文档库 最新最全的文档下载
当前位置:文档库 › 发电机变压器组保护整定

发电机变压器组保护整定

发电机变压器组保护整定
发电机变压器组保护整定

1、原始资料

某发电厂要扩建一个新厂,安装两台发电机变压器组,主接线如图(a)所示。 已知参数如下:

(1)发电机 e P =200MW ,cos ?=0.85,

e U ==15.75kV ,195%d x =,'24%d x =,''14.5%d x =;变压器e S =240MVA ,d U =0.105,接线Y ?-11,分接头1212 2.5%15.75kV ±?,分级绝缘。

(2)相间短路后备保护围末端两相短路时,流经发电机的最小短路电流为14900A 。

(3)110kV 母线上出线后备保护动作时间为6s 。出线的零序后备保护最大动作电流为3250A ,最大动作时间为5s 。在最大运行方式下,出线的零序后备保护围末端接地短路时流经变压器的零序电流为620A ,故障线路上的零序电流为903A 。在最小运行方式下,出线末端金属接地短路时,流经变压器的最小零序电流为1100A 。

(3)保护设计所需的最大三相短路电流的计算结果如图(b)、(c)所示。它们是归算到115kV 的安数(括号为最小三相短路电流值)。

(a )主接线图

(b)110kV母线短路时,短路电流分布图:

(c)15.75kV母线短路时,短路电流分布图

2、设计容

⑴、发电机变压器组的保护方式

发电机变压器组的容量为200MW,发电机与变压器之间无短路器,因此,除发电机变压器组需装设公用纵差动保护外,发电机、变压器均装设单独的纵差动保护。按照保护安装设规程,需安装的保护如下:

①、发电机变压器组:纵差动保护

②、发电机:a、纵差动保护

b 、定子接地保护(零序电压保护)

c 、定子绕组匝间短路保护

d 、定子绕组过电压保护

e 、相间短路的后备保护(负序过电流保护+低电压起动保护)

f 、定子绕组过负荷保护(定时限+反时限)

g 、逆功率保护

h 、失磁保护

③、变压器:a 、纵差动保护

b 、瓦斯保护

c 、单相接地保护

d 、过负荷保护

e 、相间短路的后备保护

⑵、保护整定计算

Ⅰ、发电机

①、发电机纵差动保护(BCH-2高灵敏度接线)

发电机额定电流:

3

18625.21N I A == 为统一测量仪器的规格,电流、电压互感器的二次侧电流、电压分别取5A 、100V 。因此,电流、电压互感器的变比分别为:

15.75/0.1157.5Y n ==

n 10000/52000L ==

互感器二次侧电流:

228625.21 4.312000

N N L I I A n =

== a 、平衡线圈的P W 的选择 按二次回路断线时非段线相保护不动作选择

26012.661.3 4.31

P k N AW W K I ===? 可取P W =12

b 、差动线圈C W 的选择

按一相断线时断线不动作的条件选择

()2k N C P K I W W AW -≤

22225.31C P k N k N

AW AW W W K I K I ≤

+== 取C W =25

c 、动作电流 60 2.425

dz C AW I A W ≥== 取=2.5dz I A

d 、灵敏度校验

(

)

2max 1158523215.7510.772000 2.5k l L dz I K n I ?===?﹥2

e 、断线监视器CJJ 整定

20.20.2 4.310.862cdz N I I A ==?=

②、定子接地保护(零序电压保护)

发电机变压器组的高压侧为中性点非直接接地系统而发电机电压网络的中性点不接地或经消弧线圈接地时,一般在发电机电压侧装设零序电压保护并作用于信号,其动作值应满足

dz.j bp U U >

不平衡电压bp U 是由电压互感器的误差和三次谐波电压而引起的,通常bp U 可达10~15V ,所以取零序电压保护的动作电压dz.j 15V U =。

③、定子绕组匝间短路保护(横差动保护)

横差动电流互感器变比计算

118625.210.25

0.25431.2655

N L I n ≈=?= 取1L n =500。

动作电流 ()

()118625.210.20.30.20.3 3.45 5.18500

N d op I I A n ==?=g ::: 取d op I g =5A

④、定子绕组过电压保护

动作整定值:

rel 157501.3130157.5G N dz gy

Y U U K V n ==?=g g

动作时间: 0.5dz gy t s =g

④、低电压起动保护

电流继电器动作电流按躲过额定电流整定:

2 1.2 4.31 6.0850.85

b dz dy N h K I I A K ==?=g 电压继电器动作电压按躲过最低允许运行电压整定:

0.90.91575065.2171.2 1.15157.5

N dz dy b i Y U U V K K n ?===??g 灵敏度按变压器高压侧母线三相短路的最小短路电流校验: 115

476315.75 2.8586.0852000lm I

K ?==?g ﹥1.5 变压器母线短路,保护安装处最大剩余电压:

1151.38476315.7541.5632000sy U V ??

=

=

电压灵敏度: 65.217 1.56941.563

dz dy

lm U sy U K U ===g g 保护整定时间比110KV 母线出线后备保护多一个t ?

60.5 6.5zd dy t s =+=g

⑤、负序过电流保护

动作电流按发电机转子发热条件整定:

2 4.31 1.113dz gl N I A ===g

灵敏度校验:

min 3.865dz lm dz gl I K I =

==g g 动作整定时间: 6.50.57dz gl t s =+=g

⑥、定子绕组过负荷保护

a 、 定时限

动作电流整定:

2 4.311.05 4.7640.95

N zd gf d rel

re I I K A K ==?=g g 动作时间整定: 60.5 6.5zd gf d t s =+=g g

该保护动作于信号

b 、 反时限

下线动作电流整定:

发电机变压器组继电保护运行规程

继电保护运行规程 元件保护 第一节发电机变压器保护 一、保护简介 发变组保护采用许继生产的WFB—100Q微机型发变组成套保护装置,包括发电机、主变压器常用高压变压器的保护装置,其由三块保护屏嵌装十一个箱体、一台工控机组成。装置采用分层式多CPU并行工作方式,下层十三个保护模块共同构成整套保护。上层单元管理机(工控机) 负责人机接口和全部信息处理,保护模块之间及保护模块与工控机之间相互独立。整套保护出口有: 1.全停1 跳发电机出口开关、高厂A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。 2.全停2 跳发电机出口开关、高厂变A分支开关、高厂变B分支开关和灭磁开关及关汽机主汽门。 3.解列跳发电机出口开关和汽机甩负荷。 4.解列灭磁跳发电机出口开关、灭磁开关和汽机甩负荷。 5.减出力减出力至定值。 6.母线解列跳110KV母联断路器。

7.厂用电切除跳高厂变A分支开关、高厂变B分支开关,同时启动切换A、B分支厂用电。 8.A分支解列跳高厂变A分支开关同时启动切换A分支厂用电。9.B分支解列跳高厂变B分支开关同时启动切换B分支厂用电。 二、保护A屏 1、保护屏组成: 其由一个WFB—105箱、两个WFB—108箱和一个XCK—103出口箱体构成。a、箱一WFB—105由三块交流变换、一块直流变换、两块出口、两块保护模块、一块稳压电源插件组成,完成有发电机差动、TA断线、失磁、转子一点接地和转子两点接地保护功能。 b、箱二WFB—108由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有定子接地、励磁变过流、励磁变过负荷、主变瓦斯、主变温度、主变压力释放及主变冷却系统故障保护功能。 c、箱三WFB—108箱由三块交流变换、一块辅助信号、一块出口、两块保护模块、两块稳压电源插件组成,完成有匝间保护、YH断线、发电机对称过负荷,发电机负序过流、发电机断水、励磁系统故障和热工保护(我厂没用) 保护功能。 d、箱四XCK—103出口器箱由八块NZK—98、一块NZK—98、一块NFJ—98和两块NSJ—98插件组成。NZK—98只用三块,其功能为全停1、全停2、解列、解

第八章发电机-变压器保护举例

第八章发电机-变压器保护举例 本章以RCS-985发电机-变压器组成套保护装置为例。 第一节保护典型配置 一、概述 RCS-985采用了高性能数字信号处理器DSP芯片为基础的硬件系统,并配以32位CPU用作辅助功能处理。是真正的数字式发电机变压器保护装置。 RCS-985为数字式发电机变压器保护装置,适用于大型汽轮发电机、水轮发电机、燃汽轮发电机、抽水蓄能机组等类型的发电机变压器组单元接线及其他机组接线方式,并能满足发电厂电气监控自动化系统的要求。 RCS-985提供一个发电机变压器单元所需要的全部电量保护,保护范围:主变压器、发电机、高厂变、励磁变(励磁机)。根据实际工程需要,配置相应的保护功能。 对于一个大型发-变组单元或一台大型发电机,配置两套RCS-985保护装置,可以实现主保护、异常运行保护、后备保护的全套双重化,操作回路和非电量保护装置独立组屏。两套RCS-985取不同组TA,主保护、后备保护共用一组TA,出口对应不同的跳闸线圈,因此,具有以下优点: (1)设计简洁,二次回路清晰; (2)运行方便,安全可靠,符合反措要求; (3)整定、调试和维护方便。 二、保护功能配置及典型配屏方案 RCS-985装置充分考虑大型发电机变压器组保护最大配置要求。包括了主变、发电机、高厂变、励磁变(励磁机)的全部保护功能。 1.典型配置方案 如图8-1所示发-变组单元,发-变组按三块屏配置,A、B屏配置两套RCS-985A,分别取自不同的TA,每套RCS-985A包括一个发-变组单元全部电量保护,C屏配置非电量保护装置。图中标出了接入A屏的TA 极性端,其他接入B屏的TA极性端与A屏定义相同。 本配置方案也适用于100MW及以上相同主接线的发-变组单元。图中为励磁机的主接线方式,配置方案也适用于励磁变的主接线方式。 2.配置说明 (1)差动保护配置说明 1)配置方案:对于300MW及以上机组,A、B屏均配置发-变组差动、主变差动、发电机差动、高厂变差动。 2)差动保护原理方案:对于发-变组差动、变压器差动、高厂变差动,需提供两种涌流判别原理,如二次谐波原理、波形判别原理等,一般一套装置中差动保护投二次谐波原理,另一套装置投波形判别原理。 发电机差动也具有两种不同原理的比率差动:比率差动、工频变化量差动。 (2)后备保护和异常运行保护配置说明 A、B屏均配置发-变组单元全部后备保护,各自使用不同的TA。 1)对于零序电流保护,如没有两组零序TA,则A屏接入零序TA,B屏可以采用套管自产零序电流。此方式两套零序电流保护范围有所区别,定值整定时需分别计算。 2)转子接地保护因两套保护之间相互影响,正常运行时只投入一套,需退出本屏装置运行时,切换至另一套转子接地保护。 3.外加20Hz电源定子接地保护配置 配置外加20Hz电源定子接地保护时,需配置20Hz电源、滤波器、中间变流器、分压电阻、负荷电阻附加设备,附加设备单独组成一块屏。 4. 电流互感器配置说明

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

[全]变压器主保护定值整定计算

变压器主保护定值整定计算 以下差动保护采用二次谐波制动,以二圈变压器为例,所有计算均为向量和。 ①不平衡电流产生的原因和消除方法: a.由变压器两侧电流相位不同而产生的不平衡电流; (Y/Δ-11)Y.d11 接线方式——两侧电流的相位差30°。 消除方法:相位校正。 * 二次接线调整 变压器Y侧CT(二次侧):Δ形。Y.d11 变压器Δ侧CT(二次侧):Y形。Y.Y12 * 微机保护软件调整 b.由计算变比与实际变比不同而产生的不平衡电流; c.由两侧电流互感器型号不同而产生的不平衡电流;(CT变换误差) d.由变压器带负荷调整分接头而产生的不平衡电流;(一般取额定电压) e.暂态情况下的不平衡电流; 当变压器电压突然增加的情况下(如:空载投入,区外短路切除后).

会产生很大的励磁涌流.电流可达2-3 In,其波形具有以下特点 * 有很大的直流分量.(80%基波) * 有很大的谐波分量,尤以二次谐波为主.(20%基波) * 波形间出现间断.(削去负波后) 可采用二次谐波制动,间断角闭锁,波形对称原理 f.并列运行的变压器,一台运行,当令一台变压器空投时会产生和应涌流 所谓“和应涌流”就是在一台变压器空载合闸时,不仅合闸变压器有励磁涌流产生,而且在与之并联运行的变压器中也出现涌流现象,后者就称为“和应涌流”。其波形特点与励磁涌流差不多。 4、主变保护整定计算 (1)计算变压器两侧额定一次电流

—该侧CT变比。 注意:Kjx只与变压器本身有关,而与保护装置的CT接线形式无关。传统的差动保护装置中,变压器Y形绕组侧的CT多采用△接线,新的微机型差动保护装置中,变压器Y绕组侧的CT可以采用Y接线,微机型差动保护在装置内部实现了CT的△接线,因此在保护定值计算时可完全等同于外部△接线。 对于Y/△-11接线方式:Ia`=Ia - Ib,Ib`= Ib - Ic, Ic `= Ic –Ia 对于Y/△-1接线方式:Ia`=Ia - Ic,Ib`= Ib - Ia, Ic `= Ic - Ib (3)计算平衡系数 设变压器两侧的平衡系数分别为和,则: ①降压变压器:选取高压侧(主电源侧)为基本侧,平衡系数为 Kh=1 Kl=Inh`/Inl` ②升压变压器:选取低压侧(主电源侧)为基本侧,平衡系数为

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

发电机变压器组保护整定

1、原始资料 某发电厂要扩建一个新厂,安装两台发电机变压器组,主接线如图(a)所示。 已知参数如下: (1)发电机 e P =200MW ,cos ?=0.85,e U ==15.75kV ,195%d x =,' 24%d x =,'' 14.5%d x =;变压器e S =240MV A ,d U =0.105,接线Y ?-11,分接头 1212 2.5%15.75kV ±?,分级绝缘。 (2)相间短路后备保护范围末端两相短路时,流经发电机的最小短路电流为14900A 。 (3)110kV 母线上出线后备保护动作时间为6s 。出线的零序后备保护最大动作电流为3250A ,最大动作时间为5s 。在最大运行方式下,出线的零序后备保护范围末端接地短路时流经变压器的零序电流为620A ,故障线路上的零序电流为903A 。在最小运行方式下,出线末端金属接地短路时,流经变压器的最小零序电流为1100A 。 (3)保护设计所需的最大三相短路电流的计算结果如图(b)、(c)所示。它们是归算到115kV 的安数(括号内为最小三相短路电流值)。 (a )主接线图

(b)110kV母线短路时,短路电流分布图: (c)15.75kV母线短路时,短路电流分布图 2、设计内容 ⑴、发电机变压器组的保护方式 发电机变压器组的容量为200MW,发电机与变压器之间无短路器,因此,除发电机变压器组需装设公用纵差动保护外,发电机、变压器均装设单独的纵差动保护。按照保护安装设规程,需安装的保护如下: ①、发电机变压器组:纵差动保护 ②、发电机:a、纵差动保护 b、定子接地保护(零序电压保护) c、定子绕组匝间短路保护 d、定子绕组过电压保护 e、相间短路的后备保护(负序过电流保护+低电压起动保护)

变压器和发电机的保护

对于发电机可能发生的故障和不正常工作状态,应根据发电机的容量有选择地装设以下保护。 (1)纵联差动保护:为定子绕组及其引出线的相间短路保护。 (2)横联差动保护:为定子绕组一相匝间短路保护。只有当一相定子绕组有两个及以上并联分支而构成两个或三个中性点引出端时,才装设该种保护。 (3)单相接地保护:为发电机定子绕组的单相接地保护。 (4)励磁回路接地保护:为励磁回路的接地故障保护。 (5)低励、失磁保护:为防止大型发电机低励(励磁电流低于静稳极限所对应的励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响,100MW及以上容量的发电机都装设这种保护。 (6)过负荷保护:发电机长时间超过额定负荷运行时作用于信号的保护。中小型发电机只装设定子过负荷保护;大型发电机应分别装设定子过负荷和励磁绕组过负荷保护。 (7)定子绕组过电流保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作,这种保护作为外部短路的后备,也兼作纵差保护的后备保护。 (8)定子绕组过电压保护:用于防止突然甩去全部负荷后引起定子绕组过电压,水轮发电机和大型汽轮发电机都装设过电压保护,中小型汽轮发电机通常不装设过电压保护。 (9)负序电流保护:电力系统发生不对称短路或者三相负荷不对称(如电气机车、电弧炉等单相负荷的比重太大)时,会使转子端部、护环内表面等电流密度很大的部位过热,造成转子的局部灼伤,因此应装设负序电流保护。 (10)失步保护:反应大型发电机与系统振荡过程的失步保护。 (11)逆功率保护:当汽轮机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,从电力系统吸收有功功率而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。 变压器保护配备一般根据变压器的容量和电压等级。小型变压器配过流和速断保护就够了,甚至可以用熔断器保护;中型变压器(1250kVA以上)可以再加上瓦斯保护;更大的变压器(如6300kVA以上)一般应再配备差动保护。 变压器保护配置的基本原则 1、瓦斯保护: 800KVA及以上的油浸式变压器和400KVA以上的车间内油浸式变压器,均应装设瓦斯保护。瓦斯保护用来反应变压器油箱内部的短路故障以及油面降低,其中重瓦斯保护动作于跳开变 压器各电源侧断路器,轻瓦斯保护动作于发出信号。 2、纵差保护或电流速断保护: 6300KVA及以上并列运行的变压器,10000KVA及以上单独运行的变压器,发电厂厂用或工业企业中自用6300KVA及以上重要的变压器,应装设纵差保护。其他电力变压器,应装设电流速断保护,其过电流保护的动作时限应大于0.5S。对于2000KVA以上的变压器,当电流速断保护灵敏度不能满足要求时,也应装设纵差保护。纵差保护用于反应电力变压器绕组、套管及引出线发生的短路故障,其保护动作于跳开变压器各电源侧断路器并发相应信号。 3、相间短路的后备保护: 相间短路的后备保护用于反应外部相间短路引起的变压器过电流,同时作为瓦斯保护和纵差保护(或电流速断保护)的后备保护,其动作时限按电流保护的阶梯形原则来整定,延时动作于跳开变压器各电源侧断路器,并发相应信号。一般采用过流保护、复合电压起动过电流保护或负序电流单相低电压保护等。

水电站发电机变压器保护原理及继电保护方式

龙源期刊网 https://www.wendangku.net/doc/781707484.html, 水电站发电机变压器保护原理及继电保护方式 作者:张伟周桂林 来源:《科学与财富》2018年第09期 摘要:在水电站发电机变压器中安装继电保护装置,可以保障变压器的稳定运行,使水电站为用户提供可靠的电力。基于此,笔者从水电站发电机变压器的保护原理入手,根据继电保护的原则以及变压器常见的多种故障,对变压器的继电保护方式进行了分析,变压器主要包括短路故障的主保护、后备保护以及接地故障的保护这三种继电保护方式,从整体上保障了变压器的稳定运行,有助于水电站的长久运行。 关键词:水电站;变压器;继电保护 前言:在水电站发电机变压器的正常运行中,难免会产生一些故障,对电力系统的稳定运行造成不利影响。为了解决这一问题,大部分水电站都会采用继电保护方式对变压器进行保护,避免变压器故障的影响范围进一步扩大。而且继电保护装置可以及时提醒水电站的运维人员排除变压器故障,从而保障电力系统的稳定运行。因此,对于水电站发电机变压器保护原理及继电保护方式分析具有一定的实践意义。 1.水电站发电机变压器保护原理 1.1定子接地继电保护原理 当水电站发电机变压器内部的定子出现单相接地现象的时候,会导致匝间短路、相间短路以及接地短路,对变压器的正常运行造成不利影响,从而危害到整个电力系统。因此,水电站需要对变压器进行保护,通常是在变压器定子的中性点配备高阻,对暂态过电压进行控制,为变压器提供全面的保护。如果在继电保护的过程中,变压器出现了其他故障,则继电保护装置会自动跳闸,从根本上保护变压器。 1.2变压器继电保护装置 对于水电站发电机而言,主要涉及到主变压器以及厂用变压器这两种变压器,主变压器应用的继电保护装置包括差动装置、重瓦斯装置以及零序装置等,在变压器运行时,技术人员需要根据发电机以及变压器的实际运行状况,选择适当的零序过电流加入到继电保护装置中,实现变压器的保护;厂用变压器应用的继电保护装置主要是在开关柜中安装保护装置。;两种变压器的继电保护装置通过工控机进行连接,使变压器的接线更为简便,有助于继电装置的管理以及维护[1]。

发电机变压器保护检验规程

广东省飞来峡水利枢纽管理处技术规程 发电机、变压器继电保护装置检验规程 FLX/SJdz04-2012 发电机、变压器继电保护装置检验规程 1 范围 1.1本规程规定了飞来峡电厂继电保护装置的检验项目、内容、工艺要求、质量标准以及检验内容。 1.2本规程适用于飞来峡电厂发电机、变压器继电保护装置维护、检验和技术管理等工作。 1.3飞来峡水利枢纽管理处的生产管理人员和运行操作人员应了解本规程,各级自动化技术人员应熟知本规程,担负继电保护装置维护、检验的工作人员应熟悉本规程。 2 执行标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 2.1 GB 7261—2008 继电器及继电保护装置基本试验方法 2.2 GB 14285—2006 继电保护和安全自动装置技术规程 2.3 GB/T 15145—94 微机线路保护装置通用技术条件 2.4 GB 50171—92 电气装置安装工程盘、柜及二次回路结线施工及验收规范 2.5 DL/T 478—2001 静态继电保护及安全自动装置通用技术条件 2.6 DL/T 995-2006 继电保护和电网安全自动装置检验规程 2.7 DL/T 624—1997 继电保护微机型试验装置技术条件 2.8 国电调[2002]138号文《防止电力生产重大事故的二十五项重点要求》继电保护实施细则 2.9 国电发[2000]589号文《防止电力生产重大事故的二十五项重点要求》 2.10《国家电网公司十八项电网重大反事故措施》 3 发电机、变压器保护配置及技术参数

发电机、变压器保护试题范文

一、填空题 1、发电机在(定子绕组机端)发生单相接地时,机端零序电压为相电压,在(定子绕组中性点处)发生单相接地时,机端零序电压为零。 2、发电机单相接地时,较大的接地电流能在故障点引起电弧时,将使定子绕组的(绝缘和定子铁芯)烧坏,也容易发展成为危害更大的定子绕组相间或(匝间短路),因此,发电机应装设定子绕组单相接地保护。 3、利用基波零序电压的发电机定子单相接地保护不能作为(100%定子接地)保护,有死区。 4、发电机励磁回路接地保护,分为(一点接地)保护和(两点接地)保护。 5、当发电机带有不对称负荷或系统中发生不对称故障时,在定子绕组中将有(负序电流),在发电机中产生(反向)的旋转磁场,于是在转子中产生倍频电流,引起附加损耗,导致转子过热。 6、发电机在电力系统发生不对称短路时,在(转子)中就会感应出(100Hz)电流。 7、在变压器瓦斯保护中,轻瓦斯保护动作于(信号),重瓦斯保护动作于(跳闸)。 8、变压器中性点间隙接地的接地保护采用(零序电流继电器)与(零序电压继电器)并联方式构成,带有0.5s 的时限。 9、变压器复合电压起动的过电流保护,负序电压主要反应(不对称)短路故障,正序电压反应(对称)短路故障。 10、变压器充电时,励磁电流的大小与断路器合闸瞬间电压的相位角α有关,当(90α=?)时,不产生励磁涌流;当(0α=?)时,合闸磁通由零增至2m φ,励磁涌流最大。 二、选择题 1、发电机解列的含义是(B)。 A :断开发电机断路器、灭磁、甩负荷 B:断开发电机断路器、甩负荷 C:断开发电机断路器、灭磁 2、发电机出口发生三相短路时的输出功率为(C)。 A :额定功率 B :功率极限 C :零 3、发电机装设纵联差动保护,它作为(C)保护。 A :定子绕组的匝间短路 B :定子绕组的相间短路 C :定子绕组及其引出线的相间短路

变压器纵差保护与发电机纵差保护的区别

变压器纵差保护与发电机纵差保护的区别 变压器内部电气故障主要是:各侧绕组的匝间短路、中性点直接接地侧绕组的单相短路、内部引线和套管故障、各侧绕组相间短路。 发电机内部短路故障为:定子绕组不同相之间的相间短路、同相不同分支之间和同相同分支之间的匝间短路,兼顾定子绕组开焊故障,但不包括各种接地故障。 变压器纵差保护与发电机纵差保护一样,也可采用比率制动方式或标积制动方式达到外部短路不误动和内部短路灵敏动作的目的。 纵联差动保护(比率制动式纵差保护)是比较被保护设备各引出端电气量(例如电流)大小和相位的一种保护。 变压器纵差保护与发电机纵差保护的区别如下: 1、变压器各侧额定电压和额定电流各不相等,因此各侧电流互感器的型号一定不同,而且各侧三相接线方式不尽相同,所以各侧相电流的相位有也可能不一致,将使外部短路时不平衡电流增大,所以变压器纵差保护的最大系数比发电机的大,灵敏度相对来说要比较低。 2、变压器绕组常有调压分接头,有的还要求带负荷调节,使变压器纵差保护已调整平衡的二次电流又被破坏,不平衡电流增大,这样将使变压器纵差保护的最小动作电流和制动系数都要相应加大。 3、对于定子绕组的匝间短路,发电机纵差保护完全没有作用。变压器各侧绕组的匝间短路,通过变压器铁芯磁路的耦合,改变了各侧电流的大小和相位,使变压器纵差保护对匝间短路有作用。 4、无论变压器绕组还是发电机定子绕组的开焊故障,它们的完全纵差保护均不能起到保护作用而动作,但变压器还可以依靠瓦斯保护或压力保护。 5、变压器纵差保护范围除包括各侧绕组外,还包含变压器的铁心,即变压器纵差保护区内不仅有电路还有磁路,明显违反了纵差保护的理论基础(基尔霍夫电流定律)。而发电机的纵差保护对象内只有电路的联系,在没有故障时,不管外部发生什么故障,各相电流的矢量和总为零。 发电机纵差保护的工作原理是怎样的? 发电机纵差保护是根据差流法的原理来装设的。其原理接线图如下: 在发电机中性点侧与靠近发电机出口断路器QF处,装设性能、型号相同的两组电流互感器TA1、TA2,来比较定子绕组首尾端的电流值和相位,两组电流互感器,按环流法连接,差流回路接入电流继电器Ⅰ-Ⅰ. 在正常时,中性点与出口侧的电流数值和相位都相同,差流回路没有电流,继电器Ⅰ-Ⅰ不会动作。 在保护范围外发生短路故障,与正常运行时相似,差流回路也没有电流,保护也不会动。在保护范围内发生故障,流经电流继电器Ⅰ-Ⅰ的电流,为TA1、TA2电流互感器二次电流之差,继电器Ⅰ-Ⅰ启动,保护装置将动作。这就是发电机纵差保护的基本工作原理。 纵差保护2 变压器纵差保护是利用比较变压器两侧电流的幅值和相位的原理构成的。把变压器两侧的电流互感器按差接法接线,在正常运行和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作;在内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。 由此可见,变压器两侧电流互感器的接线正确与否,直接影响到纵差保护的动作可靠性。将

变压器保护 定值计算 算法

电力变压器保护--低电压起动的带时限过电流保护整定计算(1) 保护装置的动作电流(应躲过变压器额定电流) 输入参数: 参数名I1rT 参数值36.4 单位 A 描述变压器高压侧额定电流 参数名Kh 参数值 1.15 单位 描述继电器返回系数 参数名Kjx 参数值 1 单位 描述接线系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz.j=Kk*Kjx*(I1rT/(Kh*nl)) =1.3*1*(36.4/(1.15*20)) =2.057391 (2) 保护装置动作电压 输入参数: 参数名Kh 参数值 1.15 单位

描述继电器返回系数 参数名Kk 参数值 1.3 单位 描述可靠系数 参数名Umin 参数值18.2 单位V 描述运行中可能出现的最低工作电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Udz.j=Umin/(Kk*Kh*ny) =18.2/(1.3*1.15*20) =0.608696 (3) 保护装置一次动作电流 输入参数: 参数名Kjx 参数值 1 单位 描述接线系数 参数名nl 参数值20 单位 描述电流互感器变比 计算公式及结果: Idz=Idz.j*nl/Kjx =2.057391*20/1 =41.147826 (4)保护装置的灵敏系数(电流部分)与过电流保护相同

输入参数: 参数名I2k2.min 参数值659 单位 A 描述最小运行方式变压器低压侧两相短路,流过高压侧稳态电流 计算公式及结果: Klm=I2k2.min/Idz =659/41.147826 =16.015427 (5) 保护装置的灵敏系数(电压部分) 输入参数: 参数名Ush.max 参数值20 单位V 描述保护安装处的最大剩余电压 参数名ny 参数值20 单位 描述电压互感器变比 计算公式及结果: Klm=Udz.j*ny/Ush.max =0.608696*20/20 =0.608696 保护装置动作时限与过电流保护相同 电力变压器保护--低压侧单相接地保护(用高压侧三相式过电流保护)整定计算(1) 保护装置的动作电流和动作时限与过电流保护相同 输入参数: 参数名I1rT

发电机变压器保护的整定计算

现提供资料供大家参考。 第一章发电机变压器保护的整定计算 目前,国内对大型发电机变压器保护的整定计算,大多数参考或按照DL/T684-1999大型发电机变压器继电保护整定计算导则。 通过实践表明:大型发电机变压器继电保护整定计算导则的内容,基本上是正确的。但也存在一些不足,主要的不足之处是:可操作性差、说理性不强及灵活性差。 本章,将重点阐述某些发电机变压器保护的整定计算依据、整定计算方法以及如何灵活取值。第一节发电机及变压器差动保护的整定计算 一发电机纵差保护 目前,国内生产的微机型发电机差动保护,按照接入电流来分类有:完全纵差保护、不完全纵差保护;若按动作特性分类,则有比率制动式纵差保护、标积制动式纵差保护及故障分量比率制动式纵差保护。而应用最多的是比率制动式纵差保护,其次是标积制动式纵差保护。完全纵差和不完全纵差的区别,是接入发电机中性点的电流不同。完全纵差保护接入发电机中性点的全部电流,而不完全纵差保护则引入中性点的(n—每相定子绕组支路数)电流。因此,完全纵差和不完全纵差的实质不同处是:当不通过软件修正差动两侧的平衡系数时,前者两侧差动TA的型号、变比可完全相同,而后者两侧差动TA的型号、变比不可能完全相同。 完全纵差和不完全纵差的构成框图完全相同,均可采用具有比率制动特性的保护装置或具有标积制动特性的保护装置,还可以采用反应故障分量的比率制动式保护装置。 1 比率制动式发电机纵差保护 具有比率制动特性的差动保护,其动作特性如图7-1所示。 图7-1 差动保护的比率制动特性 由图7-1可以看出:具有比率制动特性的差动保护的动作特性,可由A、B、C三点决定。A点或B点的纵坐标电流Idzo为差动保护的初始动作电流。B点的横坐标电流Izdo称之为拐点电流,它等于差动保护开始出现制动作用的最小电流。直线BC与横坐标夹角α的正切(即tgα)称之为动作特性曲线的斜率,近似称之为比率制动系数Kz。 Idzo、Izdo及Kz为具有比率制动特性差动保护的三要素。对该型差动保护的整定计算,实

电力变压器的继电保护整定值计算

电力变压器的继电保护整定值计算 一.电力变压器的继电保护配置 注1:①当带时限的过电流保护不能满足灵敏性要求时,应采用低电压闭锁的 带时限的过电流保护。 ②当利用高压侧过电流保护及低压侧出线断路器保护不能满足灵敏性要求时,应装 设变压器中性线上的零序过电流保护。

③低压电压为230/400V的变压器,当低压侧出线断路器带有过负荷保护时,可不装 设专用的过负荷保护。 ④密闭油浸变压器装设压力保护。 ⑤干式变压器均应装设温度保护。 注2:电力变压器配置保护的说明 (1)配置保护变压器内部各种故障的瓦斯保护,其中轻瓦斯保护瞬时动作发出信号,重瓦斯保护瞬时动作发出跳闸脉冲跳开所连断路器。 (2)配置保护变压器绕组和引线多相短路故障及绕组匝间短路故障的纵联差动保护或者电流速断保护,瞬时动作跳开所连断路器。 (3)配置保护变压器外部相间短路故障引起的过电流保护或复合电压启动过电流保护。 (4)配置防止变压器长时间的过负荷保护,一般带时限动作发出信号。 (5)配置防止变压器温度升高或冷却系统故障的保护,一般根据变压器标准规定,动作后发出信号或作用于跳闸。 (6)对于110kV级以上中性点直接接地的电网,要根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护或零序电压保护,一般带时限动作 作用于跳闸。 注3:过流保护和速断保护的作用及范围 ①过流保护:可作为本线路的主保护或后备保护以及相邻线路的后备 保护。它是按照躲过最大负荷电流整定,动作时限按阶段原则选择。 ②速断保护:分为无时限和带时限两种。 a.无时限电流速断保护装置是按照故障电流整定的,线路有故障时,它能瞬时动作, 其保护范围不能超出本线路末端,因此只能保护线路的一部分。 b.带时限电流速断保护装置,当线路采用无时限保护没有保护范围时,为使线路全长 都能得到快速保护,常常采用略带时限的电流速断与下级无时限电流速断保护相配 合,其保护范围不仅包括整个线路,而且深入相邻线路的第一级保护区,但不保护 整个相邻线路,其动作时限比相邻线路的无时限速断保护大一个时间级。 二.电力变压器的继电保护整定值计算 ■计算公式中所涉及到的符号说明 在继电保护整定计算中,一般要考虑电力系统的最大与最小运行方式。 最大运行方式—是指在被保护对象末端短路时,系统等值阻抗最小,通过保护装置的 短路电流为最大的运行方式。 最小运行方式—是指在上述同样短路情况下,系统等值阻抗最大,通过保护装置的 短路电流为最小的运行方式。

发电机、变压器与母线保护

发电机、变压器与母线保护 编写李玉海

发电机保护 第一节基本概念 一发电机 发电机的作用是将汽轮机或水轮机输出的机械能变换成电能。 1 主要构成 发电机主要由定子和转子两部分构成。在定子与转子间留有适当的间隙,通常将该间隙称作为气隙。 极对数为1的三相交流同步发电机的结构示意图如图1所示。 在定子铁芯上设置有槽,每个定子槽分上槽和下槽,上槽及下槽中设置有定子绕组。每台发电机的定子绕组为三相对称式绕组,如图1中的a-x、b-y、c-z所示。所谓三相对称绕组是指三个绕组(即a-x、b-y、c-z)的匝数相等,其空间分布相对位置相距1200。在定子铁芯的上槽与下槽之间设置有屏蔽层。 在转子铁芯上也有槽,槽内设置有转子绕组(如图1中的W-j所示)。 图1 三相同步交流发电机结构示意图 为提高发电机的单机容量及降低铁芯及绕组的温度,各种发电机均设置有冷却系统。小型发电机一般采用空气冷却方式,也有采用氢冷式;对于大型汽轮发电机,通常采用水内冷及氢冷方式。 2 作用原理 在转子绕组中(图1中的W-j)通入直流,产生一恒定磁场(其两极极性分别为N-S)。发电机转子由汽轮机或水轮机拖着旋转,恒定磁场变成旋转磁场(通常称之气隙磁场)。转子旋转磁场切割定子绕组,必将在定子绕组产生感应电势。 由于转子磁场在气隙中按正弦分布,而转子以恒定速度旋转,从而使定子绕组中的感应电势按正弦波规律变化。 发电机并网运行时,定子绕组中出现感应电流,向系统输出电能。

3 发电机的额定转速 转子磁场旋转时,每转过一对磁极,定子绕组中的电势便历经一个周期。因此, 定子绕组中电势的频率可由每秒钟转过磁极的极对数来表示。设发电机的极对数(即 一个N、一个S)为P,每分钟的转速为n, 则频率 转速 (1) 汽轮发电机的极对数P=1,当电网的频率f=50赫时,n=3000转/分。对于水轮 发电机,其极对数较多,故允许其转速转低,当P=4时,水轮机的转速n=750转/分,当极对数P=24时,其转速为125转/分。 4 两种旋转磁场 (1)直流激磁旋转磁场 直流激磁旋转磁场,又叫机械旋转磁场。在同步发电机转子上装设有转子绕组, 通入直流后产生直流激磁的磁极,当转子旋转时,在气隙形成旋转磁场。该旋转磁场 与转子无相对运动。气隙旋转磁场的转速与转子的转速相同。发电机正常运行时,转 速为同步速。 (2)交流激磁的旋转磁场 发电机定子三相对称电流流过三相对称绕组时,将在气隙中产生旋转磁场。该旋 转磁场由三相交流产生,故称交流激磁的旋转磁场。 发电机正常运行时,两种旋转磁场的转速均等于同步速,它们之间无相对运动。 又因为转子的转速也等于同步速,因此,定子旋转磁场与转子之间无相对运动,而转 子磁场紧拉着定子旋转磁场转动。 5 发电机的冷却方式 根据冷却介质流通的路途,同步发电机的冷却方式,可分为外冷式及内冷式两种。 外冷式又称之表面冷却方式,其冷却介质有空气及氢气两种;内冷式称之直接冷 却方式,其冷却介质有氢气及水两种。 当采用水冷却方式时,绕组为空心铜制绕组,冷却水直接由绕组内流通。 目前,大型汽轮发电机定子绕组的冷却方式,多采用水冷方式。有些发电机的转 子绕组也采用水内冷方式。将转子绕组及定子绕组均由水内冷冷却的发电机,称之双 水内冷发电机。 6 并网运行汽轮发电机电势与端电压的关系

发电机变压器组高压断路器失灵保护分析实用版_1

YF-ED-J8308 可按资料类型定义编号 发电机变压器组高压断路器失灵保护分析实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

发电机变压器组高压断路器失灵 保护分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 近年来,多次发生由于发电机变压器组高 压侧断路器一相拉不开,高压侧单相电流通过 变压器耦合使发电机非全相运行,在发电机回 路产生较大的负序电流,造成发电机转子严重 烧坏的事故。为此,不管发电厂电气主接线采 用哪种形式,也不管发电机变压器组高压断路 器采用哪种类型,根据DL400-91《继电保护和 安全自动装置技术规程》的要求,按照发电机 变压器组保护双重化和近后备保护配置原则, 在大型单元机组发电机变压器组保护中均配置

了失灵保护。当发电机变压器组高压侧断路器非全相运行时,失灵保护动作,跳开母联(或分段)断路器及发电机变压器组高压侧断路器所连接母线上的所有元件或与之相关的元件,保护发电机的安全。 1发电机变压器组失灵保护存在的问题 1.1失灵保护的复合电压闭锁问题 早期的失灵保护装置回路没有复合电压闭锁,失灵保护经常误动。后经改造,在失灵保护回路加装了复合电压闭锁,但是随着机组单机容量的增大,负序电流对发电机转子的危害加剧,要求在发电机变压器组高压侧断路器非

发电机变压器组高压断路器失灵保护分析(最新版)

发电机变压器组高压断路器失灵保护分析(最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0207

发电机变压器组高压断路器失灵保护分析 (最新版) 近年来,多次发生由于发电机变压器组高压侧断路器一相拉不开,高压侧单相电流通过变压器耦合使发电机非全相运行,在发电机回路产生较大的负序电流,造成发电机转子严重烧坏的事故。为此,不管发电厂电气主接线采用哪种形式,也不管发电机变压器组高压断路器采用哪种类型,根据DL400-91《继电保护和安全自动装置技术规程》的要求,按照发电机变压器组保护双重化和近后备保护配置原则,在大型单元机组发电机变压器组保护中均配置了失灵保护。当发电机变压器组高压侧断路器非全相运行时,失灵保护动作,跳开母联(或分段)断路器及发电机变压器组高压侧断路器所连接母线上的所有元件或与之相关的元件,保护发电机的安全。

1发电机变压器组失灵保护存在的问题 1.1失灵保护的复合电压闭锁问题 早期的失灵保护装置回路没有复合电压闭锁,失灵保护经常误动。后经改造,在失灵保护回路加装了复合电压闭锁,但是随着机组单机容量的增大,负序电流对发电机转子的危害加剧,要求在发电机变压器组高压侧断路器非全相运行时,尽快解除复合电压闭锁,并且解除发电机变压器组失灵保护复合电压闭锁的逻辑关系要求。此项要求在新式的微机失灵保护装置中可以很容易满足,但在早期的失灵保护中很难满足,而对早期失灵保护的改造也确非易事。 1.2失灵保护装置启动判据及逻辑关系问题 早期的失灵保护装置启动判据是“断路器保护动作”和“相电流”组成的“与逻辑”,动作是经过一定延时后(时限大于断路器的跳闸时间与保护装置的返回时间之和再加裕度时间),以较短时间跳开母联(或分段)断路器,再经一时限跳开所连接母线上的所有有源元件或跳开与之相关的元件,而按照《“防止电力生产重大事故的25项重点要求”继电保护实施细则》(简称《继电保护细则》)的要求,

相关文档
相关文档 最新文档