精确掌握入炉的煤量才能按照煤水比来调节。

在常熟二厂由于开始时选型、设计、制造、施工时并未意识到此问题。导致在#1机组投用后很长事件无法投入协调控制系统。主要原因是磨煤机负荷风量由于几乎无直管段,初期采用的测量元件对直管段要求很高,测量的负荷风量无法反映实际情况与趋势。经过多次更换风速测量元件并对负荷风处的风道进行改造,风量测量装置基本能反应变化趋势。再根据积累的大量数据进行负荷风量与入炉煤量的拟合得出经验公式。目前三台机组的协调均正常投入满足了江苏省电网调度的要求。

锅炉启动系统

东锅启动循环系统由启动分离器、储水罐、储水罐水位控制阀(361阀)等组成。启动分离器布置在炉前,垂直水冷壁混合集箱出口,采用旋风分离形式,分离器规格为Ф876×98(保证内径Ф680),材料为SA-336F12,直段高度2.890m,总长为4.08m,数量为每台炉两个。经水冷壁加热以后的工质分别由6根连接管沿切向向下倾斜15°进入两分离器,分离出的水通过分离器下方的连接管进入储水罐,蒸汽则由分离器上方的连接管引入顶棚入口集箱。分离器下部水出口设有阻水装置和消旋器。启动分离器储水罐的规格为Ф972×111(保证内径Ф750),材料为SA-336F12,直段高度17.5m,总长为18.95m,数量为每台炉一个。

带炉水循环泵系统的启动系统由于在转直流之前需控制储水箱水位,很容易控制不好导致炉水泵跳闸导致省煤器入口流量低锅炉跳闸,但带炉水泵系统省水,启动速度快等优点。

大气扩容式启动系统相对简单。

华能玉环电厂运行情况简介

2004年6月开工,一期工程于2006年12月建成投产。全厂热效率45.16%。性能考核#1机组汽机热耗7295.8kJ/kWh,锅炉效率93.88%,在额定负荷下发电煤耗270.6g,发电厂用电率4.45%,供电煤耗283.2g,氮氧化物排放浓度270mg/m3,二氧化硫排放浓度17.6mg;#2机组汽机热耗7314.9kJ/kWh,锅炉效率93.76%,额定负荷下发电煤耗271.6g,发电厂用电率 4.33%,供电煤耗283.9g,氮氧化物排放288mg,二氧化硫排放18.1mg。

2006年度参加全国60万kW级机组竞赛的81台机组分别属于全国34家发电企业,平均供电煤耗325.73g,2005年度为326.86g,平均生产厂用电率为4.94%,2005年度为4.75%。而10万kW级竞赛的179台机组分属74家发电企业,平均供电煤耗为377.33g,2005年度为380.66g。

超超临界机组的发展

国际上通常把主蒸汽压力在28MPa以上或主蒸汽、再热蒸汽温度在580℃及其以上的机组定义为超超临界(Ultra supercritical;简称USC)机组或高效超临界(high efficiency supercritical)机组。

图一

容量

从表1可看出九十年代以来开发的超超临界机组的容量除丹麦外,绝大部分为600~1000MW,大多数为百万千瓦等级(即900~1000MW),这是因为单机容量增大后,无论从厂用电率,机组的散热损失,单位千瓦的金属耗量乃至电厂运行人员的配置数量均有所降低。目前,日本已投运和正在建造中的百万千瓦等级的超超临界机组已有十多台。德国已投运和在建的超超临界锅炉也均为百万千瓦等级。只有丹麦的三台超超临界机组由于采用深海水低背压运行方式,机组容量受到汽轮机排汽口面积的限制为400MW等级。

表1 九十年代以来世界上投运和在建的大型超超临界机组业绩

发展大容量超临界机组是必要的,也是必然的

到2020年,我国电力装机将增加到8.5~9亿kW,每年新增装机需要2500~3000万kW,其中燃煤机组约为1700万~2000万kW,届时全国联网的格局已经形成。只有装设600MW及更大容量机组作为电网主力机组才能满足负荷增涨要求。

2001年,我国燃煤机组每kWh煤耗率为392g标准煤,到2020年,如煤耗率能降到332g,即比2001年降60g/kWh,则与2001年比,当年的节煤量即达1500万t标准煤,约合2000万t 原煤。只有大规模发展高效的超临界机组,才能大量降低煤耗。

新标准与1996年标准相比,排放大气的污染物标准有很大降低。其中颗粒物由200mg/Nm3降为100mg/Nm3,SO2由1200mg/Nm3降为400mg/Nm3,挥发份>10%煤种的NO X控制在650mg/Nm3,挥发份<10%煤种NO X控制在1000mg/Nm3。另外,在两控区还要控制排放总量。排放者还要按规定缴纳排污费。

实行新标准后,新建电厂除尘设施效率将要求提高到99.5%以上,需采用5~6电场的ESP,或采用布袋除尘器。即便采用含硫1%以下的低硫煤,也要求装设FGD。在脱氮方面,用低NO X燃烧方式虽可以满足要求,但装设烟气脱氮装置也将很快提上日程。

采用超临界机组,由于效率提高,可以相应降低污染物排放总量。

我国已加入控制CO2排放的京都议定书,而燃煤电厂是排放CO2的大户。

每台600MW机组每年CO2排放量约为470万(亚临界)435万(超临界)或400万(USC)t,即USC 机组比亚临界机组减排15%。如每年有10台600MW USC机组投产,即可比采用亚临界机组减排CO2 700万t/年。

在超临界机组发展初期,即在1950~70年代时,由于设计、运行、材料使用等问题(主要是材料问题),运行可靠性低于亚临界机组,但目前情况已有变化。到1998年为止,全球有超过350台超临界机组。这项技术已有20多年的经验和发展。经不少国外权威机构的评估和统计数字,其可靠性至少与常规亚临界机组一样好。

在大型高效清洁煤发电技术中,IGCC和PFBC只有在示范电站项目成功,发电成本能和常规电厂相竞争后,才有推广的可能,而这大约需要10~20年后。当前,只有USC技术,加上FGD 和SCR和布袋除尘器,才是可行的成熟的技术。

图二

图三

超超临界参数的选择

蒸汽参数与发电效率的关系

根据日立公司资料,以亚临界机组为基数,各种超临界及超超临界参数机组相对效率的提高如下表:

16.6 MPa 538℃/538℃0

24.1MPa 538℃/538℃+1.9%

24.1MPa 538℃/566℃+2.3%

24.1MPa 566℃/566℃+3.1%

25.0MPa 566℃/566℃+3.3%

25.0MPa 600℃/600℃+5.1%

30.0MPa 600℃/600℃+5.6%

根据日本EPDC资料,以24.1 MPa538℃/566℃机组功率为基础,24.1 MPa593℃/593℃机组的效率提高2.2%(实际)

初压的选择

在现阶段以选用25MPa比较合理。理由:

(1) 进汽压力,从25MPa提高到30MPa,效率提高仅为0.5%,好处不大。

(2) 国内汽机厂已有的积木块设计,可用于初压≤25MPa。高于25MPa时,需对高压缸修

改设计。

(3) 采用25MPa压力,锅炉水冷壁最高温度在460℃以下,可采用13CrMo44等常规材料。

如提高到27MPa以上,即需改用7CrMoVTiB10-10等高一级材料,增大锅炉造价。

(4) 采用25MPa压力,给水泵可与常规SC炉采用同样规格设备。

初温的选择

在现阶段,以选用600/600℃比较合理。理由是:

(1) 汽温从566/566℃提高到600/600℃,效率提高 1.8~1.9%,好处大。如只提高到

580/600℃,则效率比600/600℃要低0.3%,而两者所用材料基本一致。

(2) 高温材料的发展结果,已有使用在600/600℃的成熟材料。所有600℃以下的材料,

均已由ASME、DIN或MITI批准。对600℃锅炉,只有末级过热器和再热器需用18Cr

的奥氏体钢(如TP347HFG)。汽机全部为12Cr以下的铁素体合金钢。

一次再热或是二次再热

在现阶段,以一次再热比较合理。理由:

(1) 在同级温度参数下,采用二次再热(如600/620/620℃)与一次再热(如600/620℃)相

比,其循环效率上升0.6%左右,而投资则增加6%—10%,运行成本增加,可靠性下

降。

(2) 采用二次再热,可避免汽机末级叶片处湿度过高,但如进汽温度从566℃提高到

600℃,在进汽压力为25MPa时,采用一次再热排汽湿度为0.9098,与亚临界机组相

当。

蒸汽参数

八十年代末,日本投运的二台700MW超超临界机组(川越电厂#1、#2),由于受当时耐热钢材的限制,蒸汽压力虽由25MPa提高到31MPa,但汽温仍维持在569/569/569℃,由于当时蒸汽压力和温度不能匹配,不得不采用二次再热以避免汽轮机排汽湿度过高,二次再热虽是成熟的技术,但31MPa,566℃二次再热与24.1MPa,566℃一次再热相比机组热效率可提高约2%(其中二次再热可提高效率1.3~1.5%,压力的提高均可提高机组效率1%),无论是汽机或锅炉的系统大为复杂,以锅炉来说,二次再热的布置,一、二次再热调温方式和相互之间的影响和对自控设计的要求等均成为设计中的难题从而增加机组的造价,使电站的投资增加约10~15%,随着新型热强钢的开发和应用取得了成熟经验(如25Cr20Ni,Super304H以及TP347HFG),日本九十年代生产的大批超超临界机组均采用24~25MPa,593~610℃的一次再热机组,其热效率仅比川越的二次再热机组低0.5%左右,降低了设备造价也简化了系统和运行。

以欧洲来说,丹麦九十年代末投运的二台400MW超超临界机组也采用了二次再热580/580/580℃加上采用了深海水低背压运行方式,使这二台燃煤和燃油气机组的效率分别达到47%和49%,是目前世界上热效率最高的火电机组,但鉴于二次再热设计和运行上的复杂性,其第三台400MW超超临界锅炉(油/气)也改为一次再热,但提高了主汽压力和再热汽温,采用了30.5MPa,582/600℃以仍能保持较高的机组效率,德国近年投标的几台百万等级的燃煤超临界机组,主汽压力稍高均大于26MPa,均采用一次再热,蒸汽温度已由前二台的550/580℃提高到后二台的580/600℃,新投运和正设计中的百万级超超临界机组的热效率均可达到45%以上(改进了机组加热系统的设计和增加锅炉尾部烟侧的换热器等)。

根据国内外汽机制造厂的分析,在超超临界参数范围内,主汽压力从25MPa提高到28MPa,

汽机热效率相对提高值约为0.56~0.57%,若主汽温度从580℃提高到600℃则汽机热效率相对提高值为0.54~0.56%,看起来在超超临界参数范围内,提高压力与提高主汽温对汽机热效率的改善几乎是相同的,但根据华东电力设计院与浙江电力设计院的设计分析,由于提高主汽压力后给水泵电耗的增加等因素,与提高主汽温度相比,供电效率的增加甚微,28MPa,580/600℃与25MPa,600/600℃相比,机组供电效率仅增加0.1%,供电煤耗基本不变,而提高主汽压力从25MPa 到28MPa,对锅炉来说,由于所有受压件钢材用量和阀门费用的增加,将使锅炉投资增加8~10%,对汽机来说,由于高压缸需增加一级,主汽阀喷咀室等的壁厚有所增加,使整机成本增加6~9%,使整个电厂造价增加2~3%。同时提高主汽压力,由于锅炉受压部件和汽机进汽部分壁厚的增加,机组启动时间会有所延长。而主汽温度从580℃提高到600℃,对锅炉来说,锅炉受压件金属总重增加较少,过热器的蛇形管需采用Super304H(18Cr10NiNb)或25Cr20Ni级的优质奥氏体钢(HR3C即Sus310JITB),上部水冷壁或许需采用少量的T23(HCM25)的优质珠光体钢,末级过热器出口集箱和导管则必须采用P92(NF616),但锅炉总的成本增加较少。汽机厂认为主汽温度采用600℃与580℃相比,所采用的钢材是相同的。因此目前国际上(日本、德国等)对超超临界机组均出现了采用简单的一次中间再热,主汽压力保持24~25MPa水平而大幅度提高主汽温度到600℃,甚至更高的水平的趋势,以进一步提高机组的热效率。随着新型热强钢的开发研究日益成熟,欧洲已开始执行为期15年的采用更高蒸汽参数(最终予期达到37.5MPa,700/700℃)的先进火电厂发展规划,将现有的超超临界机组的热效率44~45%水平,最终提高到50%的热效率,使火力发电厂的经济性可以与蒸汽—燃气联合循环电厂相媲美。

超超临界机组机炉主蒸汽参数匹配

(1) 由于管道阻力增大使得管道的等焓温降增大,而且随着机组工作压力的提高愈加明显。按我国现东南沿海地区的标准煤价格以及管道价格,当主蒸汽管道的温降(包括管道等焓温降和散热温降)在4~5o C左右,综合技术经济性最佳。一般来说,管道的散热温降是很小的,小于0.5o C,因此管道压降比宜选择以之引起的等焓温降在3.5~4.5 o C左右。

(2) 对于主蒸汽压力为25.0~30.0MPa的超超临界的机组,随着机组工作压力提高,主蒸汽管道的最大压降比应从5%逐渐降低至3%左右。例如主蒸汽压力为31.0MPa的超超临界的机组,当主蒸汽压降比达到4.4%的时候,若管道的压降继续增大,虽然管道的投资费用降低,但管道费用的降低已无法抵消因设计温度和设计压力的提高而引起的锅炉给水泵功耗的增大。

(3) 我国是一个产煤大国,燃煤价格相对较低。根据综合技术经济比较,主蒸汽管道的压降比不宜过小。在蒸汽压力25.0~30.0MPa范围内的超超临界机组,当蒸汽压力小于27.5MPa,主蒸汽压降比选择4~5%最佳;当蒸汽压力大于27.5MPa,则主蒸汽压降比选择3~4%较为合适。

再热蒸汽系统

(1) 高温再热蒸汽管道压降采用高压缸排汽压力的3%左右,低温再热蒸汽管道压降为2%左右较

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

湖南华电常德发电有限公司2×660MW超超临界机组整套启动调试方案汇总

特级调试证书单位(证书号:第2090号) 通过GB/T19001-2008、GB/T28001-2011、GB/T24001-2004 调试方案日期2015.03.25XTS/F 项目名称 湖南华电常德一期2×660MW项目 审核: 批准:

目录 1.试运目的 (1) 2.系统及设备概况 (1) 3.技术标准和规程规范 (2) 4.系统投运前应具备的条件 (2) 5.调试工作程序及步骤 (3) 6.调试需使用的仪器 (8) 7.质量控制点 (9) 8.人员分工 (9) 9.环境、职业健康、安全风险因素识别和控制措施 (9) 附录1整套启动调试危险源辨识表 (11)

湖南华电常德一期2×660MW项目 1号机组整套启动调试方案 1试运目的 依据DL/T5437—2009《火力发电建设工程启动试运及验收规程》的规定和湖南华电常德发电有限公司调试技术合同的要求,在整套启动过程中对机组汽水品质进行化学监督,防止热力设备腐蚀。保证机组顺利投产及以后的长期安全、经济运行。 2系统简介 2.1 机组概况 湖南华电常德电厂一期工程2×660MW项目超超临界机组发电工程锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、Π型露天布置、刮板捞渣机机械除渣装置、全钢架悬吊结构。炉后尾部布置两台三分仓容克式空气预热器。主要参数如表1: 表1 锅炉主要参数 名称单位最大连续蒸发量 (BMCR) 额定工况蒸发量 (BRL) 过热蒸汽流量t/h 2035 1976 过热蒸汽出口压力MPa.g 26.15 26.08 过热蒸汽出口温度℃605 605 再热蒸汽流量t/h 1603 1551 再热蒸汽进口压力MPa.g 5.73 5.54 再热蒸汽进口温度℃374 368 再热蒸汽出口压力MPa.g 5.53 5.34 再热蒸汽出口温度℃603 603 给水温度℃299 297 2.2 经混凝澄清处理的沅江干流水→清水池→双层滤料过滤器→UF装置(自带自清洗过滤器)→超滤水箱→一级RO→RO缓冲水箱→二级RO→淡水箱→ EDI装置→除盐水箱。 2.3 加药系统主要设备 机组启动期间给水处理采用全挥发AVT碱性工况,正常运行时采用加氨加氧联合水处理CWT工况。2台机组设一套给水加氨、一套凝结水加氨设备,加氨泵均为2用1备;每台机设1套加氧设备,包括给水、凝结水加氧。

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

中国超超临界机组与电厂统计

中国已建、在建、拟建1000MW超超临界机组与电厂统计1.浙江华能玉环电厂 位于浙江台州玉环县的华能玉环电厂工程是国家“十五”863计划“超超临界燃煤发电技术”课题的依托工程和超超临界国产化示范项目,规划装机容量为4台1000MW超超临界燃煤机组,一期建设二台1000MW机组,投资约96亿元,机组主蒸汽压力达到兆帕,主蒸汽和再热蒸汽温度达到600度,是目前国内单机容量最大、运行参数最高的燃煤发电机组,该工程是国内机组热效率、环保综合性能最高,发电煤耗最低的燃煤发电厂。自2004年6月开工以来,按照华能集团公司总经理李小鹏提出的建设“技术水平最高,经济效益最好,单位千瓦用人最少,国内最好、国际优秀” 高效、节能、环保电厂的目标,在业主、设计、施工、调试、监理、制造各参建方的共同努力下,坚持技术创新,敢于走前人未走之路,攻克了一个又一个技术难题,创造了一个又一个国内电建史上的第一。 1#机组投产比计划工期提前6个月,2006年11月28日,华能玉环电厂1#机组顺利经过土建、安装、调试、并网试运环节,正式投入商业运行。2#机组于2006年12月投产。 二期3#、4#机组于2007年11月投产,成为我国最大的超超临界机组火力发电厂。 2.山东华电邹县发电厂 地处山东省邹城市。南面是水资源丰富的微山湖,北与兖州煤田相邻,向东4公里,有津浦铁路南北贯通。充足的煤炭,便利的交通,以及丰富的水资源,为邹县电厂的建设与发展提供了非常优越的条件。邹县发电厂一、二、三期工程,是“六五”至“九五”期间国家重点建设工程。现有1台300MW、1台330MW和2台335MW国产改造机组和2台600MW机组,装机总容量2500MW,是目前我国内地最大的火力发电厂之一。四期工程计划再安装2台1000MW等级超超临界机组,华电国际邹县发电厂国产百万千瓦超超临界燃煤凝汽式汽轮发电机组,是国家“863”计划依托项目和“十一五”重点建设工程,是引进超超临界技术建设的大容量、高参数、环保型机组的里程碑工程,也是2006年华电集团突破装机规模和经营效益的标志性项目。7号机组工程从开工到

1000MW超超临界机组锅炉启动系统结构与运行特性

1000MW超超临界机组锅炉启动系统结构与运行特性

摘要 介绍了国产1000MW超超临界机组锅炉启动系统结构及运行特性,阐述了启动系统的结构,启动系统的流程以及运行特性,分析了各种启动系统之间的不同(包括安全性,经济性等)以及不同设备运行对于启动系统运行的影响等。 关键词:超超临界启动系统结构特性运行特性 Abstract Introduced domestic 1000MW Supercritical Boiler Start System structure and operating characteristics, described the structure of the boot system, boot the system processes, and operational characteristics of the different promoters, the difference between the systems (including security, economy, etc.) and

start the system running for different devices running on and so on. Keywords:USC;Start System ;operational characteristics;operating characteristics

目录 第一章前言 (3) 第二章 1000MW超超临界锅炉主要系统 (5) 第三章超超临界锅炉启动系统 (9) 第一节超超临界锅炉启动系统的结构 (9) 第二节超超临界锅炉启动系统的分类 (12) 第三节锅炉启动系统的比较 (15) 第四章超超临界锅炉启动系统运行特性分析 (17) 第五章典型超超临界锅炉启动系统 (20) 第六章结束语 (28) 参考文献 (29) 附录 (30)

我国百万千瓦火电机组一览

我国百万千瓦火电机组一览 截至2011年底,我国已建成投产的百万千瓦级超超临界火电机组达到38台。平均供电煤耗为290克/千瓦时。 目前已建成投产的百万千瓦级超超临界火电机组见下表: 序号企业数量 1 华能玉环电厂 4 2 华能汕头海门电厂 2 3 华能金陵电厂 1 4 华能沁北电厂 2 5 国电泰州电厂 2 6 国电北仑电厂 2 7 国电谏壁电厂 2 8 国华绥中电厂 2 9 国华粤电台山电厂 1 10 国华宁海电厂 2 11 华电国际邹县发电厂 2 12 华电宁夏灵武电厂 2 13 中电投漕泾电厂 2 14 中电投平顶山发电分公司 2 15 华润徐州彭城发电厂 2 16 申能外高桥发电公司 2 17 国投天津北疆电厂 2 18 浙能嘉兴电厂 1 1 19 皖能铜陵电厂 20 广东惠州平海发电厂 2 合计38 目前中国在建的百万千瓦火电机组为66台,具体如下: ·大唐广东三百门电厂 位于广东省潮州市饶平县东南部的柘林镇大埕湾畔,规划装机容量为2×60万千瓦、 6×100万千瓦燃煤发电机组。整个项目投产后,年发电量将达到72亿千瓦时。 ·大唐克什克腾电厂(空冷) 位于内蒙古自治区赤峰市克什克腾旗三义乡和浩来呼热乡境内,总装机容量200万千瓦。其所发电力直接送入京津唐电网,未来将形成煤、电、路一体化发展格局。 ·大唐山西定襄电厂(空冷) 位于山西省忻州市定襄县东王村,建设规模为200万千瓦。电厂所发电力电量拟全部送入京津唐电网。 ·大唐山东东营电厂 位于山东省东营市河口区临港工业园之内,建设规模为4×100万千瓦,一期工程建设2

台机组。 ·大唐浙江乌沙山电厂 位于浙江省宁波市象山县西周镇东北约2.5公里的乌沙山西侧的山前平原上。该项目为二期工程,建设2台100万千瓦机组,同步配套日产10万吨海水淡化项目。 ·大唐江西抚州电厂 位于江西省抚州市临川区,规划建设4×100万千瓦燃煤发电机组。该项目为一期工程,建设2台100万千瓦机组。 ·国电安徽铜陵电厂 位于安徽省铜陵市东北铜陵县东联乡境内,一期工程2×60万千瓦,已投产发电,二期工程2×100万千瓦。该电厂是中国国电集团公司在安徽投资兴建的首个电源点。 ·国电山东博兴电厂 位于山东省滨州市博兴县境内,建设2×100万千瓦发电机组。近期规划4×100万千瓦发电机组,远景规划8×100万千瓦发电机组。该项目是滨州市第一个大型公用发电厂,靠近山东省中部负荷中心,将成为山东电网500千伏北通道的重要电源支撑点。 ·国电湖北汉川电厂 位于湖北省武汉市西面,一、二期总装机容量4× 30万千瓦火电机组,三期工程2×100万千瓦。处于湖北电网鄂东负荷中心,是湖北省境内重要的电源支撑点。 ·国电广西钦州电厂 位于广西壮族自治区钦州市南部的钦州港经济开发区鹰岭作业区钦州电厂的二期工程场地内,建设2×100万千瓦燃煤发电机组。将成为广西乃至西南地区最大的火电基地之一,可为南方电网“西电东送”主网架提供电源支撑。 ·华电宁夏灵武电厂(空冷) 位于宁夏回族自治区银川市灵武境内的宁东能源化工基地,煤炭资源丰富,是典型的坑口电厂。该项目是灵武电厂三期工程,建设2台100万千瓦空冷火电机组,建成后将是世界上首个100万千瓦空冷机组,同时也是国内最大的、装机规模520万千瓦的空冷发电厂,是宁夏区域“西电东送”的重要电源支撑点。 ·华电宁夏灵武电厂 是灵武电厂二期工程,建设2台100万千瓦火电机组。 ·华电安徽芜湖电厂 位于长江南岸长三角经济带边缘、安徽省东南部的芜湖市境内。规划装机容量332万千瓦,一期工程建设2×66万千瓦机组,二期建设2×100万千瓦机组,建成后将成为华东地区特大型骨干电厂。 ·华电江苏句容电厂 位于江苏省镇江市境内句容市下蜀镇桥头农场,规划容量4×100万千瓦机组,一期建设2台100万千瓦机组。该电厂为苏南区域性电厂,电力将主要送苏锡地区。 ·华能江苏金陵电厂 位于江苏省南京市栖霞经济开发区,一期2×39万千瓦燃气——蒸汽联合循环发电机组已建成投产,二期工程建设2×100万千瓦燃煤发电机组。 ·华能河南沁北电厂 位于河南省济源市五龙口镇境内,规划装机容量440万千瓦。一、二期工程4×60万千瓦机组已投运,三期工程2×100万千瓦。该电厂紧靠晋东南和晋南煤炭基地,位于华中、华北、西北电网的交汇处。 ·华能广东海门电厂 位于广东省汕头市潮阳区海门镇洪洞村,规划建设6×100万千瓦燃煤机组,首期建设4

五台百万机组施工介绍

五台百万机组施工介绍 超超临界百万机组由于有着优良的经济性能(供电煤耗不到300克标准煤),加之现在的火电超低排放技术的运用,所以不管从经济性能还是环保要求来考虑,今天的中国火力发电已经进入百万千瓦机组唱主角的时代,自从2006年11月28日华能玉环电厂首台百万机组投产以来,已经有大量的百万机组投产,要不了2年的时间中国的百万机组就要突破百台大关,就我们江苏省而言,已有国电泰州2台、华润彭城2台、国华徐州2台、国电谏壁2台,华能金陵2台、中电国际常熟2台、华电句容2台,国信新海1台,华能南通2台,加之目前在安装中的国电泰州二期的2台两次再热百万千瓦机组和国信新海的第二台百万机组,和即将建设的中电投协鑫滨海2台百万机组和北京三吉利能源张家港沙洲电力的2台百万机组,江苏省将拥有24台百万机组,在相当长的一段时间内江苏省的百万机组数量应该是排名国内第一! 国内目前百万机组锅炉俱乐部成员哈尔滨锅炉厂的技术支持方为MITSUBISHI(三菱)公司,上海锅炉厂的技术支持方为ALSTOM(阿尔斯通)公司,东方锅炉厂的技术支持方为BHK(日立-巴布科克)公司,北京巴威锅炉厂的技术支持方为Babcock & Wilcox(巴布科克·威尔科克斯)公司,纵观国内的百万机组的三大主机供应商无疑都是三大电气(上海、哈尔滨、东方)提供的设备,江苏省内已经投产的百万机组以上海电气的为主,百万机组汽轮机除了国电泰州工程汽轮机为哈尔滨汽轮机厂提供以外,其余均为上海汽轮机厂的西门子机型汽轮机,锅炉除了国电泰州和华能金陵采用哈尔滨锅炉厂提供的设备、华电句容采用东方锅炉提供的设备,其余的均采用上海锅炉厂的塔式锅炉,在百万俱乐部成员中除了这三大电气制造商以外,目前北京的巴威锅炉厂和北京北重阿尔斯通汽轮机也已经成功跻身为百万俱乐部成员,和三大电气制造商相比较,由于是合资企业,没有国家的政策支持,所以北京的这两家合资企业的产品在国内的市场占有率远不如三大电气制造厂的市场占有率高,但是他们的产品各自有各自的特色,下面我们就来谈谈江苏省内的我公司施工的超超临界百万机组,由于本人对汽轮机本体结构结构不熟悉,对江苏省内的百万机组设备介绍以锅炉为主,汽机大部分介绍为借鉴网上的资料,由于本人水平有限,文中错误之处还请大家见谅! 一、国电泰州电厂一期工程: 国电泰州电厂一期工程由中国国电集团公司投资兴建,是江苏省的首个百万机组电厂,设计单位为华东电力设计院,安装单位为江苏电建三公司(承建#1机组)和江苏电建一公司(承建#2机组),国电泰州工程是国电集团的首个百万机组工程,也是江苏省的首个百万机组工程,更是江苏电建一、三公司的首个百万机组工程,是江苏电建一、三公司实力上台阶的工程,泰州工程#1机组于2007.12.04号投产,位列国内百万机组投产第7名,前6名分别是华能玉环的4台百万机组和华电国际邹县电厂2台百万机组,泰州#1机组是中国电力装机容量突破7亿千瓦的标志性机组;泰州工程#2机组于2008.03.31号投产,位列国内百万机组投产第9名,第8名为2008.03.26投产的上海外高桥#7机组,泰州的三大主机均由哈电集团提供,锅炉设备和华能玉环的锅炉相同为哈尔滨锅炉厂引进日本MITSUBISHI公司技术标准制造的超超临界锅炉,锅炉的主蒸汽流量:2953t/h;压力:27.46 MPa;温度为:605 ℃;再热汽流量:2446t/h;压力:5.94 MPa;温度603 ℃,哈锅的三菱技术超超临界锅炉的最大的特点是水冷壁不采用螺旋管,全部为垂直段水冷壁,加装中间混合集箱及两级分配器,减少了水冷壁偏差,并将节流孔圈装于水冷壁下联箱外面的水冷壁管上以便于调试、简化结构。燃烧方式:反向双切圆(八角切圆)燃烧方式以获得均匀的炉内空气动力场和热负荷分配,降低炉膛出口烟气温度场和水冷壁出口工质温度的偏差。哈锅的超超临界锅炉还有一个显著的特点就是分离器和贮水箱布置在炉后,这个和其他的超超临界锅炉分离器和贮水箱布置在炉前是不一样的,而且顶棚和四侧包墙属于水冷壁系统(以分离器出口为过热系统分界)。 锅炉的热力系统(一次汽):高压给水来→省煤器进口集箱→低再侧、低过侧省煤器蛇形管排→省煤器悬吊管→省煤器出口集箱→省煤器下降管→下降支管→四侧水冷壁进口集箱→水冷壁中间集箱一级混合器→水冷壁二级混合器→水冷壁(前、左、右)上集箱(后侧水出口集箱通过连接管至侧墙延伸水冷壁进口集箱和后水吊挂管进口集箱到侧墙水冷壁出口集箱和后水吊挂管出口集箱再通过连接管集中到顶棚出口集

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

(整理)600MW超超临界机组资料

600MW超超临界汽轮机介绍第一部分 两缸两排汽 600MW超超临界汽轮机介绍 0 前言 近几年来我国电力事业飞速发展,大容量机组的装机数量逐年上升,同时随着国家对环保事业的日益重视及电厂高效率的要求,机组的初参数已从亚临界向超临界甚至超超临界快速发展。根据我国电力市场的发展趋势,25MPa/600℃/600℃两缸两排汽 600MW 超超临界汽轮发电机组将依据其环保、高效、布局紧凑及利于维护等特点占据相当一部分市场份额,下面对哈汽、三菱公司联合制造生产的25MPa/600℃/600℃两缸两排汽600MW超超临界汽轮机做一个详细的介绍。 1 概述 哈汽、三菱公司联合制造生产的600MW超超临界汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。高中压汽轮机采用合缸结构,低压汽轮机采用一个48英寸末级叶片的双分流低压缸,这种设计降低了汽轮机总长度,紧缩电厂布局。机组的通流及排汽部分采用三维设计优化,具有高的运行效率。机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。 机组设计有两个主汽调节联合阀,分别布置在机组的两侧。阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大地降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。调节阀为柱塞阀,出口为扩散式。来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后进入四个喷嘴室。导汽管通过挠性进汽套筒与喷嘴室连接。 进入喷嘴室的蒸汽流过冲动式调节级,然后流过反动式高压压力级,做功后通过外缸下半的排汽口进入再热器。 再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回

660MW超超临界直接空冷机组整套启动中的问题及处理措施

660MW超超临界直接空冷机组整套启动中的问题及处理措施 本文主要针对660MW超超临界直接空冷机组整套启动过程中存在的问题开展论述,结合问题存在的原因,提出相应的处理措施,保证整个机组试运行顺利推进。 标签:超超临界直接空冷机组整套启动存在问题处理措施 内蒙古大唐国际托克托发电有限责任公司五期工程2×660MW汽轮机发电机组,该机组是由东汽生产的660MW超超临界一次中间再热,三缸两排汽,直接空冷凝汽式汽轮机。本次研究主要针对该机组整套启动过程中存在的的问题进行了总结分析,并进一步分析了问题产生的原因,提出了相应的处理措施,现将具体研究内容介绍如下: 一、盘车转子停止转动 1.问题分析 在对机组进行电气专业短路实验和空载实验完成之后,技术人员准备对整个机组的阀门进行严密性试验。当时锅炉的运行参数为主汽压力11.9MPa,再热汽压力2.3119MPa。当严密性试验完毕之后,汽机转速到0,人工手动啮合盘车,启动过程中的电流为0当时电流30.3A,启动约一分半后,盘车掉闸。间隔20分钟后再次启动,启动失败,这时对盘车电机的电流进行检查,发现在33~35A 之间波动。半个小时之后,挂闸困难,强行挂闸后,手动盘车不能正常运作,随后盘车电流突然激增到71A,汽轮机真空遭到破坏。通过对整个机组进行全面检查之后,导致上述问题出现的原因,主要包括以下几个方面,一个是盘车机电出现了电气故障,另一个是汽轮机大轴内部存在残余的弯曲,机械设备在启动过程中,由于启动力矩太大,不能正常开启。还有就是顶轴油压出现了突变,使得大轴顶起高度,达不到相应标准,启动力矩增加。最后一个原因是盘车大齿与大轴齿轮啮合不到位,从而引起启动力矩增加。 2.处理措施 针对上述故障可能发生的原因,技术人员立即采取措施进行检修。首先将所在机组的所有疏水关闭,开始进行闷缸处理。在故障现场调整机组各个瓦顶轴油压以及顶起的高度,检查之后发现一个发电机的7瓦顶起高度不符合要求。针对这一现象,重新调整了3号~8号瓦顶轴油压,调整之后的油压分别为6.9MPa、5.5MPa、6.9MPa、8.5MPa、5.2MPa、7.8MPa。3~8号瓦大轴顶起高度分别为3丝、3丝、4丝、5丝、5丝、6丝。然后对盘车进行了解体,发现回油槽内部存在很多铜屑,由此可以断定,是因为油槽中存在铜屑,造成了齿轮啮合困难。通过对机组进行闷缸处理两个小时之后,重新开启盘车,机组电流稳定,没有继续出现突然增大现象。然后将盘车挂闸,能够顺利进行。将盘车再次启动之后,机组的电流控制在25A,转子偏心162mm。随后机组的电流下降到20A,接近冷

亚临界,超临界,超超临界火电机组技术

亚临界、超临界、超超临界火电机组技术区别 一、定义 所谓的"临界"是指锅炉工作情况下承受的一定温度和压力的蒸汽状态。可以查出水的临界压力为22.115MPa ,由此知,此压力对应下的状态叫临界状态; (1)水在加热过程中存在一个状态点——临界点 (2)低于临界点压力,从低温下的水加热到过热蒸汽的过程中要经过汽化过程,即经过水和水蒸汽共存的状态; (3)而如果压力在临界压力或临界压力以上时,水在加热的过程中就没有汽水共存状态而直接从水转变为蒸汽。 T-S图 临界点 T 饱和水线饱和汽线 S 水的临界点 1.1 压力低于25MPa(对应的蒸汽温度低于538摄氏度)时的状态为亚临界状态;亚 临界自然循环汽包锅炉的燃烧室蒸发受热面与汽包构成循环回路。受热面上升管吸热量越大,则上升管内的含汽率增大,与下降管比重差增大,因此推动更大的循环量。其特性是带有“自补偿”性质的。而直流锅炉燃烧室内的平行上升管组吸热量越大则工质比容增大,体

积流速变大,阻力增大。对带有联箱的平行管组,吸热多的管子质量流量必然降低,其特点是“直流”性质的。 1.2 压力在25MPa 时的状态(对应的蒸汽温度高于538摄氏度)为超临界状态;超临界是物质的一种特殊状态,当环境温度、压力达到物质的临界点时,气液两相的相界面消失,成为均相体系。当温度压力进一步提高,即超过临界点时,物质就处于超临界状态,成为超临界流体。超临界水是一种重要超临界流体,在超临界状态下,水具有类似于气体的良好流动性,又具有远高于气体的密度。超临界水是一种很好的反应介质,具有独特的理化性质,例如扩散系数高、传质速率高、粘度低、混合性好、介电常数低、与有机物、气体组分完全互溶;对无机物溶解度低,利于固体分离,反应性高、分解力高;超临界水本身可参与自由基和离子反应等等。 1.3 压力在25-31MPa 之间(温度在600度以上)则称为超超临界状态。 二、 参数 水的临界状态参数为压力22.115MPa 、温度374.15℃ 2.1 亚临界火电机组蒸汽参数: P=16~19MPa ,T= 538℃/ 538℃或T= 540℃/ 540 ℃。超临界压力下朗肯循环过程的T —S 图

超超临界机组介绍

超超临界锅炉介绍 国家政策情况 节能调度 一、基本原则和适用范围 (一)节能发电调度是指在保障电力可靠供应的前提下,按照节能、经济的原则,优先调度可再生发电资源,按机组能耗和污染物排放水平由低到高排序,依次调用化石类发电资源,最大限度地减少能源、资源消耗和污染物排放。 (二)基本原则。以确保电力系统安全稳定运行和连续供电为前提,以节能、环保为目标,通过对各类发电机组按能耗和污染物排放水平排序,以分省排序、区域内优化、区域间协调的方式,实施优化调度,并与电力市场建设工作相结合,充分发挥电力市场的作用,努力做到单位电能生产中能耗和污染物排放最少。 (三)适用范围。节能发电调度适用于所有并网运行的发电机组,上网电价暂按国家现行管理办法执行。对符合国家有关规定的外商直接投资企业的发电机组,可继续执行现有购电合同,合同期满后,执行本办法。 二、机组发电序位表的编制 (四)机组发电排序的序位表(以下简称排序表)是节能发电调度的主要依据。各省(区、市)的排序表由省级人民政府责成其发展改革委(经贸委)组织编制,并根据机组投产和实际运行情况及时调整。排序表的编制应公开、公平、公正,并对电力企业和社会公开,对存在重大分歧的可进行听证。 (五)各类发电机组按以下顺序确定序位: 1.无调节能力的风能、太阳能、海洋能、水能等可再生能源发电机组; 2.有调节能力的水能、生物质能、地热能等可再生能源发电机组和满足环保要求的垃圾发电机组; 3.核能发电机组; 4.按“以热定电”方式运行的燃煤热电联产机组,余热、余气、余压、煤矸石、洗中煤、煤层气等资源综合利用发电机组; 5.天然气、煤气化发电机组; 6.其他燃煤发电机组,包括未带热负荷的热电联产机组; 7.燃油发电机组。 (六)同类型火力发电机组按照能耗水平由低到高排序,节能优先;能耗水平相同时,按照污染物排放水平由低到高排序。机组运行能耗水平近期暂依照设备制造厂商提供

超临界和超超临界发电机组

Latest Developments in the World ′s Wind Power Industry Luo Chengxian (Former SINOPEC Center of Information ,Beijing 100011) [Abstract]In recent years ,renewable energy source-based power generation ,particularly wind power ,has been growing rapidly.Pushed by some wind power foregoer countries ,significant progress has been made in the de -velopment of large-capacity wind turbine power generating sets with single-generator capacity having quickly broken through the key level of 1MW.10MW wind turbine power generating sets are expected to enter the market soon.The development of larger-capacity generators has enhanced the economic viability and competi -tiveness of wind power.The utilization rate of wind turbines will rise to 28%by 2015from the current about 25%and the investment cost will drop considerably.Under GWEC ′s high-growth scenario ,the investment cost will fall to 1093Euro/kW by 2030from 1350Euro/kW in 2009.Given the intermittent and stochastic nature of wind ,power storage technology is an effective approach to introducing renewable energy on a large scale.Japan and many American and European countries have invested in the research and development of power storage technology.A recent IEA research note shows that use in combination with heat and power cogenera -tion technology ,which focuses on heat supply ,can greatly expand the scale of use of renewable energy sources.Smart grids will be the fundamental approach to resolving the problems relating to the large -scale grid integration of wind power and power transmission.Smart grid technology will greatly enhance the overall utilization efficiency of the power system and can effectively reduce the fossil fuel consumption of power plants.China has made some progress in developing smart grids although there are still many problems yet to be resolved.The renewable energy -derived power purchasing policies enacted by countries around the globe have promoted the development of the global wind power industry.Germany ′s wind power purchasing policies can be used by China for reference. [Keywords]wind power generation ;larger generator ;equipment utilization rate ;investment cost ;power storage technology ;smart grid ;wind power purchasing policy ·39· 第5期罗承先.世界促进风电产业发展最新动向·能源知识· 超临界和超超临界发电机组 火电厂超临界和超超临界机组指的是锅炉内工质的压力。锅炉内的工质都是水,水的临界压力是22.115MPa ,温度为347.15℃。在这个压力和温度时,水和蒸汽的密度是相同的,这就叫水的临界点,炉内工质压力低于这个压力就叫亚临界锅炉,大于这个压力就是超临界锅炉,炉内蒸汽温度不低于593℃或蒸汽压力不低于31MPa 则称为超超临界。 超临界机组具有无可比拟的经济性,单台机组发电热效率最高可达50%,每千瓦时煤耗最低仅为255g(丹麦BWE 公司),较亚临界压力机组(最低约327g 左右)煤耗低;同时采用低氧化氮技术,在燃烧过程中减少65%的氮氧化合物及其他有害物质,且脱硫率超98%,可实现节能降耗、环保的目的。超临界、超超临界火电机组具有显著的节能和改善环境的效果,超超临界机组与超临界机组相比,热效率还要高1.2%,一年就可节约6000t 优质煤。未来火电建设将主要发展高效率、高参数的超临界(SC)和超超临界(USC)火电机组。我国已成功掌握先进的超超临界火力发电技术,并为百万千瓦超超临界机组产业化创造了条件。目前一批百万千瓦超超临界机组项目正在建设中。(供稿舟丹)

超超临界机组的金属材料介绍

超超临界机组的金属材料介绍 1.1概述 以亚临界火电机组的电厂净效率为基值,蒸汽参数为25MPa/540℃/560℃的超临界火电机组电厂净效率比亚临界火电机组的电厂净效率高 1.6%;27MPa/580℃/600℃超临界火电机组电厂净效率比25MPa/540℃/560℃的电厂净效率高 1.3%;30MPa/620℃/640℃超临界火电机组电厂净效率比27MPa/580℃/600℃超临界火电机组电厂净效率高1.3%;30MPa/700℃/720℃超临界火电机组电厂净效率比30MPa/620℃/640℃超临界火电机组电厂净效率高1.6%。这符合热力学所指出的:热机的初参数越高,效率就越好。因此,随着科技进步,人们不断地在开发更高参数的超临界火电机组。 然而,机组参数的提高,受制于耐高温材料的开发与制造,随着蒸汽参数的提高就要应用更能耐高温的材料。早在50年代末,美国就投运了参数为31MPa/621℃/566℃/566℃的Philo6号和参数为34.5MPa/ 649℃/566℃/566℃的Eddystonel号超超临界机组。这二台机组采用的参数由于超越了当时的材料制造水平,投运后多次出现爆管事故和严重的高温腐蚀等材料问题,不得不降参数运行。原苏联首台超临界机组参数为23.5MPa/580℃/565℃,运行后也多次出现材料方面的问题,不得不把参数降到23.5MPa,540℃/540℃运行。日本发展超临界机组,很注重材料的研究与开发,机组参数稳步推进,超临界、超超临界机组得以顺利发展。上世纪80年代以来,欧洲、美国、日本在超超临界发展计划中,首先实施材料开发的计划。由此可见材料是发展超超临界机组的关键。 20世纪50年代初,日本从欧美引进锅炉用碳钢、钼钢、铬铝钢、18-8型不锈钢和转子用CrMoV钢,从1981年开始分两个阶段实施超超临界发电计划。第一阶段把蒸汽温度从566℃提高到593℃,第二阶段目标是650℃。在材料的开发上,主要是利用过去对9~12%Cr系钢和奥氏体系钢的开发研究成果,进一步开发高强度9~12%Cr系钢代替部分奥氏体钢,开发比原来奥氏体高温强度更高、耐蚀性更好的新奥氏体钢,以及兼顾高温强度和耐蚀性的渗铬管、喷焊管和双层管。全面回顾和进一步研究合金元素Cr、Mo、W、V、Nb、Cu、Co、Cr、Si、C、N、B、Re单独添加和V-Nb、C-N、Mo-W等复合添加的影响,开发了TB9,TB12,NF616,HCM12A,NF12, TP347HFG,Super304H,HR3C,NF709,SAVE25等锅炉用钢;TR1100,TRl50,TR1200,HR1200,TAF65等转子、叶片、螺栓用钢。日本对耐热钢的开发研制是花大力气的,并取得了举世目瞩目的成功。根据近期的研究成果,含钴的铁素体耐热钢(NF12,SAVE12,HRI200,TF650)最高使用温度有望达到650℃.但还需进一步试验。我国发展不同参数的超超临界机组的候选材料示于下表6-1中。 超超临界机组由于蒸汽温度的提高,对材料的耐腐蚀性要求可能会超过对蠕

相关文档
相关文档 最新文档