文档库 最新最全的文档下载
当前位置:文档库 › 断路器的选型

断路器的选型

断路器的选型
断路器的选型

断路器的选型

1、一般选用原则

(1)根据用途选择断路器的型式及极数;

根据最大工作电流选择断路器的额定电流;根据需要选择脱扣器的类型、附件的种类和规格。具体要求是:

①断路器的额定工作电压≥线路额定电压;

②断路器的额定短路通断能力≥线路计算负载电流;

③断路器的额定短路通断能力≥线路中可能出现的最大短路电流(一般按有效值计算);

④线路末端单相对地短路电流≥1.25倍断路器瞬时(或短延时)脱扣整定电流;

⑤断路器欠压脱扣器额定电压等于线路额定电压;

⑥断路器的分励脱扣器额定电压等于控制电源电压;

⑦电动传动机构的额定工作电压等于控制电源电压;

⑧断路器用于照明电路时,电磁脱扣器的瞬时整定电流一般取负载电流的6倍。

(2)采取断路器作为单台电动机的短路保护时,瞬时脱扣器的整定电流为电动机启动电流的1. 35倍(DW系列断路器)或1.7倍(DZ系列断路器)。

(3)采用断路器作为多台电动机的短路保护时,瞬时脱扣器的整定电流为1.3倍最大一台电动机的启动电流再加上其余电动机的工作电流。

(4)采用断路器作为配电变压器低压侧总开关时,其分断能力应大于变压器低压侧的短路电流值,脱扣器的额定电流不应小于变压器的额定电流,短路保护的整定电流一般为变压器额定电流的6-10倍;过载保护的的整定电流等于变压器的额定电流。

(5)初步选定断路器的类型和等级后,还要与上、下级开关的保护特性进行配合,以免越级跳闸,扩大事故范围。

2、电动机保护用断路器的选用

电动机保护用断路器可分为两类:

一类是指断路器只作保护而不负担正常操作;另一类是指断路器需兼作保护和不频繁操作之用。后一类情况需考虑操作条件和电寿命。电动机保护用断路器的选用原则为:

(1) 长延时电流整定值等于电动机额定电流。

(2) 瞬时整定电流:对保护笼型电动机的断路器,瞬时整定电流等于(8-15)倍电动机额定电流,取决于被保护电动机的型号、容量和启动条件;对于保护绕线转子电动机的断路器,瞬时整定电流等于(3-6)倍电动机额定电流,取决于被保护绕线转子电动机的型号、容量和启动条件。

(3) 6倍长延时电流整定值的可返回时间大于等于电动机实际启动时间。按启动时负载的轻重,可选用可返回时间为1、3、5、8、15S中的某一档。

3、导线保护断路器的选用

照明、生活用导线保护断路器,是指在生活建筑中用来保护配电系统的断路器,选用时应考虑:

(1) 长延时整定值小于等于线路计算负载电流。

(2) 瞬时动作整定值等于(6-20)倍线路计算负载电流。

主题:IP防护等级介绍

IP防护等级说明(按照EN60529/IEC529)

防护等级IP54,IP为标记字母,数字5为第一标记数字,4为第二标记数字第一标记数字表示接触保护和外来物保护等级,第二标记数字表示防水保护等级;

接触保护和外来物保护等级(第一个数字) 防水保护等级( 第二个数字)

第一个数字

防护范围

防护范围

名称说明名称说明

0 无防护- 0

无防护

-

1 防护50mm直径和更大的

固体外来体

探测器,球体直径为50mm,不应完全进

1 水滴防护

垂直落下的水滴不应

引起损害

2 防护12.5mm直径和更大

的固体外来体

探测器,球体直径为12.5mm,不应完全

进入

2

柜体倾斜15度时,

防护水滴

柜体向任何一侧倾斜

15度角时,垂直落下

的水滴不应引起损害

3 防护2.5mm直径和更大

的固体外来体

探测器,球体直径为2.5mm,不应完全进

3 防护溅出的水

以60度角从垂直线两

侧溅出的水不应引起

损害

4 防护1.0mm直径和更大

的固体外来体

探测器,球体直径为1.0mm,不应完全进

4 防护喷水

从每个方向对准柜体

的喷水都不应引起损

5 防护灰尘不可能完全阻止灰尘进入,但灰尘进入的

数量不会对设备造成伤害

5 防护射水

从每个方向对准柜体

的射水都不应引起损

6 灰尘封闭柜体内在20毫巴的低压时不应进入灰尘 6 防护强射水从每个方向对准柜体的强射水都不应引起损害

注:探测器的直径不应穿过柜体的孔7 防护短时浸水

柜体在标准压力下短

时浸入水中时,不应有

能引起损害的水量浸

8 防护长期浸水

可以在特定的条件下

浸入水中,不应有能引

起损害的水量浸

1、范围

防水试验包括第二位特征数字为1至8,即防护等级代码为IPX1至IPX8。

2、各种等级的防水试验内容

(1)IPX1

方法名称:垂直滴水试验

试验设备:滴水试验装置及其试验方法见2.11

试样放置:按试样正常工作位置摆放在以1r/min的旋转样品台上,样品顶部至滴水口的距离不大于

200mm

试验条件:滴水量为1 0.5 mm/min;

试验持续时间:10 min;

(2)IPX2

方法名称:倾斜15°滴水试验

试验设备:滴水试验装置及其试验方法见2.11

试样放置:使试样的一个面与垂线成15°角,样品顶部至滴水口的距离不大于200mm。每试完一个面后,换另一个.....面,共四次。

试验条件:滴水量为3 0.5 mm/min;

试验持续时间:4×2.5 min(共10 min);

(3)IPX3

方法名称:淋水试验

试验方法:

a.摆管式淋水试验

试验设备:摆管式淋水溅水试验装置(装置图形及其试验方法见本书2.14)

试样放置:选择适当半径的摆管,使样品台面高度处于摆管直径位置上,将试样放在样台上,使其顶部到样品喷水口的距离不大于200mm,样品台不旋转。

试验条件:水流量按摆管的喷水孔数计算,每孔为0.07 L/min。淋水时,摆管中点两边各60°弧段内的喷水孔的喷水喷向样品。被试样品放在摆管半圆中心。摆管沿垂线两边各摆动60°,共120°。每次摆动

(2×120°)约4s 。

试验时间:连续淋水10 min 。

b.喷头式淋水试验

试验设备:手持式淋水溅水试验装置,装置图形及其试验方法见本书2.14

试样放置:使试验顶部到手持喷头喷水口的平行距离在300mm至500mm之间

试验条件:试验时应安装带平衡重物的挡板,水流量为10 L/min

试验时间:按被检样品外壳表面积计算,每平方米为1 min (不包括安装面积),最少5 min 。

(4)IPX4

方法名称:溅水试验;

试验方法:

a.摆管式溅水试验

试验设备和试样放置:与上述第(3)条IPX3 之a 款均相同;

试验条件: 除下述条件外,与上述第(3)条IPX3 之a 款均相同;

喷水面积为摆管中点两边各90°弧段内喷水孔的喷水喷向样品。被试样品放在摆管半圆中心。摆管沿垂两边各摆动180°,共约360°。每次摆动(2×360°) 约12s 。

试验时间:与上述第(3)条IPX3 之a 款均相同(即10 min )。

b.喷头式溅水试验

试验设备和试样放置:设备上安装带平衡重物的挡板应拆去,其余与上述第(3)条IPX3 之b款均相同;

试验条件:除下述条件外,与上述第(3)条IPX3 之b款均相同;

试验时间:与上述第(3)条IPX3 之b款均相同,即按被检样品外壳表面积计算,每平方米为1min(不包括安装面积)最少5min 。

(5)IPX5

方法名称:喷水试验

试验设备:喷嘴的喷水口内径为6.3mm;装置图形及其试验方法见本书2.14

试验条件:使试验样品至喷水口相距为2.5~3m,水流量为12.5 L/min (750 L/h);

试验时间:按被检样品外壳表面积计算,每平方米为1min(不包括安装面积)最少3 min 。(6)IPX6

方法名称:强烈喷水试验;

试验设备:喷嘴的喷水口内径为12.5 mm;装置图形及其试验方法见本书第2.14章;

试验条件:使试验样品至喷水口相距为2.5~3m,水流量为100 L/min (6000 L/h);

试验时间:按被检样品外壳表面积计算,每平方米为1min(不包括安装面积)最少3 min 。

方法名称:短时浸水试验;

试验设备和试验条件:浸水箱。其尺寸应使试样放进浸水箱后,样品底部到水面的距离至少为1m 。试样顶部到水面距离至少为0.15 m 。

试验时间: 30 min 。

方法名称: 持续潜水试验;

试验设备,试验条件和试验时间: 由供需(买卖)双方商定.其严酷程度应比IPX7高。

主题:关于低压电器几个电参数含义的辨证

近些年来,随着社会主义市场经济的深化,产品的竞争也日益激烈。有些电器制造商为了推广推销产品,在其样本或产品使用说明书上任意规定了一些不符合科学和标准的拟事而非的技术性能参数,从而引起混乱。考其原因,一是对那些参数的含义没有真正的理解;二是参数含义清楚,但为了让用户觉得自己的产品较别家优越,有意模糊概念拨高提级,不论是那一种情况,都是不严肃、不负责任的。为了澄清问题,我们将按国家、国际现行标准来表述电参数的含义,以便正本清源。

1额定工作电压

《电工术语低压电器》(GB/T2900.18-92)对“额定工作电压”的定义是:“在规定条件下,保证电器正常工作的工作电压值。”我国和世界30多个国家的额定工作电压是交流50Hz 220/380V,英国、澳大利亚等10多个国家是交流50Hz 240/415V,孟加拉、印度、马来西亚、巴基斯坦、新加坡、等国是交流50Hz 2 30/400V。此次还有127/220V等等。IEC出版物38,鉴于电压种类太多,影响贸易和交流,建议今后各国统一采用230/400V的标准化电压(分子为相电压,分母为线电压),但这种改革涉及面极大,是一个浩瀚的工程体系,因此目前世界各国仍沿用原来的电压系统。我国既然是220/380V就不可能出现400V的工作电压。但是有不少厂商的短路器样本里,它的短路分断能力栏赫然标志着额定电压为400V,在短路分断电

流一样的情况下,让用户以为它比380V的高(倘单从数字看,400V比380V自然高好多)。这种拨高工作电压的行为如果不是有意混淆,则是一种认识上的误解。断路器在进行短路分断试验和过载操作性能试验时,都规定,其试验电压为1.05Ue,有人据此理解为1.05X380=400V。其实这里的1.05倍Ue是工频恢复电压(稳态恢复电压)。GB/T14048.1对试验参数的规定,电压Ue的公差是+5%,即电网电压的波动可以是0~5%的范围,就是380~400V,而工频恢复电压是1.05倍Ue,Ue包括这个波动范围(最大为上限值)。

另一种误解是,一般至用户的变压器是10/0.4KV的低压比,即变压器的原边电压是10KV,而副边(至用户)是0.4KV,即400V,因此其断路器产品的额定电压定为400V。这是谬误的。副边的400V是变压器的空载电压。计算负载电压时要考虑副边绕组内部的电压降,约5%的电压值。因此0.4的实际负载电压是380V。对变压器(或发电机)而言,可用空载电压来表示它的额定电压,而电器设备(包括开关电器)的额定电压,正确的理解和实际上的性能考核只能是负载电压。

GB156-93《标准电压》中对三相四线系统或交流系统标准电压设及电气备额定电压规定为:220V、3 80V、660V……。标准对发电机的额定电压也作了规定,它们是:230V、400V、690V……。标准还规定:“与发电机出线端配套的电气设备,额定电压可采用发电机的额定电压,在产品标准中具体规定。”而我国的断路器目前似乎还没有能与发电机(或变压器)出线端配套的。

综上所述,所谓产品的额定电压是400V或690V都是不正确的提法。

2关于额定绝缘电压

GB/T1900.18对额定绝缘电压的定义是:“在规定条件下,用来度量电器及其部件的不同电位部分的绝缘强度,电气间隙和爬电距离的标准电压值。除非另有规定,比值为电器的最大额定工作电压。” 等效采用IEC947-1(1998年第1版)的GB/T14048.1《低压开关设备与控制设备总则》强调系统的绝缘配合,因此电器用于电源系统的条件为:

电器的额定绝缘电压应高于或等于电源系统的额定电压。从标准的规定衡量,一个电器产品如果有多种工作电压值,如380V(绝大多数产品的电压等级)和660V(常用于矿山),则其额定绝缘电压可定为660V。额定绝缘电压标定后,在按产品适用的污染等级(断路器一般为3级)及其绝缘零部件的CTI值(相比漏电器痕指数)(此CTI值确定了绝缘材料的组别,分为I、II、IIIa、IIIb四种),来确定产品的最小爬电距离。例如,额定绝缘电压为660V,污染等级3,材料组别为IIIa、IIIb,承受长期电压的电器的最小爬电距离为10mm。电器产品可以以此值来设计其各绝缘件的爬电距离,而不需要任意地去提高它的额定绝缘电压。现在有些断路器生产厂家,为了提高竞争力,就称自己的额定绝缘电压是800V,比人家的660V高一个等级,而它的断路器额定最高也就是660V,完全没有必要比拔高。而且有两点是不能忽视的,一是额定绝缘电压一高,爬电距离就要求加大,如果污染等级,绝缘材料的组别都不变,Ui(额定绝缘电压)为800V时,最小爬电距离应是12.5mm,比Ui=660V时加大2.5mm;二是按断路器的产品标准要求,在进行过载操作性能实验和短路分断能力实验后,均需进行耐压(工频耐压)验证,施加的电压为2倍额定绝缘电压,对Ui=660V者,耐压1320V,对Ui=800V者,耐压值要提高到1600V,实际上是加大了负担。但最重要的还是定期实验工频面压值,Ui=660V耐压值为2500V,1min,Ui=800V时,耐压值为3000V。因此那种毫无意义的炫示,实事求是地说是自己给自己添麻烦。

GB/T14048.1规定:“对预期用于因绝缘故障必须重视严重后果的场所(如安装类别VI或用于大容量供

电系统或要求具有隔离功能)的电器,应采用高于额定绝缘电压的电压等级的爬电距离;建议额定绝缘电压一般提高R10优先系数中二个电压的等级及以上。”R10优先系数是1.25。660V上面第一个电压是800V,第二个电压是1000V。按上面的规定,应取1000V,与660V相同的污染等级及材料组别,它的爬电距离应不小于16mm,但是由于塑壳断路器为非选择型保护(无三段保护),加上它们的额定电流一般在800A及以下,它们不适合于安装类别IV(电源水平级)及大容量供电系统,可见取Ui大于660V是没有什么实用意义而是徒增浪费和麻烦而已。

3关于辅助触头的工作电流

作辅助触头(或称辅助开关)的微动开关,它有两个电流参数,一是约定发热电流,一是工作电流。

工作电流有多种,而约定发热电源只有一个。GB/T2900.18对约定发热电源电流的定义是:“在规定条件下实验时,开关电器在8h工作制下,各部件的温升不超过极限值时所能承载的最大电流。”而它的工作电流则由它所控制的电磁铁在闭合状态下的负载功能来决定。因此约定发热电流和工作电流是两个不同的概念。

GN14048.5-93《低压开关设备和控制设备控制电路电器和开关元件第一部分机电式控制电路电器》的附录C“某些使用类别的辅助触头名义额定值举例”中,列出目前使用较多的AC-15和DC-13的动作电流,AC-15类别中,辅助触头的Ith=2.5A时,控制电磁铁闭合状态下的功率(容量)为180VA;

Ith=5A,控制功率为360VA,Ith=10A,控制功率为720VA;DC-13(直流)Ith=1A,控制功率为28W,Ith=2.5A,控制功率为69W,Ith=5A,控制功率为138W,Ith=10A,控制功率为275W。根据所控制的电磁铁负载功率,和微动开关(辅助触头)的电压值,就可算出它的工作电流,例如Ith=3A,可参照Ith=2.5A的控制功率,为AC-15时,控制功率为180VA(符合AC-15用于控制大于72VA的交流电磁铁负载的规定),180VA/380V=0.47A,180VA/220V=0.81A,就是辅助触头在380V和220V电压下的动作电流Ie;再如DC-13(控制直流电磁铁),Ith=2.5A,控制电磁铁的容量(功率)为69W,

69W/220V=0.31A,69W/110V=0.63A,就是辅助触头在220V和110V下的工作电流,确定辅助触头的工作电流是很重要的,因为辅助触头的通电操作性能实验,非正常接通与分断能力实验都与Ie 的数值有关的Ie取大或取小都不符合产品的要求。

查阅一下国内市场仍占相当比例的某中塑壳式断路器和另两种万能式断路器的1997年行业标准修订版,就发现对辅助触头的额定工作电流的规定很是混乱,也不符合国家的大类标准。如某断路器规定Ith分别为1A、3A、6A。而在AC380V时工作电流Ie分别为0.3A、0.4A和3A(它们都是AC-15类别),控制的交流电磁铁在闭合状态的功率,按计算分别为114VA、152VA和1140VA;在DC220V,Ie分别为0.15A、0.15A和0.2A,则直流电磁铁的功率分别为33W、33W和66W。显然是不符合GB14048.5标准的规定。另两个万能式断路器则通过规定,交流电磁铁功率为300VA,直流电磁铁功率为60W,这是沿用老标准AC-11和DC-11的,但是AC-11和DC-11早在1993年就命令取消,再去套用是没道理的。

以上3点质疑未必完全正确,希望得到专家的指正。

主题:低压成套开关设备的绝缘配合问题

低压成套开关设备的绝缘配合问题

摘要:1987年,国际电工委员会(IEC)第17D分技术委员会起草了名为《对IEC439的补充1关于绝缘配合的要求》的技术文件,正式将绝缘配合问题引入到了低压成套开关设备和控制设备中。就目前我国的实际情况而言,在高、低压电器产品中,设备的绝缘配合仍是一个较大的问题,又由于在低压成套开关设备和控制设备中正式引用绝缘配合这个概念,只是近两年的事情。所以,正确处理、解决好产品中绝缘配合问题,是一个比较重要的问题。

关键词:低压开关设备绝缘配合绝缘材料

一.低压成套开关设备绝缘配合问题的提出

绝缘配合问题是一个关系到电气设备产品安全性的重要问题,历来受到来自各方面的重视。绝缘配合最早应用在高压电器产品中。1987年,国际电工委员会(IEC)第17D分技术委员会起草了名为《对IE C439的补充1关于绝缘配合的要求》的技术文件,正式将绝缘配合问题引入到了低压成套开关设备和控制设备中。就目前我国的实际情况而言,在高、低压电器产品中,设备的绝缘配合仍是一个较大的问题,有统计数字显示,我国的电器产品中,由于绝缘系统而引发的事故占50%-60%,又由于在低压成套开关设备和控制设备中正式引用绝缘配合这个概念,只是近两年的事情。所以,正确处理、解决好产品中绝缘配合问题,是一个比较重要的问题。

二.绝缘配合的基本原理

绝缘配合意指根据设备的使用条件及周围环境来选择设备的电气绝缘特性,只有在设备的设计基于其期望寿命中所承受的作用强度时,才能实现绝缘配合。绝缘配合的问题不仅来自设备外部而且还来自设备本身,是一个涉及各方面因素,须加以综合考虑的问题,其要点分为三部分:一是设备的使用条件;二是设备的使用环境,三是绝缘材料的选用。

(一)设备的使用条件

设备的使用条件主要指设备使用的电压、电场、频率。

1.绝缘配合与电压的关系。在考虑绝缘配合与电压的关系中,要考虑在系统中可能出现的电压、设备产

生的电压,要求的持续电压运行等级,以及人身安全、事故的危险性。

1电压与过电压的分类,波形。

a)持续工频电压,有着恒定r、m、s的电压

b)暂时过电压,较长持续时间的工频过电压

c)瞬态过电压,几毫秒或更短的持续时间的过电压,通常是高阻尼的振荡或非振荡的。

——缓波前过电压:一种瞬态过电压,通常是单方向的,到达峰值的时间为20μs

——快波前过电压:一种瞬态过电压,通常是单方向的,到达峰值时间为0.1μs

——陡波前过电压:一种瞬态过电压,通常是单方向的,到达峰值的时间为Tf≤0.1μs,总持续时间<3ms,并带有叠加振荡,振荡频率地30kHz

d)联合(暂时、缓前波、快波前、陡波前)过电压。

根据上述的过电压类型,可描述出标准的电压波形。

2长期的交流或直流电压与绝缘配合的关系,要考虑额定电压、额定绝缘电压、实际工作电压。在系统正常、长期运行过程中,主要要考虑额定的绝缘电压和实际工作电压,而这一点除了要满足标准的要求外,更要注意考虑我国电网的实际情况。在目前我国电网质量尚不高的情况下,设计产品时,对绝缘配合而言,实际可能出现的工作电压更重要。

3瞬态过电压与绝缘配合的关系,这与电气系统内被控过电压的条件有关。在系统和设备中,存在多种形式的过电压,要全面考虑各种过电压的影响,在低压电力系统中,过电压可能会受到各种多变因素的影

响,所以,系统中的过电压的是通过统计的方法来评定,反映了一种发生概率的概念,并可通过概率统计的方法来决定是否需要保护控制。

2.设备的过电压类别

根据设备的使用条件,要求的长期持续电压运行等级,将直接由低压电网供电设备的过电压类别分为Ⅳ级。过电压类别Ⅳ级的设备是使用在配电装置电源端的设备,如电表和前级电流保护设备。过电压类别Ⅲ级的设备是安装在配电装置中的任务,以及设备的使用安全性和适用性必须符合特殊要求者,如配电装置中的开关电器。过电压类别Ⅱ级的设备是由配电装置供电的耗能设备,如家用和类似用途的负载。过电压类别Ⅰ级的设备是连接在将瞬态过电压限制在相当低水平的设备,如具有过压保护的电子电路上。对于不直接由低压电网供电的设备,必须考虑到系统设备可能出现的最高电压及各种情况的严重组合。

当设备要工作在较高一级别过电压类别的场合,而设备本身的允许过电压类别不够时,就需要采取措施,降低该处的过电压,可采用以下方法。

a)过电压保护器件

b)具有隔离绕组的变压器

c)具有分散转移浪通过电压能量的多分支电路配电系统

d)能吸收浪涌过电压能量的电容

e)能吸收浪涌过电压能量的阻尼器件

3.电场与频率

电场情况分为均匀电场与非均匀电场,在低压成套开关设备中,一般认为是处在非均匀电场情况下,关于频率问题,目前尚在考虑中,一般认为低频对绝缘配合影响不大,但高频还是有影响的,尤其是对绝缘材料。

(二)绝缘配合与环境条件的关系

设备所处的宏观环境影响着绝缘配合,从目前实际应用与标准的要求来看,气压的变化只考虑到海拔高度引起的气压的变化,日常的气压变化已经忽略,温度与湿度的因素也已忽略,但如果有更精确的要求时,这些因素也还是应予以考虑。从微观环境上讲,宏观环境决定了微观环境,但微观环境有可能会好于或坏于宏观环境设备,外壳不同的防护等级、加热、通风、灰尘都有可能影响微观环境,微观环境在相关标准有明确规定,见表1,这就为产品的设计提供了依据。

(三)绝缘配合与绝缘材料

绝缘材料的问题相当复杂,它不同于气体,是一种一旦遭到破坏便不可恢复的绝缘介质,即使偶然发生的过电压事件也有可能造成永久损坏,绝缘材料在长期的使用中,会遇到各种各样情况,如放电事故等,而绝缘材料本身由于长期积累的各种因素,如热应力、温度,机械冲击等应力,又会加速它的老化过程。对于绝缘材料来讲,由于品种的多样性,其衡量绝缘材料的特性指标虽多,但不统一。这就为绝缘材料的选择和使用带来一定难度,这也就是目前从国际上对绝缘材料的其它特性,如热应力、机械特性、局部放电等指标暂不予以考虑的原因。上述应力对绝缘材料的影响在IEC的出版物中已开始有了一些论述,对实际应用能起一些定性的指导作用,但就定量的指导,目前还做不到。目前,低压电器产品中作为定量指导绝缘材料的指标用的较多的有相比漏电起痕指数CTI值,分为三组四类,耐漏电起痕指数PTI值。漏电起痕指数以通过含水污染的液滴落至绝缘材料表面而形成漏电痕迹,给出定量的比较。

这一定量指标已实际应用到产品的设计中。

三.绝缘配合的验证

目前验证绝缘配合的优选方法是使用冲击介电试验来进行,对于不同设备可选定不同额定冲击电压值。

1.用额定冲击电压试验验证设备的绝缘配合

额定冲击电压的为1.2/50μs的波形。

用此波形来模拟瞬态过电压、大气过电压,同时也包括低压设备的接通分断所产生的过电压,冲击试验电源脉冲波形发生器其输出阻抗一般应大于500Ω,额定冲击电压值的确定,应根据设备的使用场合,过电压类别和设备的长期使用电压来决定,并应根据相应的海拔高度进行修正。目前低压成套开关设备对某些试验条件。如湿度、温度没有作出明确的规定,但也应该在成套开关设备标准适用范围内,如设备的使用环境超出了成套开关设备的适用范围,则必须予以考虑修正。

气压与温度的修正关系如下式:

K=P/101.3×293(ΔT+293)

K—气压与温度的修正参数

ΔT—实际(试验室)温度与T=20℃的温差K

P—实际气压kPa

2.替代冲击电压的介电试验

对于低压成套开关设备可以用交流或直流试验来替代冲击电压试验,但是这类试验方法比冲击电压试验要严酷,应征得制造厂的同意。

交流试验,在交流情况下,持续时间为3个周波。

直流试验,每相(正、负极)各施加电压三次,每次持续时间为10ms。

四.绝缘配合的一般程序。

1.典型过电压的确定。

2.配合耐受电压的确定。

3.额定绝缘水平的确定。

主题:电气知识问答总结

41、各类稳定的具体含义是什么?

答: (1).电力系统的静态稳定是指电力系统受到小干扰后不发生非周期性失步,自动恢复到起始运行状态。

(2).电力系统的暂态稳定是指系统在某种运行方式下突然受到大的扰动后,经过一个机电暂态过程达

到新的稳定运行状态或回到原来的稳定状态。

(3).电力系统的动态稳定是指电力系统受到干扰后不发生振幅不断增大的振荡而失步。主要有:电力系统的低频振荡、机电耦合的次同步振荡、同步电机的自激等。

(4).电力系统的电压稳定是指电力系统维持负荷电压于某一规定的运行极限之内的能力。它与电力系统中的电源配置、网络结构及运行方式、负荷特性等因素有关。当发生电压不稳定时,将导致电压崩溃,造成大面积停电。

(5).频率稳定是指电力系统维持系统频率与某一规定的运行极限内的能力。当频率低于某一临界频率,电源与负荷的平衡将遭到彻底破坏,一些机组相继退出运行,造成大面积停电,也就是频率崩溃。

42、保证和提高电力系统静态稳定的措施有哪些?

答:电力系统的静态稳定性是电力系统正常运行时的稳定性,电力系统静态稳定性的基本性质说明,静态储

备越大则静态稳定性越高。提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。主要措施有: (1)、减少系统各元件的电抗:减小发电机和变压器的电抗,减少线路电抗(采用分裂导线); (2)、提高系统电压水平; (3)、改善电力系统的结构; (4)、采用串联电容器补偿; (5)、采用自动调节装置; (6)、采用直流输电。在电力系统正常运行中,维持和控制母线电压是调度部门保证电力系统稳定运行的主要和日常工作。维持、控制变电站、发电厂高压母线电压恒定,特别是枢纽厂(站)高压母线电压恒定,相当于输电系统等值分割为若干段,这样每段电气距离将远小于整个输电系统的电气距离,从而保证和提高了电力系统的稳定性。

43、提高电力系统的暂态稳定性的措施有哪些?

答:提高静态稳定性的措施也可以提高暂态稳定性,不过提高暂态稳定性的措施比提高静态稳定性的措施更多。提高暂态稳定性的措施可分成三大类:一是缩短电气距离,使系统在电气结构上更加紧密;二是减小机械与电磁、负荷与电源的功率或能量的差额并使之达到新的平衡;三是稳定破坏时,为了限制事故进一步扩大而必须采取的措施,如系统解列。提高暂态稳定的具体措施有: (1)、继电保护实现快速切除故障; (2)、线路采用自动重合闸; (3)、采用快速励磁系统; (4)、发电机增加强励倍数; (5)、汽轮机快速关闭汽门; (6)、发电机电气制动; (7)、变压器中性点经小电阻接地; (8)、长线路中间设置开关站; (9)、线路采用强行串联电容器补偿; (10)、采用发电机-线路单元结线方式; (11)、实现连锁切机; (12)、采用静止无功补偿装置; (13)、系统设置解列点; (14)、系统稳定破坏后,必要且条件许可时,可以让发电机短期异步运行,

尽快投入系统备用电源,然后增加励磁,实现机组再同步。

44、引起电力系统异步振荡的主要原因是什么?系统振荡时一般现象是什么?

答:引起系统异步振荡的主要原因为: 1) 输电线路输送功率超过极限值造成静态稳定破坏; 2) 电网发生

短路故障,切除大容量的发电、输电或变电设备,负荷瞬间发生较大突变等造成电力系统暂态稳定破坏; 3) 环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步; 4) 大

容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳

定破坏; 5) 电源间非同步合闸未能拖入同步。系统振荡时一般现象: 1)发电机,变压器,线路的电压表,

电流表及功率表周期性的剧烈摆动,发电机和变压器发出有节奏的轰鸣声。 2)连接失去同步的发电机或系

统的联络线上的电流表和功率表摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零值一次。随着离振荡中心距离的增加,电压波动逐渐减少。如果联络线的阻抗较大,两侧电厂的电容也很大,则线路两端的电压振荡是较小的。 3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。

45、低频率运行会给电力系统带来哪些危害?

答:电力系统低频运行是非常危险的,因为电源与负荷在低频率下重新平衡很不牢固,也就是说稳定性很差,甚至产生频率崩溃,会严重威胁电网的安全运行,并对发电设备和用户造成严重损坏,主要表现为以下几方面:

1)引起汽轮机叶片断裂。在运行中,汽轮机叶片由于受不均匀汽流冲击而发生振动。在正常频率运行情况下,汽轮机叶片不发生共振。当低频率运行时,末级叶片可能发生共振或接近于共振,从而使叶片振动应力大大增加,如时间过长,叶片可能损伤甚至断裂。

2)使发电机出力降低,频率降低,转速下降,发电机两端的风扇鼓进的风量减小,冷却条件变坏,如果仍维持出力不变,则发电机的温度升高,可能超过绝缘材料的温度允许值,为了使温升不超过允许值,势必要降低发电机出力。

3)使发电机机端电压下降。因为频率下降时,会引起机内电势下降而导致电压降低,同时,由于频率降低,使发电机转速降低,同轴励磁电流减小,使发电机的机端电压进一步下降。

4)对厂用电安全运行的影响。当低频运行时,所有厂用交流电动机的转速都相应的下降,因而火电厂的给水泵、风机、磨煤机等辅助设备的出力也将下降,从而影响电厂的出力。其中影响最大的是高压给水泵和磨煤机,由于出力的下降,使电网有功电源更加缺乏,致使频率进一步下降,造成恶性循环。

5)对用户的危害:频率下降,将使用户的电动机转速下降,出力降低,从而影响用户产品的质量和产量。另外,频率下降,将引起电钟不准,电气测量仪器误差增大,安全自动装置及继电保护误动作等。

46、在电力系统中电抗器的作用有那些?

答:电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220k V、110kV、35 kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括: 1) 轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。 2) 改善长输电线路上的电压分布。

3) 使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。 4) 在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。 5) 防止发电机带长线路可能出现的自励磁谐振现象。 6) 当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。

47、什么叫谐振过电压?分几种类型?如何防范?

答:电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。谐振过电压分为以下几种:

(1) 线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 (2) 铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,

使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 (3) 参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd ~ Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。

限制谐振过电压的主要措施有: (1) 提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 (2) 在并联高压电抗器中性点加装小电抗

用这个措施可以阻断非全相运行时工频电压传递及串联谐振。 (3) 破坏发电机产生自励磁的条件,防止参数谐振过电压。

48、什么叫标幺值和有名值?采用标幺值进行电力系统计算有什么优点?采用标幺值计算时基值体系如何选取?

答:有名值是电力系统各物理量及参数的带量纲的数值。标幺值是各物理量及参数的相对值,是不带量纲的数值。标幺值是相对某一基值而言的,同一有名值,当基值选取不一样时,其标幺值也不一样,它们的关系如下:标么值=有名值/基值。电力系统由许多发电机、变压器、线路、负荷等元件组成,它们分别接入不同电压等级的网络中,当用有名值进行潮流及短路计算时,各元件接入点的物理量及参数必须折算成计算点的有名值进行计算,很不方便,也不便于对计算结果进行分析。采用标幺值进行计算时,则不论各元件及计算点位于哪一电压等级的网络中,均可将它们的物理量与参数标幺值直接用来计算。计算结果也可直接进行分析。当某些变压器的变比不是标准值时,只须对变压器等值电路参数进行修正,不影响计算结果按基值体系的基值电压传递到各电压等级进行有名值的换算。基值体系中只有两个独立的基值量,一个为基值功率,一般取容易记忆及换算的数值,如取100MW、1000MW等,或取该计算网络中某一些发电元件的额定功率。另一个为基值电压,取各级电压的标称值。标称值可以是额定值的1.0、1.05或1.10倍。如取500/330/220 /110kV或525/346.5/231/115.5kV或550/363/242/121kV,其它基值量(电流、阻抗等)可由以上两个基值量算出。

49、潮流计算的目的是什么?常用的计算方法有几种?快速分解法的特点及适用条件是什么?

答:潮流计算有以下几个目的: (1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平年的大、小方式下潮流交换控制、调峰、调相、调压的要求。 (2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。 (3)正常检修及特殊运行方式下的潮流计算,用于日运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。 (4)预想事故、设备退出运行对静态安全的影响分析及作出预想的运行方式调整方案。常用的潮流计算方法有:牛顿-拉夫逊法及快速分解法。快速分解法有两个主要特点: (1)降阶在潮流计算的修正方程中利用了有功功率主要与节点电压相位有关,无功功率主要与节点电压幅值有关的特点,实现P-Q分解,使系数矩阵由原来的2N×2N 阶降为N×N阶,N为系统的节点数(不包括缓冲节点)。 (2)因子表固定化利用了线路两端电压相位差不大的假定,使修正方程系数矩阵元素变为常数,并且就是节点导纳的虚部。由于以上两个特点,使快速分解法每一次迭代的计算量比牛顿法大大减少。快速分解法只具有一次收敛性,因此要求的迭代次数比牛顿法多,但总体上快速分解法的计算速度仍比牛顿法快。快速分解法只适用于高压网的潮流计算,对中、低压网,因线路电阻与电抗的比值大,线路两端电压相位差不大的假定已不成立,用快速分解法计算,会出现不收敛问题。

主题:无功电容补偿在低压配电系统中的应用

随着国家经济的发展和人民生活水平的提高,大量的居住楼盘、高档商场、宾馆、办公楼等民用建筑在城市中拔地而起,使城市用电量快速增长。但是,在这些民用建筑场所内使用的多为单相电感性负荷,因其自身功率因数较低,在电网中滞后无功功率的比重较大。为保证降低电网中的无功功率,提高功率因数,保证有功功率的充分利用,提高系统的供电效率和电压质量,减少线路损耗,降低配电线路的成本,节约电能,通常在低压供配电系统中装设电容器无功补偿装置。本文主要通过设计工作中所遇到的具体工程对无功自动补偿的方式和安装位置作出了分析和比较。

1分相自动补偿的必要性

无功自动补偿按性质分为三相电容自动补偿和分相电容自动补偿。

三相电容自动补偿适用于三相负载平衡的供配电系统。因三相回路平衡,回路中无功电流相同,所以在补偿时,调节无功功率参数的信号取自三相中的任意一相,根据检测结果,三相同时投切可保证三相电压的质量。三相电容自动补偿适用于有大量的三相用电设备的厂矿企业中。

在民用建筑中大量使用的是单相负荷,照明、空调等由于负荷变化的随机性大,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。由于调节补偿无功功率的采样信号取自三相中的任意一相,造成未检测的两相要么过补偿,要么欠补偿。如果过补偿,则过补偿相的电压升高,造成控制、保护元件等用电设备因过电压而损坏;如果欠补偿,则补偿相的回路电流增大,线路及断路器等设备由于电流的增加而导致发热被烧坏。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。

据有关资料介绍,某地综合楼是集商场、银行、办公、车库、宾馆为一体的一类高层建筑,总建筑面积3.2万m2。主要用电设备有空调机组、水泵、风机及照明灯具等,其中照明灯具均为单相负荷,功率因数在0.45~0.75之间。低压有功计算负荷2815kW,其中,照明用电有功负荷1086.5kW,其它负荷基本为空调、风机、水泵、电梯等三相负荷。补偿前无功功率3182kvar,若整体功率因数补偿到0.92,需补偿1982kvar,补偿后无功功率1200kvar。原设计采用低压配电室并联电容器组三相集中自动补偿,工程竣工投入使用后,经常出现仪器、灯具等用电设备烧坏或不能正常使用等情况,影响正常经营和工作。经现场测试,发现低压馈线回路三相负荷不平衡,差距很大,电流差异大,最大相电流差为900A;检测母线电压,三相母线电压有的高达260V,有的低到190V。通过分析是三相电容自动补偿造成的结果。

对于三相不平衡及单相配电系统采用分相电容自动补偿是解决上述问题的一种较好的办法,其原理是通过调节无功功率参数的信号取自三相中的每一相,根据每相感性负载

的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。

该装置的控制模块和数据采集模块采用新型单片机和大规模集成电路,开关模块采用大功率晶闸管,实现电容器组的零电压投入和零电流切除,无合闸浪涌电流冲击,无火花和谐波干扰。产品特点如下:

(1)实现了控制模块的数字化和智能化,开关执行单元无触点,确保了控制精度和运行的可靠性;

(2)全自动分相、分级按需补偿;

(3)可灵活设定过压、欠压、欠流延时等参数,具有完善的越限报警和过压、欠压、缺相、缺零、谐波越限保护缩闭功能,保证系统安全运行;

(4)实时数字式测量、显示电网中的主要参数:功率因数、电压、电流、谐波电压及电流、有功功率及电度、无功功率及电度等;

(5)带有谐波分析,测量总的谐波失真(THD)以及1~31次谐波电压及电流,为治理谐波提供准确的数字依据;

(6)采用“自愈式”电容器,具有使用寿命长、可靠性强、温升小、无需专门散热装置等优点;(7)具有数据采集功能和标准的通信接口(RS232),可实现远程实时监测和计算机联网管理;

(8)采用模块化结构设计,易于维护和升级。

从上述产品的功能可以看出,智能三相自动无功补偿能自动检测各相负载的功率因数,同时自动分相投入各相所需的电容补偿量,以使各相的无功功率补偿达到最佳状态,对于大量使用单相用电负荷,易产生三相不平衡的用电单位如住宅小区、宾馆、饭店、大型商场等民用建筑的配电系统有改善功率因数、提高电网效率、改善电压质量、节约用电、增大变压器有功容量等显著效果,较大程度满足了“电网绿化”的要求。2分组电容自动补偿的应用在低压电网中大量的用电设备为电感性,尤其是在大面积、大开间的商场、办公楼等日常生活和办公场所,大都会采用发光效果好的荧光灯进行人工照明。荧光灯具有光效好、寿命长、无污染等特点,属绿色光源。目前,民用建筑工程中大量使用电感型镇流器荧光灯,它具有成本低、寿命长、维修工作量少、投资少等优点,但其启动时间长,功率因数低,约为0.5~0.6,自身损耗大,加大了供配电系统网络损耗,造成了能源的浪费。

通过电容补偿的方式来解决大面积商场、办公楼的感性负荷功率因数低的问题是目前设计中常用的方法。

我们在设计中通常的做法有两种:在变配电所设置集中高压或低压补偿柜,对系统前端进行补偿,虽能满足供电部门对并网功率因数的要求,但对以下各级分支电路不作补偿,因此低压配电线路中无功电流大,从而造成线路截面和配电开关容量不能减小,且不能保证整个低压系统的供电质量;另一种做法是在每台用电设备或每盏照明灯具内设置电容器个别单独进行补偿,这种方式效果较好,对于厂矿企业使用的单台大容量用电设备比较适用,但对于大型商场等民用建筑来说,补偿投资成本太大,性价比低,安装分散,造成后期维修量

目前我国断路器型号根据国家技术标准的规定

目前我国断路器型号根据国家技术标准的规定,一般由文字符号和数字按以下方式组成:其代表意义为: ①—产品字母代号,用下列字母表示:S—少油断路器;D—多油断路器;K—空气断路器;L—六氟化硫断路器;Z—真空断路器;Q—产气断路器;C—磁吹断路器。 ②—装置地点代号;N—户内,W—户外。 ③—设计系列顺序号;以数字1、2、3……表示。 ④—额定电压,KV。 ⑤—其它补充工作特性标志,G—改进型,F—分相操作。 ⑥—额定电流,A。 ⑦—额定开断电流,KA。 ⑧—特殊环境代号。 GW-110(III)W-630、 G------隔离开关 W------户外使用 110---------适用于额定电压为110KV的系统中 (Ⅲ)-------Ⅲ型(设计序号) 630---------适用于额定电流在630A以下的系统中 GN22-10/2000、 G------------隔离开关 N------------户内使用 22-----------设计序号 2000-----------适用于额定电流在2000A以下的系统中 SW2-110II S-------------少油断路器 W-------------户外使用 2------------设计序号 110----------适用于额定电压为110KV的系统中 II-----------本系列开关中的II型开关 低压隔离开关: HD、HS系列隔离开关; HR系列熔断器式隔离开关; 低压断路器: DW10系列框架式自动开关; DWX15、DWX15C系列万能式限流断路器; DW17(ME)系列万能式断路器; DZ10系列塑料外壳式自动开关; DZ15系列塑料外壳式断路器; DZX10系列塑料外壳式限流断路器; DZ20系列塑料外壳式断路器; DZ25系列塑料外壳式断路器;

塑壳断路器选型标准

塑壳断路器选型标准 塑壳断路器适用于交流50Hz,额定工作电压690V及以下,额定工作电流至1600A的电路中作不频繁转换及电动机不频繁起动之用。断路器具有过载、短路和欠电压保护功能,能保护线路和电源设备不受损坏。 类型型号额定电流(A) 分断能力 (Icu)kA400V 价格 2P 3P 4P 经济型NF30-CS 3,5,10,15,20,30 1.5 114 168 - NF63-CW 3,4,6,10,16,20,25,32,40,50,63 5 241 344 - NF125-CW 50,63,80,100,125 10 430 614 - NF250-CW 125,150,175,200,225,250 18 850 1215 - NF400-CW 250,300,350,400 36 2194 3131 - NF630-CW 500,600,630 36 3265 4666 - NF800-CEW 400-800可调36 - 7426 - 标准型NF32-SW 3,4,6,10,16,20,25,32 5 250 358 - NF63-SW 3,4,6,10,16,20,25,32,40,50,63 7.5 266 376 491 NF125-SW 16,20,32,40,50,63,80,100,125 30 527 755 1061 NF125-SGW RT 16-25,25-40,40-63,63-100,80-125可36 1087 1185 1576 NF125-SGW RE 16-32,32-63,63-100,75-125可调36 - 3729 4831 NF160-SW 125,150,160 30 1102 1566 2039 NF160-SGW RT 125-160可调36 1318 1875 2451 NF160-SGW RE 80-160可调36 - 3935 5099 NF250-SW 125,150,175,200,225,250 30 1267 1803 2348 NF250-SGW RT 125-160,160-250可调36 1576 2153 2812 NF250-SGW RE 125-250可调36 - 4130 5366 NF400-SW 250,300,350,400 45 2596 3708 4810 NF400-SEW 200-400可调50 - 5644 7344 NF630-SW 500,600,630 50 3636 5202 6798 NF630-SEW 300-630可调50 - 7426 9641 NF800-SEW 400-800可调50 - 8786 11433 NF1000-SEW 500-1000可调85 - 16171 21630 NF1250-SEW 600-1250可调85 - 19570 25441 NF1600-SEW 800-1600可调85 - 22969 29849 高性能型NF63-HW 10,16,20,25,32,40,50,63 10 286 408 531 NF125-HW 16,20,32,40,50,63,80,100 50 958 1370 1782 NF125-HGW RT 16-25,25-40,40-63,63-100,80-125可75 1154 1638 2142 NF125-HGW RE 16-32,32-63,63-100,75-125可调75 - 4099 5315 NF160-HW 125,150,160 50 1288 1833 2379 NF160-HGW RT 125-160可调75 1545 2318 2853 NF160-HGW RE 80-160可调75 - 4316 5614 NF250-HW 125,150,175,200,225,250 50 1411 2019 2616 NF250-HGW RT 125-160,160-250可调75 1689 2421 3142 NF250-HGW RE 125-250可调75 - 4553 512 NF400-HEW 200-400可调70 - -6046 7849 NF630-HEW 300-630可调70 - 7962 10156 NF800-HEW 400-800可调70 - 9414 12257

常用断路器型号的资料

.常用断路器型号的资料: DZ5系列塑料外壳式断路器适用于交流50hz、380v、额定电流自0.15至50a的电路中。保护电动机用断路器用来保护电动机的过载和短路,配电用断路器在配电网络中用来分配电能和作线路及电源设备的过载和短路保护之用,亦可分别作为电动机不频繁起动及线路的不频繁转换之用。 DZ10 系列塑壳断路器适用于交流50hz、380v或直流220v及以下的配电线路中用来分配电能和保线路及电源设备的过载、欠电压和短路,以及在正常工作条件下不频繁分断和接通线路之用。 DZ12系列塑料外壳式断路器,体积小巧,结构新颖、性能优良可靠。主要装在照明配电箱中,用于宾馆、公寓、高层建筑、广场、航空港、火车站和工商企业等单位的交流50hz单相230v,三舷00v及以下的照明线路中,作为线路的过载,短路保护以及在正常情况下作为线路的不频繁转换之用。 DZ15系列塑料外壳式断路器适用于交流50hz、额定电压380v、额定电流至63a(100)的电路中作为通断操作,并可用来保护线路和电动机的过载及短路保护之用,亦可作为线路的不频繁转换及电动机的不频繁 起动之用。 DZ20系列塑料外壳式断路器适用于交流50hz,额定绝缘电压660v,额定工作电压380v(400v)及以下,其额定电流至1250a 。一般作为配电用,额定电流200a和400y型的断路器亦可作为保护电动机用。在正常情况下,断路器可分别作为线路不频繁转换及电动机的不频繁起动之用。 四极断路器主要用于交流50hz、额定电压400v及以下,额定电流100至630a三相五线制的系统中,它能保证用户和电源完全断开,确保安全,从而解决其它任何断路器不可克服的中性极电流不为零的弊端。 配电用断路器在配电网络中用来分配电能,且可作为线路及电源设备的过载、短路和欠电压保护。 保护电动机用断路器在配电网络中用作鼠笼型电动机的起动和分断以及作为电动机的过载、短路和欠电压 保护。 DZ47系列小型断路器主要适用于交流50hz/60hz,额定工作电压为240v/415v及以下,额定电流至60a 的电路中,该断路器主要用于现代建筑物的电气线路及设备的过载,短路保护,亦适用于线路的不频繁操 作及隔离。 SCM1(cm1)系列断路器适用于交流50hz、60hz、500v及以下的电路中作不频繁转换和电动机不频繁起动之用。断路器具有过载、短路和欠电压保护装置,能保护线路及电源设备不受损坏。本断路可垂直安 装、亦可水平安装。 DW10系列万能式断路器适用于交流50hz、电压至380v、直流电压至440v的电气线路中,作过载、短路、失压保护以及正常条件下的不频繁转换之用。当三极断路器在直流电路中串联使用时,电压允许提高 至440v。 DW15 系列万能式空气断路器适用于交流50hz、额定电流至4000a,额定工作电压至1140v(壳架等级额定电流630a以下)80v(壳架等级额定电流1000a及以上)的配电网络中,用来分配电能和供电线路及电源设备的过载、欠电压、短路保护之用。壳架等级额定电流630a及以下的断路器也能在交流50hz、380v 网络中供作电动机的过载、欠电压和短路保护。

史上最全的断路器型号与选用原则

史上最全的断路器型号与选用原则! 断路器: 又称自动开关,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,一获得了广泛的应用。 分类: 按操作方式分有:电动操作、储能操作和手动操作。 按结构分有:万能式和塑壳式。 按使用类别分有:选择型和非选择型。 按灭弧介质分有:油浸式、真空式和空气式。 按动作速度分有:快速型和普通型。 按极数分有:单级、二级、三级和四级等。 按安装方式分有:插入式、固定式和抽屉式等。 断路器型号释义 目前我国断路器型号根据国家技术标准的规定,一般由文字符号和数字按以下方式组成。其代表意义为:产品字母代号,用下列字母表示: S—少油断路器; D—多油断路器; K—空气断路器; L—六氟化硫断路器; Z—真空断路器; Q—产气断路器; C—磁吹断路器。 装置地点代号: N—户内;

W—户外。 设计序列代号: 以数字1、2、3……表示。 额定电压,KV。 其它补充工作特性标志: G—改进型; F—分相操作。 额定电流,A。 额定开断电流,KA。 特殊环境代号。 补充: GW-110(III)W-630 G------隔离开关 W------户外使用 110---------适用于额定电压为110KV的系统中(Ⅲ)-------Ⅲ型(设计序号) 630---------适用于额定电流在630A以下的系统中GN22-10/2000 G------------隔离开关 N------------户内使用 22-----------设计序号 2000-----------适用于额定电流在2000A以下的系统中SW2-110II S-------------少油断路器

断路器选型基本原则

断路器选型基本原则 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

断路器选型应遵守的基本原则 发布时间:10-12-16 来源:点击量:1673 字段选择:大?中?小 1断路器的额定电压必须大于或等于线路的工作电压。 负载或额定电源的电压要大于或等于开关的额定电压,因为这事关产品的安全性能。高于开关额定电压的电压有可能会使产品绝缘性能性能下降,存在事故隐。 2断路器的额定短路通断能力≥线路中可能出现的最大短路电流。 线路中发生相线与相线或相线与中性线之间的短路电流是很大的,越是接近电源分配端的电流就越大,因为整个短路回路的阻抗小。因此要求断路器必须有一定的短路分断能力,当短路分断能力大于或等于线路中可能出现的最大短路电流时,在瞬时脱扣器的作用下,开关能瞬时熄弧断开。如开关的额定短路通断能力≤线路中可能出现的最大短路电流因开关不能熄弧,由燃弧引起的过高温度使触点粘(短路)从而毁坏配电线路以致设备。 3断路器的额定电流≥线路的负载电流。 负载的额定电流必须等于或小于开关的额定电流,一般情况下小于开关的额定电流,考虑到留有一定的裕度,一般选开关的额定电流比实际负载电流大20℅左右,不要选得太大,必须考虑过载保护及短路保护都能动作,选取过大的额定电流,过载保护失去作用,由于线路的粗细及长短关系,负载端的短路电流达不到瞬时脱扣器的整定动作值,从而使短路保护失效。 4漏电断路器的额定漏电动作电流必须≥2倍的线路业已存在的泄漏电流。

在配电线路中由于线路的绝缘电阻随着时间的增长会下降及对地布线分布电容的存在,线路或多或少对地存在一定的泄漏电流,有的还比较大,因此在选取漏电断路器的额定漏电动作电流必须大于实际泄漏电流的两倍才能保证开关不会误动作,这也是与国家标准规定的额定漏电不动作电流为额定动作电流的一半是相符合的。 5断路器末端单相对地短路时能使选用B、C、D型瞬时脱扣器的开关动作,对于不同类型的负载(用电设备)选用不同的瞬时脱扣器和相应的电流等级的产品。根据不同的负载设备选用不同类型的瞬时脱扣器和额定电流,B、C、D型瞬时脱扣器的使用对象前面有说明。选取额定电流及相应的瞬时脱扣器时必须考虑负载的额定电流及可能输出的最大短路电流。当最大短路电流大于或等于B、C、D型瞬时脱扣器的整定动值时,短路保护才能起作用。 6在装漏电保护器之前必须搞清原有的供电保护型式,以便判断是否可以直接安装或需改动。 供电保护型式在前面已有详细说明。在未安装漏电断路器之前,有些设备已采取一些供电保护型式,但是有一些保护型式如不改动是不适宜直接安装漏电断路器,否则会引起开关的误动或拒动。具体使用将在后面案例中进行分析。 7有进出线规定的产品必须严格按要求接线,进出线不可反接。 漏电断路器必须按要求接线,否则会引起开关漏电保护功能的损坏,因漏电保护线路板的工作电源从开关的出线端引出,如采取反接线,则线路板的工作电源长期存在,一旦漏电保护动作,内部电磁脱扣线圈因长期通电而损坏(电磁脱扣线圈的设计为瞬时工作方式),漏电功能损坏。

设备断路器选型计算办法

精心整理 设备断路器选型计算方法 当用电回路发生故障和短路时,断路器能够切断用电回路,保护用电设备。如何选择合适的断路器,其计算方法如下: 一、计算计算电流: 1)三相负荷时: 1.52/cos js js I P φ=?; C65,NSX160因此,选定的断路器型号为NSX100NTM100A/4P 。 注:1、断路器选择应注意按照负荷类型选取特性曲线。计算机插座回路剩余电流动作装置选用A 型,其他的插座回路选C 型曲线;开水器断路器选用B 型曲线;配电照明回路断路器一般选用C 型曲线;电动机断路器选用D 型曲线; 2、确定极性时,要确定设备的极性。设备本身带有自控制功能,在一定条件下,能够实现自我切断,极性选择为4P ,带漏电保护时(+30mA/100mA),极性也是4P 。其他情况下为3P 。 3、选择TM (热磁脱扣单元)原因在于,价格便宜。 2)单相负荷时:

精心整理 4.55/cos js js I P φ=?; js e P P Kx =?; 根据计算电流大小选择合适的断路器 例3:3,cos 0.8,js P KW φ== 3 4.55/0.817.0625js I =?=; 选断路器时,其额定电流 1.25js I I >; 注:12 323,,l l 分和值的注:12、截面370?+数据》((P 74)表6-42四、线路及导线敷设 变压器二次侧至用电设备之间配电级数不宜超过三级,每一楼层是否设楼层集中配电箱,根据实际情况确定。负荷回路电线的敷设方式参考《建筑电气工程设计常用图形和文字符号》(P 68)——导线敷设部位的标注,配电箱回路的敷设方式参考《建筑电气工程设计常用图形和文字符号》(P 68)——线路敷设方式的标注。 干线断路器选型的话,计算电流×1.25

断路器极数及选择问题

断路器有1P,2P,3P,4P.请问极数是指什么,在选择断路器的时候怎么判断选几极的断路器? 极数就是指切断线路的导线根数。1P就是切断一根导线;2P就是同时切断2根导线,一次类推。 极数指断线数.1P、2P用于单相,3P、4P用于三相. 当是保护接零时,只能用1P、3P;当是保护接地时,最好用2P、4P 1P+N:只在相线上装设保护器,动作时同时断开相线。 2P:相线和中性线都装设保护器,动作时同时断开相线和中性线。 漏电电流动作保护器简称漏电保护器,又叫漏电保护开关,主要是用来在设备发生漏电故障时以及对有致命危险的人身触电进行保护。 漏电保护在电气安全领域尚属比较新的技术。近三十年来,随着电子技术的发展,高灵敏度、快速动作型漏电保护装置获得了极大的发展。德国、法国、英国、美国、日本等国乃至国际电工委员会都先后建立和修订了漏电保护装置的产品标准及其关联标准和法规。在我国漏电保护装置生产厂家众多,产品品种繁多,国家制订了国家标准《漏电电流动作保护器》(GB6829-86),该标准对漏电保护器的特性、分类、工作条件和安装条件、结构与性能要求、试验方法、检验规则等方面作出了明确的规定。 一、漏电保护器的原理和构成 漏电保护器在反应触电和漏电保护方面具有高灵敏性和动作快速性,这是其他保护电器,如熔断器、自动开关等无法比拟的。自动开关和熔断器正常时要通过负荷电流,他们的动作保护值要避越正常负荷电流来整定,因此他们的主要作用是用来切断系统的相间短路故障(有的自动开关还具有过载保护功能)。而漏电保护器是利用系统的剩余电流反应和动作,正常运行时系统的剩余电流几乎为零,故它的动作整定值可以整定得很小(一般为mA级),当系统发生人身触电或设备外壳带电时,出现较大的剩余电流,漏电保护器则通过检测和处理这个剩余电流后可靠地动作,切断电源。 那么漏电保护器是如何起到保护作用呢? 我们知道,电气设备漏电时,将呈现异常的电流或电压信号,漏电保护器通过检测、处理此异常电流或电压信号,促使执行机构动作。我们把根据故障电流动作的漏电保护器叫电流型漏电保护器,根据故障电压动作的漏电保护器叫电压型漏电保护器。由于电压型漏电保护器结构复杂,受外界干扰动作特性稳定性差,制造成本高,现已基本淘汰。目前国内外漏电保护器的研究和应用均以电流型漏电保护器为主导地位。 电流型漏电保护器是以电路中零序电流的一部分(通常称为残余电流)作为动作信号,

断路器的型选择

最常见的断路器分为MCB(小型断路器)、MCCB(塑壳断路器)、ACB(万能断路器) 小微断主要是我们平时家用的断路器(1、2、3、4、6、10、13、16、20、25、32、40、50、63、100)其中16-63规格的比较常见,也是我们家里用的规格,当然我们家用的话还需选择几个漏电断路器。 塑壳主要是125、160、250、400、800《壳架》规格,额定电流不会大于壳架规格,从10A-800A 都有,小于100A的塑壳和小微断相比,只是分断能力更高一些;这些规格只要是大一些的厂家都会生产,用于小微断上一级的配电。 万能短路器就更大了,其壳架等级有1600.2000、3200、4000、6300,器电流规格和塑壳相同,额定电流不会超过壳架等级。范围是200A-6300A. 断路器的型号选择 空气开关,又称自动开关,低压断路器。原理是:当工作电流超过额定电流、短路、失压等情况下,自动切断电路。DZ47-60A C20的空气开关,这是微(小)型断路器的额定电流标法,英文字表示磁脱扣(短路保护)的动作倍数, C一般用于普通配电(5-10倍),另外一种常见的是D型,用于起动电流较大(如电机)的电器(10-14倍)。 20A表示额定电流,但应注意的是这个电流是在环境温度为40摄氏度时的整定值。实际使用时可参照厂家提供的降容曲线。 空气开关的型号: C65N 1P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 2P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 3P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 4P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 1P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A C65N 2P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A C65N 3P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A 型号上升一般是6,10,16,20,25,32,40,50,63,80,100,125,150,225,400。 D代表动力,C代表照明。 目前家庭使用DZ系列的空气开关(带漏电保护的小型断路器),常见的有以下型号/规格:C16、 C25、C32、C40、C60、C80、C100、C120等规格,其中C表示脱扣电流,即起跳电流,例如C32表示起跳电流为32安,一般安装6500W热水器要用C32,安装7500W、8500W热水器要用C40的空开。 工业上常见的型号有:动力电路用DW和DZ型分20,32,50,63,80,100,125,160,250,400,600,800,1000...(单位A)。 空开的额定电流有几安培至几百安培如10安的和600安的,但是普通的DZ47-63系列的最大电流63安,分为5 10 16(15) 20 25 32(30) 40 50 60(63)好像还有3安和2.5安的。 短路分断电流一般c型6000安,d系列4000安 例:DZ10-100/330 Ie=60A 说明: DZ--“自动”的反拼音,10--设计序号,100--是它的壳架等级,3--表示极数即三相,3--脱扣形式(0--无脱扣器,1--热脱扣器式,2--电磁脱扣器式,3--复式),0--有无辅助触头(0--无辅助触头,2--有辅助触头),Ie=60A --过电流调节额定电流。

西门子断路器选型

低压断路器用作交、直流线路的过载、短路保护,被广泛应用于建筑照明、动力配电线路、用电设备作为控制开关和保护设备,也可用于不频繁起动电动机以及操作或转换电路 1.种类 (1)万能式断路器 (2)塑料外壳式断路器 (3)电动斥力式限流断路器 (4)剩余电流保护断路器 (5)直流快速断路器 (6)灭磁断路器 2.低压断路器的选用要点 表示低压断路器性能的主要指标有分断能力和保护特性。 分断能力是指开关在指定的使用和工作条件及在规定的电压下接通和分断的最大电流值(kA)。 保护特性主要分为过电流保护、过载保护和欠电压保护三种。 (1)额定电压 断路器的额定电压应大于线路额定电压。主要是交流380V或直流220V的供电系统。按线路额定电压进行选择时应满足下列条件: (4-10-5) 式中——低压断路器的额定电压,V; ——线路的额定电压,V。 (2)额定电流 断路器的额定电流与过电流脱扣器的额定电流应大于线路计算负荷电流。当按线路的计算电流选择时,应能满足下式: (4-10-6) 式中——低压断路器的额定电流,A; ——线路的计算电流或实际电流,A。 如果环境温度低于+40℃,则电器产品温度每低1℃,允许电流比额定电流值增加0.5%。但增加总数不得超过20%。 10.5 低压断路器 断路器的保护定值 (1)长延时脱扣器的电流整定值,动作时间可以不小于10s;长延时脱扣器只能作过载保护。 (2)短延时脱扣器的电流整定值,动作时间约为0.1~0.4s;短延时脱扣器可以作短路保护,也可以作过载保护。 (3)瞬时脱扣器的电流整定值,其动作时间约为0.02s。瞬时脱扣器一般用作短路保护。 10.5 低压断路器 (3)瞬时过电流脱扣器的整定电流 瞬时脱扣器的动作时间为0.02s左右。 瞬时或短时过电流脱扣器的整定电流应能躲开线路的尖峰电流。 1)负载是单台电动机,整定电流按下式计算

断路器型号根据国家技术标准的规定

我国断路器型号根据国家技术标准的规定,一般由文字符号和数字按以下方式组成。其代表意义为: ①—产品字母代号,用下列字母表示: S—少油断路器;D—多油断路器;K—空气断路器;L—六氟化硫断路器;Z—真空断路器;Q—产气断路器;C—磁吹断路器。 ②—装置地点代号: N—户内;W—户外。 ③—设计系列顺序号: 以数字1、2、3……表示。 ④—额定电压,KV。 ⑤—其它补充工作特性标志: G—改进型;F—分相操作。 ⑥—额定电流,A。 ⑦—额定开断电流,KA。 ⑧—特殊环境代号。 低压断路器:DW10系列框架式自动开关;DWX15、DWX15C系列万能式限流断路器;DW17(ME)系列万能式断路器; DZ10系列塑料外壳式自动开关;DZ15系列塑料外壳式断路器;DZX10系列塑料外壳式限流断路器;

DZ20系列塑料外壳式断路器;DZ25系列塑料外壳式断路器; 高压断路器: DW系列高压户外安装多油断路器;SW系列高压户外安装少油断路器;SN系列高压户内安装少油断路器; ZW系列高压户外安装真空断路器;ZN系列高压户内安装真空断路器;LW系列高压户外安装SF6断路器; LN系列高压户内安装SF6断路器; 注:1、这里的部分型号现已停产,但还有在装的在用。2、外国引进、合资型号等未列入。补充: GW-110(III)W-630、G------隔离开关.W------户外使用 110---------适用于额定电压为110KV的系统中 (Ⅲ)-------Ⅲ型(设计序号) 630---------适用于额定电流在630A以下的系统中 GN22-10/2000、 G------------隔离开关 N------------户内使用 22-----------设计序号 2000-----------适用于额定电流在2000A以下的系统中

正泰常用断路器选型手册

正泰常用断路器型号及选型列表: 系列型号额定电流(A) 备注 NM1系列塑料外壳式断路器NM1-63S/3300 10-63 NM1-63H/3300 NM1-63H/4300 NM1-100S/3300 10-100 NM1-100H/3300 NM1-100H/4300 NM1-225S/3300 125-225 NM1-225H/3300 NM1-225H/4300 NM1-400S/3300 250-400 NM1-400H/3300 NM1-400S/4300 NM1-630S/3300 400-630 NM1-630H/3300 NM1-630S/4300 NM1-800H/3300 630-800 NM1-1250H/3300 1000-1250 DZ15系列塑料外壳式断路器DZ15-40/2901 10-40 DZ15-40/3902 10-40 DZ15-100/3902 40-100 NM10系列塑料外壳式断路器NM10-100/330 15-100 NM10-250/330 100-250 NM10-630/330 200-630 DZ20系列塑料外壳式断路器DZ20Y-100/3300 16-100 DZ20J-100/3300 DZ20Y-225/3300 100-225 DZ20J-225/3300 DZ20Y-400/3300 250-400 DZ20J-400/3300 DZ20Y-630/3300 400-630 DZ20J-630/3300 DZ20Y-1250/3300 1000-1250 DZ47系列塑料外壳式断路器DZ47-60 1P C型 1--5 10-32 40-60 DZ47-60 2P C型1--5

塑壳断路器的选用

塑壳断路器的选用 1.引言 塑料外壳式断路器 以下简称MCCB ,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品 如常熟开关厂的CMl、天津低压开关厂TM30等 。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB 没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流 A ,它所指的含义是本断路器内所能安装的最大开关及脱扣器电流值。 In——断路器的额定电流 A ,它所指的含义是该断路器内选用的额定热动型脱扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流 A ,它所指的含义是该断路器的过载保护脱扣器所整定的电流值。 Ir2——断路器的短延时整定电流 A ,它所指的含义是该断路器的短延时脱扣器整定的电流,它的数值在电子可调式脱扣器中为 2~12Irl 左右可调。 Ir3——断路器的瞬时整定电流 A ,它所指的含义是该断路器瞬时脱扣器整定的电流,它的数值在不可调固定式脱扣器中,配电型为5Irl、10Irl两种,电动机保护型为12Ir1,在电子可调式中,为 4~16Irl 左右可调。 Ir4——断路器的单相接地整定电流 A ,它所指的含义是该断路器保护的线路或设备发生单相接地故障时,接地保护脱扣器整定的电流值,它的数值为0.2~0.6Irl 左右可调。 Ire——断路器的漏电动作电流 A ,它所指的含义是该断路器保护的线路或设备发生不正常泄漏电流时,漏电保护脱扣器整定的电流值。它的数值为0.03/0.1/0.3/0.5A几种。 Ir0——断路器预报警动作电流 A ,它所指的含义是该断路器负载电流超出预先设定的电流时,预报警装置发出报警指示信号,它的数值为 0.5~lIr1 左右可调。 Ir2——短延时脱扣器的脱扣时间整定值 s ,可调时间为0.05~0.45s。

断路器型号,断路器型号大全,断路器型号一览表格模板

断路器型号,断路器型号大全,断路器型号一览表 我国断路器型号根据国家技术标准的规定,一般由文字符号和数字按以下方式组成。其代表意义为:①—产品字母代号,用下列字母表示: S—少油断路器; D K L Z Q C N—户内; W—户外。 以数字1、2、3……表示。 ④—额定电压,KV。 ⑤—其它补充工作特性标志: G—改进型; F—分相操作。

⑥—额定电流,A。 ⑦—额定开断电流,KA。 ⑧—特殊环境代号。 低压断路器: DW10系列框架式自动开关; DWX15、 DW17(ME) DZ10 DZ15 DZX10 DZ20 DZ25 DW SW SN系列高压户内安装少油断路器; ZW系列高压户外安装真空断路器; ZN系列高压户内安装真空断路器; LW系列高压户外安装SF6断路器; LN系列高压户内安装SF6断路器;

注:1、这里的部分型号现已停产,但还有在装的在用。2、外国引进、合资型号等未列入。补充: GW-110(III)W-630、 G------隔离开关 W------ (Ⅲ S-------------少油断路器 W-------------户外使用 2------------设计序号 110----------适用于额定电压为110KV的系统中 II-----------本系列开关中的II型开关

?????说完一些关于断路器型号数字字母的意义,下面我们来看看那些最常用断路器型号的资料: DZ5系列塑料外壳式断路器适用于交流50hz、380v、额定电流自0.15至50a的电路中。保护电动机用断路器用来保护电动机的过载和短路,配电用断路器在配电网络中用来分配电能和作线路及电源设备的过载和短路保护之用,亦可分别作为电动机不频繁起动及线路的不频繁转换之用。 DZ10系列塑壳断路器适用于交流50hz、380v或直流220v及以下的配电线路中用来分配电能和保线路及电源设备的过载、欠电压和短路,以及在正常工作条件下不频繁分断和接通线路之用。 DZ12 ,三舷00v 用。 DZ15 DZ20)及中, 短路和 DZ47系列小型断路器主要适用于交流50hz/60hz,额定工作电压为240v/415v及以下,额定电流至60a的电路中,该断路器主要用于现代建筑物的电气线路及设备的过载,短路保护,亦适用于线路的不频繁操作及隔离。 SCM1(cm1)系列断路器适用于交流50hz、60hz、500v及以下的电路中作不频繁转换和电动机不频繁起动之用。断路器具有过载、短路和欠电压保护装置,能保护线路及电源设备不受损坏。本断路可垂直安装、亦可水平安装。

断路器选型原则

断路器选型原则 空气开关原理: 空气开关也就是断路器,在电路中作接通、分断和承载额定工作电流,并能在线路和电动机发生过载、短路、欠压的情况下进行可靠的保护。断路器的动、静触头及触杆设计成平行状,利用短路产生的电动斥力使动、静触头断开,分断能力高,限流特性强。 .短路时,静触头周围的芳香族绝缘物气化,起冷却灭弧作用,飞弧距离为零。断路器的灭弧室采用金属栅片结构,触头系统具有斥力限流机构,因此,断路器具有很高的分断能力和限流能力。 .具有复式脱扣器。反时限动作是双金属片受热弯曲使脱扣器动作,瞬时动作是铁芯街铁机构带动脱扣器动作。脱扣方式有热动、电磁和复式脱扣3种。 选型原则: 1断路器的额定电压必须大于或等于线路的工作电压。 负载或额定电源的电压要大于或等于开关的额定电压,因为这事关产品的安全性能。高于开关额定电压的电压有可能会使产品绝缘性能性能下降,存在事故隐 2断路器的额定短路通断能力≥线路中可能出现的最大短路电流。 线路中发生相线与相线或相线与中性线之间的短路电流是很大的,越是接近电源分配端的电流就越大,因为整个短路回路的阻抗小。因此要求断路器必须有一定的短路分断能力,当短路分断能力大于或等于线路中可能出现的最大短路电流时,在瞬时脱扣器的作用下,开关能瞬时熄弧断开。如开关的额定短路通断能力≤线路中可能出现的最大短路电流因开关不能熄弧,由燃弧引起的过高温度使触点粘(短路)从而毁坏配电线路以致设备。3断路器的额定电流≥线路的负载电流。 负载的额定电流必须等于或小于开关的额定电流,一般情况下小于开关的额定电流,考虑到留有一定的裕度,一般选开关的额定电流比实际负载电流大20℅左右,不要选得太大,必须考虑过载保护及短路保护都能动作,选取过大的额定电流,过载保护失去作用,由于线路的粗细及长短关系,负载端的短路电流达不到瞬时脱扣器的整定动作值,从而使短路保护失效。 4漏电断路器的额定漏电动作电流必须≥2倍的线路业已存在的泄漏电流。 在配电线路中由于线路的绝缘电阻随着时间的增长会下降及对地布线分布电容的存在,线路或多或少对地存在一定的泄漏电流,有的还比较大,因此在选取漏电断路器的额定漏电动作电流必须大于实际泄漏电流的两倍才能保证开关不会误动作,这也是与国家标准规定的额定漏电不动作电流为额定动作电流的一半是相符合的。 5断路器末端单相对地短路时能使选用B、C、D型瞬时脱扣器的开关动作,对于不同类型的负载(用电设备)选用不同的瞬时脱扣器和相应的电流等级的产品。根据不同的负载设备选用不同类型的瞬时脱扣器和额定电流,B、C、D型瞬时脱扣器的使用对象前面有说明。选取额定电流及相应的瞬时脱扣器时必须考虑负载的额定电流及可能输出的最大短路电流。当最大短路电流大于或等于B、C、D型瞬时脱扣器的整定动值时,短路保护才能起作用。 6在装漏电保护器之前必须搞清原有的供电保护型式,以便判断是否可以直接安装或需改动。 供电保护型式在前面已有详细说明。在未安装漏电断路器之前,有些设备已采取一些供电保护型式,但是有一些保护型式如不改动是不适宜直接安装漏电断路器,否则会引起开关的误动或拒动。具体使用将在后面案例中进行分析。

断路器的选型

断路器的选型 1、一般选用原则 (1)根据用途选择断路器的型式及极数; 根据最大工作电流选择断路器的额定电流;根据需要选择脱扣器的类型、附件的种类和规格。具体要求是: ①断路器的额定工作电压≥线路额定电压; ②断路器的额定短路通断能力≥线路计算负载电流; ③断路器的额定短路通断能力≥线路中可能出现的最大短路电流(一般按有效值计算); ④线路末端单相对地短路电流≥1.25倍断路器瞬时(或短延时)脱扣整定电流; ⑤断路器欠压脱扣器额定电压等于线路额定电压; ⑥断路器的分励脱扣器额定电压等于控制电源电压; ⑦电动传动机构的额定工作电压等于控制电源电压; ⑧断路器用于照明电路时,电磁脱扣器的瞬时整定电流一般取负载电流的6倍。 (2)采取断路器作为单台电动机的短路保护时,瞬时脱扣器的整定电流为电动机启动电流的1. 35倍(DW系列断路器)或1.7倍(DZ系列断路器)。 (3)采用断路器作为多台电动机的短路保护时,瞬时脱扣器的整定电流为1.3倍最大一台电动机的启动电流再加上其余电动机的工作电流。 (4)采用断路器作为配电变压器低压侧总开关时,其分断能力应大于变压器低压侧的短路电流值,脱扣器的额定电流不应小于变压器的额定电流,短路保护的整定电流一般为变压器额定电流的6-10倍;过载保护的的整定电流等于变压器的额定电流。 (5)初步选定断路器的类型和等级后,还要与上、下级开关的保护特性进行配合,以免越级跳闸,扩大事故范围。 2、电动机保护用断路器的选用 电动机保护用断路器可分为两类: 一类是指断路器只作保护而不负担正常操作;另一类是指断路器需兼作保护和不频繁操作之用。后一类情况需考虑操作条件和电寿命。电动机保护用断路器的选用原则为: (1) 长延时电流整定值等于电动机额定电流。 (2) 瞬时整定电流:对保护笼型电动机的断路器,瞬时整定电流等于(8-15)倍电动机额定电流,取决于被保护电动机的型号、容量和启动条件;对于保护绕线转子电动机的断路器,瞬时整定电流等于(3-6)倍电动机额定电流,取决于被保护绕线转子电动机的型号、容量和启动条件。 (3) 6倍长延时电流整定值的可返回时间大于等于电动机实际启动时间。按启动时负载的轻重,可选用可返回时间为1、3、5、8、15S中的某一档。 3、导线保护断路器的选用 照明、生活用导线保护断路器,是指在生活建筑中用来保护配电系统的断路器,选用时应考虑: (1) 长延时整定值小于等于线路计算负载电流。 (2) 瞬时动作整定值等于(6-20)倍线路计算负载电流。

塑壳断路器的选用

1.引言 塑料外壳式断路器以下简称MCCB,作为低压配电系统和电动机保护回路中的过载、短路保护电器,是应用极广的产品。随着现代科技水平的不断发展,新技术、新工艺、新材料不断出现,断路器的生产工艺及各种材质不断改进,使断路器的性能有了很大的提高,除国际知名品牌,如ABB、施耐德外,国内一些企业也不甘落后,自行开发、研制或引进国外先进技术,并加以消化、吸收,也向市场推出了成熟了的产品如常熟开关厂的CMl、天津低压开关厂TM30等。这类产品具有零飞弧、高分断、大容量、进出线方向可以互换、智能型、四极、内部附件结构模块化、安装积木化、体积小型化等特点。实现了MCCB所需的选择性保护功能和多种辅助功能,并带有通信接口,使低压配电系统实现自动化和组网成为可能;降低了低压成套配电装置的动、热稳定性的要求;缩小了成套配电装置的体积;大大地提高了供配电系统和设备运行的可靠性。 然而,目前在一些电气设计方案中,对MCCB的正确合理选用并不尽人意,往往忽略了所选厂家的MCCB规格、型号、附件等其它电气参数,特别是对一些新型MCCB 的电气参数理解不透,标注不全、应用类别、使用场合及用途等考虑不周。选用了不合适的MCCB,导致成套厂订货困难,保护的选择性变差,灵敏性,合理性不符合设计规范要求,不但使MCCB没有物尽所用,反而造成了浪费,降低了配电系统的可靠性,影响了工矿企业的生产和人们的生活。为此,本文结合有关MC—CB的常用参数和国家标准谈谈自己对MCCB正确选用的一些看法。 2.断路器的常用基本相关符号其合义及相互之间的关系 Inm——断路器壳架等级电流,它所指的含义是本断路器内所能安装的最大 开关及脱扣器电流值。 In——断路器的额定电流,它所指的含义是该断路器内选用的额定热动型脱 扣器电流值,在不可调固定式热脱扣器中In=Ir1。 Ir1——断路器的长延时整定电流,它所指的含义是该断路器的过载保护脱 扣器所整定的电流值。 Ir2——断路器的短延时整定电流,它所指的含义是该断路器的短延时脱扣 器整定的电流,它的数值在电子可调式脱扣器中为~12Irl左右可调。 Ir3——断路器的瞬时整定电流,它所指的含义是该断路器瞬时脱扣器整定 的电流,它的数值在不可调固定式脱扣器中,配电型为5Irl、10Irl两种,电动机保护型为12Ir1,在电子可调式中,为~16Irl左右可调。 Ir4——断路器的单相接地整定电流,它所指的含义是该断路器保护的线路或设备发生单相接地故障时,接地保护脱扣器整定的电流值,它的数值为0.2~0.6Irl 左右可调。 Ire——断路器的漏电动作电流,它所指的含义是该断路器保护的线路或设 备发生不正常泄漏电流时,漏电保护脱扣器整定的电流值。它的数值为 0.03/0.1/0.3/0.5A几种。 Ir0——断路器预报警动作电流,它所指的含义是该断路器负载电流超出预 先设定的电流时,预报警装置发出报警指示信号,它的数值为~lIr1左右可调。 Ir2——短延时脱扣器的脱扣时间整定值,可调时间为0.05~0.45s。 3.MCCB的额定分断能力、Ics 根据IEC947—2《低压开关设备和控制设备,低压断路器》规范,

断路器的选用原则与标准

断路器的选用原则 断路器的短路分断能力≥线路的预期短路电流。 假设某电源(SL7 10/0.4kV变压器)的容量为1600kVA,二次电流为2312A,其出线端5m处的短路电流为42.96kA。某一支路的额定电流为125A,由于此支路离变压器很近,如在10m处,则此支路的断路器需要考虑采用HSM1_125H 型塑壳式断路器(它的极限短路分断能力为400 V、50kA)。但是离变压器50m处,由于汇流排等的电阻和电抗值影响,50m处的短路电流已经降到34.5kA,而100m处,降为28.8kA。对此就可选择HSM1_125M型塑壳式断路器(它的极限短路分断能力为400V、35kA)。 现在国内许多断路器生产厂家,对同一壳架等级电流的短路分断能力分为E、S、M、H、L(杭州之江开关厂的HSM1系列)或C、L、M、H(常熟开关厂的CM1系列)或S、H、R、U(天津低压电器公司的TM30系列)等级别。其中,E 为经济型,S为标准型,M为中短路分断型,H为高分断型,L为限流型,C为经济型,L为低分断型;M为高分断型,H为超高分断型;S为标准型,H为高分断型,R为限流型,

U为超高分断型。 以HSM1_125型塑壳断路器为例,E型的极限短路分断能力为400V、15kA,S型为400V、25kA ,M型为400V、35kA,H型为400V、50kA。 三、关于断路器的极限短路分断能力、运行短路分断能力和短时耐受电流 极限短路分断能力(Icu),是指在一定的试验参数(电压、短路电流、功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,不再继续承载其额定电流的分断能力。它的试验程序为0—t(线上)C0 (“0”为分断,t 为间歇时间,一般为3min,“C0”表示接通后立即分断)。试检后要验证脱扣特性和工频耐压。 运行短路分断能力(Ics),是指在一定的试验参数(电压、短路电流和功率因数)条件下,经一定的试验程序,能够接通、分断的短路电流,经此通断后,还要继续承载其额定电流的分断能力,它的试验程序为0—t(线上)C0—t (线上)C0。

相关文档