文档库 最新最全的文档下载
当前位置:文档库 › 音的四种性质

音的四种性质

音的四种性质
音的四种性质

第一节音的四种性质

声音有高低,强弱,长短,音色等四种性质。音的四种性质,在音乐

表现中都是非常重要的,但音的高低和长短则具有更为重大的意义。一首歌,不管你用人声演唱或用乐器来演奏(音色),用小声唱或是大声唱(强弱),虽然音的强弱及音色都有了变化,仍然很容易辨认出歌曲的旋律。但是,假如将这首歌(相对之间)的音高或音值加以改变的话,则音乐形象就会立即受到严重的破坏。因此,不管创作也好,演奏演唱也好,对音高和音值应加以特别的注意。同样,不同的音色和不同的强弱对于音乐的表现作用也是不容忽视的,音色对于音乐形象的性格描绘十分重要;强弱是表现乐感的极其重要因素。

下面分别对这四个方面加以介绍。

1.2.1 音色

音色是由于发音体的材料性质、结构形状、发声方式、及其泛音的多少等不同方面

来决定的。

女口:铜做的锣、镲与木制的梆子、木鱼所鼓击发出的声音就截然不同;

铜做的号与木管吹奏所发岀的声音也是截然不同的……

女口:同为铜制的乐器,锣与小号的声音却不相同,这是由于发声方式不同所造成的;

女口:同为木制的大管与双簧管吹出来的声音也不相同,这是由于乐器的内部结构不同而引起的;

女口:同为铜管乐器的小号与大号,音色却有极大的差异,是由于乐器的何种大小不同引起不同的共鸣,泛音的多少也对音色有很大的影响。

在乐队中常常要把不同的音色混合在一起使用,形成复合音色,但由于每一个个别的乐器(或人声)有着各自不同的音色特点,我们仍能够从复合音色中分辨出不同的旋律来。在音乐中,不同的音色有不同的音乐表现特性,把握好音色的运用,对于更好地表现音乐有着十分重要的作用。

1.2.2音的长短

发声体振动保持延续时间的长短就是声音的长短。延续时间长,发声的时

间就长;延续时间短,发声的时间也就短。音的长短也叫做音的时值。

不同长短的音相互结合起来,就产生了音乐的节奏、节拍,被称为旋律的骨架。所以说音的长短在音乐中是十分重要的。在演唱、演奏音乐时一定要掌握好音的时值。

1.2.3音的高低

声音的高低是由发声体振动的频率所决定的,不同的频率就决定了不同的音高。振动次数(赫兹)多,声音就高, 反之亦然。音的高低简称为音高。

在音乐中所使用的音一般在

16Hz—— 7042Hz之间,要比一般钢琴所包含的音域稍宽一些,而再比这些音高或低的音就失去审美意义了,所以不予使用。

在音乐中音的高低是整个音乐的灵魂,音高的变化往往会带来音乐的形象的改变;如果在演唱、演奏中有音不准,就会扰乱整个音乐的进行。

1.2.4 音的强弱

音的强弱是由发声体振动的大小范

围(振幅)来决定的。一般来说,发声时用

于振动的力量大,发声体振动的振幅就大,于是音就强,反之亦然。

在音乐中,音的强弱会形成有规律的节奏、节拍重音,产生音乐的基本律动,不同的音乐风格就有不同的强弱规律;音乐情感的表达也同样离不开音乐强弱的变化。

可见音的强弱是十分重要的

(完整word版)四种晶体类型的比较

物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。

B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A 、B 、C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A ?g·cm -3 (B )A N Ma 83 g·cm -3 (C )3 a N M A ?g·cm -3 (D )A N Ma 3 g·cm -3

四种晶体类型的比较

四种晶体类型的比较 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价

键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C —C碳化硅>晶体硅。 B 、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO ,NaF>NaCl>NaBr>NaI 。 KF >KCl >KBr >KI ,CaO >KCl 。 C 、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na <Mg <Al ,Li>Na>K 。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D 、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H 2O >H 2Te >H 2Se >H 2S ,C 2H 5OH >CH 3—O —CH 3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH 4<SiH 4<GeH 4<SnH 4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点 CO >N 2,CH 3OH >CH 3—CH 3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C 17H 35COOH >C 17H 33COOH ;硬脂酸 > 油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸 点升高,如C 2H 6>CH 4, C 2H 5Cl >CH 3Cl ,CH 3COOH >HCOOH 。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。如: CH 3(CH 2)3CH 3 (正)>CH 3CH 2CH(CH 3)2(异)>(CH 3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是( ) (A )溶于水 (B )有较高的熔点 (C )水溶液能导电 (D )熔融状态能导电 2.下列物质中,含有极性键的离子化合是( ) (A )CaCl 2 (B )Na 2O 2 (C )NaOH (D )K 2S 3.Cs 是IA 族元素,F 是VIIA 族元素,估计Cs 和F 形成的化合物可能是( ) (A )离子化合物 (B )化学式为CsF 2 (C )室温为固体 (D )室温为气体 4.某物质的晶体中含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子未能画出),晶体中A 、B 、C 的中原子个数之比依次为( ) (A )1:3:1 (B )2:3:1 (C )2:2:1 (D )1:3:3 6.在NaCl 晶体中与每个Na +距离等同且最近的几个Cl -所围成的空间几何构型为( ) (A )正四面体 (B )正六面体 (C )正八面体 (D )正十二面体 7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs +离子核间距为a cm ,氯化铯的式量为M ,NA 为阿伏加德罗常数,则氯化铯晶体的密度为( ) (A )3 8a N m A g·cm -3 (B )A N Ma 83 g·cm -3

高中化学四种晶体类型的比较

四种晶体类型的比较

物质熔沸点高低的比较方法 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr (固)>Br2>HBr(气)。 2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,原子半径越小,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,①离子所带电荷越多,②离子半径越小,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中①金属价电子数越多,②原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高) 如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如:熔沸点 CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH硬脂酸>C17H33COOH油酸。 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl >CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 【通过文字判断晶体类型】

晶体的类型及性质

晶体的类型及性质 二. 知识重点: 1. 复习有关化学键的知识 2. 晶体的类型: (1)离子晶体 (2)原子晶体 (3)分子晶体 (4)金属晶体 4. 性质与结构的关系: 形成晶体的作用力强弱直接影响晶体的物理性质。 5. 常见的几种晶体模型:(NaCl 、CsCl 、干冰、金刚石及2SiO 等) 【典型例题】 [例1] 下列物质的熔点由高到低排列,正确的是( ) A. Cs K Na Li >>> B. CsCl RbCl KCl NaCl >>> C. 2222I Br Cl F >>> D. 金刚石>硅>碳化硅 解析: 根据晶体类型判断熔沸点高低的规律为:(一般) 原子晶体>离子晶体>分子晶体 而同类晶体内熔、沸点高低判断规律是: 原子晶体内原子的半径越小,形成共价键的键长短,键能大则键牢固,熔沸点高。 离子晶体内阴、阳离子的半径越小,离子所带电荷越多则形成的离子键越牢固,熔沸点越高。 相同结构的分子形成晶体,相对分子质量越大,分子间作用力越强,熔、沸点越高。

金属晶体的熔沸点高低取决于金属离子的半径和自由电子数,离子半径小,自由电子数多,则熔沸点高。 故应选A 、B 。 答案:A 、B [例2] 下图表示一些晶体中的某些结构,它们分别是NaCl 、CsCl 、干冰、金刚石、石墨结构中的某一种的某一部分。 A B C D E (1)其中代表金刚石的是 (填编号字母,下同),其中每个碳原子最接近且距离相等。金刚石属于 晶体。 (2)其中代表石墨的是 ,其每个正六边形占有的碳原子数平均为 个。 mol 1石墨中碳原子数与所形成的共价键数之比为 。 (3)其中表示NaCl 的是 ,每个+ Na 周围与它最接近且距离相等的+ Na 有 个。 (4)代表CsCl 的是 ,它属于 晶体,每个+ Cs 与 个- Cl 紧邻。 (5)代表干冰的是 ,它属于 晶体,每个2CO 分子与 个2CO 分子紧邻。 (6)上述五种物质熔点由高到低的排列顺序为: 。 解析:解此题首先要记住几种晶体的基本模型。金刚石为D ,石墨为E ,干冰为B , NaCl 为A ,CsCl 为C ,然后根据晶体的组成及空间构型回答后面问题。 值得注意的应为(2)和(3)、(4)、(5)中粒子紧邻的数值关系。 (2)当碳原子通过共用电子对形成六元环时,每一个碳原子被三个环所共用,则形成

晶体的类型与性质

晶体的类型与性质 一、四种晶体类型的比较 想一想 1.离子晶体中有无共价键?举例说明。离子晶体熔化时,克服了什么作用? 2.分子晶体中存在共价键,分子晶体熔化时,共价键是否被破坏? 3.稀有气体的单质属于什么晶体? 4.晶体微粒间的作用力只影响晶体的物理性质吗?举例说明研究晶体性质的一般思路。 5.离子晶体在熔融状态下能导电,这与金属导电的原因是否相同? 6.分子晶体的熔点一定低于金属晶体,这种说法对吗?为什么? 二、四种晶体类型的判断 1.依据组成晶体的晶格质点和质点间的作用判断 (1)若晶格质点是阴阳离子,质点间的作用是离子键,则该晶体是离子晶体。 (2)若晶格质点是原子,质点间的作用是共价键,则该晶体是原子晶体。 (3)若晶格质点是分子,质点间的作用是分子间作用力,则该晶体是分子晶体。 (4)若晶格质点是金属阳离子和自由电子,质点间的作用是金属键,则该晶体是金属晶体。 2.依据物质的分类判断 (1)金属氧化物、强碱、绝大多数的盐类是离子晶体。 (2)大多数非金属单质、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除 有机盐外)是分子晶体。 (3)金刚石、晶体硅、碳化硅(SiC)、二氧化硅等是原子晶体。 (4)金属单质与合金是金属晶体。 3.依据晶体的熔点判断 (1)离子晶体的熔点较高。 (2)原子晶体熔点高。 (3)分子晶体熔点低。 (4)金属晶体多数熔点高,部分较低。 4.依据导电性判断 (1)离子晶体溶于水及熔融状态时能导电。 (2)原子晶体一般为非导体。 (3)分子晶体为非导体。 (4)金属晶体是电的良导体。 5.依据硬度和机械性能判断 (1)离子晶体硬度较大或略硬而脆。 (2)原子晶体硬度大。 (3)分子晶体硬度小且较脆。 (4)金属晶体多数硬度大,但也有较低的,且具有延展性。

晶体类型和性质

第一单元晶体的类型与性质 第一节离子晶体、分子晶体和原子晶体 【教学目的】 1.使学生了解离子晶体、分子晶体和原子晶体的结构模型及其性质的一般特点。 2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系。 3.初步了解分子间作用力、氢键的概念及氢键对物质性质的影响。 4.培养学生的空间想像能力和进一步认识“物质的结构决定物质的性质”的客观规律。 【教学重点】 离子晶体、分子晶体和原子晶体的概念;晶体的类型与性质的关系。 【教学难点】 离子晶体、分子晶体和原子晶体的结构模型。 【教学用具】 多媒体电教设备、投影仪、自制课件、晶体模型等。 【课时安排】 3课时。 第一课时离子晶体 第二课时分子晶体 第三课时原子晶体 【教学方法】 观察、对比、分析、归纳相结合的方法。 【教学过程】

第一课时 【复习提问】在高一年级时,我们已经学习了化学键的有关知识。化学键是如何定义和分类的? (化学键:相邻的原子之间强烈的相互作用叫做化学键。) 【回答】(教师矫正) 【副板书】 【提问】什么是离子化合物?什么是共价化合物? (含有离子键的化合叫离子化合物;只含有共价键的化合叫共价化合物。)【练习】1.指出下列物质中的化学键类型。 KBr、CCl4、N2、CaO、H2S、NaOH 2.下列物质中哪些是离子化合物?哪些是共价化合物?哪些是只含离子键的离子化合物?哪些是既含离子键又含共价键的离子化合物? Na2O、KCI、NH4Cl、HCI、O2、HNO3、Na2SO4 【讲解】我们也可以用化学键的观点概略地分析化学反应的过程。可以认为,一个化学反应的过程,本质上就是旧化学键断裂和新化学键形成的过程。通常认为旧键断裂过程为吸收能量过程,而新键形成为放出能量过程,能量的变化在化学反应中通常表现为热量变化,所以化学反应过程通常伴随着热量的变化。化学键对化学反应中能量的变化起着决定作用。当今社会,人类所需能量绝大部分由化学反应产生,由此可见,研究化学键对物质性质的影响是多么重要啊! 【引言】我们日常接触很多的物质是固体,其中多数固体是晶体。什么是晶体呢? 【简介】晶体:内部原子(或分子、离子、原子集团)有规则地呈周期排列的

晶体学基础资料

竞赛要求: 初赛要求:晶体结构。晶胞。原子坐标。晶格能。晶胞中原子数或分子数的计算及与化学式的关系。分子晶体、原子晶体、离子晶体和金属晶体。配位数。晶体的堆积与填隙模型。常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。 决赛要求:晶体结构。点阵的基本概念。晶系。宏观对称元素。十四种空间点阵类型。 第七章晶体学基础 Chapter 7. The basic knowledge of crystallography §7.1 晶体结构的周期性和点阵 (Periodicity and lattices of crystal structures) 一、.晶体 远古时期,人类从宝石开始认识晶体。红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。 世界上的固态物质可分为二类,一类是晶态,一类是非晶态。自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。 晶体结构最基本的特征是周期性。晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。由于这样的内部结构,晶体具有以下性质: 1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、

四种晶体性质比较

四种晶体性质比较 1.晶体 ⑴晶体与非晶体 ⑵得到晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接___________________ 。 ③溶质从溶液中析出。 ⑶晶胞 ①概念 描述晶体结构的基本单元。 ②晶体中晶胞的排列一一无隙并置 a. _______________________________ 无隙:相邻晶胞之间没有。 b?并置:所有晶胞________ 卡列、取向相同。 ⑷晶格能 ①定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位: __________________ 。 ②影响因素 a.离子所带电荷数:离子所带电荷数越多,晶格能越大。一 b. ____________________________ 离子的半径:离子的半径晶格能越大。 ③与离子晶体性质的关系

晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度_________________ 。

2.四种晶体类型的比较 3?晶体熔沸点的比较 ⑴不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:______________________________ >离子晶体〉_____________________________________ 0 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 ⑵同种晶体类型熔、沸点的比较 ①原子晶体:

原子半径越小」—>1键长越短②离子晶体: a?—般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强, 其离子晶体的熔、沸点就越高,如熔点:MgO ____ MgCI 2 ______ N aCl _____ CsCI。 b.衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体: a.分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。女口H20> H2Te> H2Se> H2S。 b.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,女口Sn H4> GeH4 > SiH4> CH4。 c.组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点 ___________ 如 C0>N2,CH3OH>CH3CH3。 d.同分异构体,支链越多,熔、沸点越低。 ④金属晶体: 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na v Mg v Al。 2 .在下列物质中:NaCl、NaOH、Na2S、H2O2、Na2S2、(NH4)2S、CO2、CCI4、 C2H2、SiO2、SiC、晶体硅、金刚石。 ⑴其中只含有离子键的离子晶体是___________ ; (2)其中既含有离子键又含有极性共价键的离子晶体是_____________ ; (3)其中既含有离子键,又含有极性共价键和配位键的离子晶体是______________ ; ⑷其中既含有离子键又含有非极性共价键的离子晶体是______________ ; (5)其中含有极性共价键的非极性分子是____________ ; (6)其中含有极性共价键和非极性共价键的非极性分子是_____________ ; (7)其中含有极性共价键和非极性共价键的极性分子是 (8)其中含有极性共价键的原子晶体是 _______ 。

晶体的类型与性质

晶体的类型与性质 本单元知识概要 【学习目标】 1. 了解离子晶体、分子晶体、原子晶体、金属晶体的结构和性质。 2. 理解组成晶体的粒子间相互作用及其与晶体性质之间的相互关系。 3. 掌握晶体类型的判断方法。 4. 借助数学方法,培养空间想象能力。 【知识概要】 晶体的类型和性质 1. 晶体类型的判断方法 ⑴依据组成晶体的粒子和粒子间的相互作用判断 离子晶体的组成粒子是阴、阳离子,粒子间的相互作用是离子键;原子晶体的组成粒子是原子,粒子间的相互作用是共价键;分子晶体的组成粒子是分子,粒子间的相互作用是分子间作用力(即范德瓦耳斯力);金属晶体的组成粒子是金属阳离子和自由电子,粒子间的相互作用是金属键。 (2)依据物质的分类判断 金属氧化物(如K2O、Na2O2等)、强碱(如NaOH、KOH等)和绝大多数的盐类(AlCl3除外)是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除S i O2外)、酸、绝大多数有机物(除有机盐外)、稀有气体的固态是分子晶体。常见的原子晶体单质有金刚石、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅、刚玉等。常温下,金属单质(汞除外)与合金都是金属晶体。 (3)依据晶体的熔点判断 离子晶体的熔点较高,常在数百至1000余度。原子晶体的熔点最高,常在1000度至几千度。分子晶体的熔点低,常在数百度以下至很低温度。多数金属晶体的熔点高,但也有

相当低的(如汞)。 ⑷ 依据导电性判断 离子晶体在水溶液中及熔化时都能导电。原子晶体一般为非导体,不能导电。分子晶体为非导体,固态、液态均不导电,但分子晶体中的电解质(主要是酸和典型非金属氢化物)溶于水,使分子内的化学键断裂形成自由离子,故溶液能导电,金属晶体是电的良导体,能导电。 ⑸ 依据硬度和机械性能判断 离子晶体硬度较大或略硬而脆。原子晶体硬度大。分子晶体硬度小且较脆。金属晶体多数硬度大,但也有较低的,且具有延展性。 2. 晶体熔、沸点高低的比较方法 ⑴ 离子晶体 一般地讲,化学式与结构相似的离子晶体,阴、阳离子半径越小,所带电荷越多,离子键越强,熔、沸点越高,如:NaCl>KCl>CsCl 。 ⑵ 原子晶体 键长(成键原子半径之和)越短,键能越大,共价键越强,熔、沸点越高。如:金刚石>碳化硅>晶体硅。 ⑶ 分子晶体 组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,熔、沸点越高,如:I 2>Br 2>Cl 2>F 2;H 2Te>H 2Se>H 2S 。但具有氢键的分子晶体,如:NH 3、H 2O 、HF 等熔、沸点反常地高。绝大多数有机物属于分子晶体,其熔、沸点遵循以下规律: ① 组成和结构相似的有机物(同系物),随相对分子质量增大,其熔、沸点升高,如:CH 4 CH 3 CH 2CH(CH 3)2>(CH 3)4C ;芳香烃的异构体有两个取代基时,熔、沸点按邻、间、对位降低。如: > > ③ 在高级脂肪酸和油脂中,不饱和程度越大,熔、沸点越低。例如: C 17H 35COOH >C 17H 33COOH ;(C 17H 35COO)3C 3H 5>(C 17H 33COO)3C 3H 5。 ⑷ 金属晶体 在同类金属晶体中,金属离子半径越小,阳离子所带的电负荷数越多,金属键越强,熔、沸点越高,如:Li >Na >K >Rb >Cs ,合金的熔点低于它的各成分金属的熔点,如Al >Mg >铝镁合金。 ⑸ 不同类型的晶体 一般是原子晶体的熔、沸点最高,分子晶体的熔、沸点最低,离子晶体的熔、沸点较高,大多数金属晶体的熔、沸点较高,如:金刚石>氧化镁;铁>水。 应注意离子晶体、原子晶体、分子晶体、金属晶体熔化时,化学键不被破坏的只有分子晶体,分子晶体熔化时,被破坏的是分子间作用力。 第一节 离子晶体、分子晶体和原子晶体 CH 3CH 3 CH 3 CH 3 CH 3CH 3

四种晶体类型的比较

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 物质的熔沸点的高低与构成该物质的晶体类型及晶体内部粒子间的作用力有关,其规律如下: 1、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。

2、不同类型晶体的比较规律 一般来说,不同类型晶体的熔沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高(如W)有低(如Hg)。例如:金刚石>食盐>干冰 3、同种类型晶体的比较规律 A、原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大共价键越稳定,物质熔沸点越高,反之越低。如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C碳化硅>晶体硅。 B、离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高,反之越低。 例如:MgO>CaO,NaF>NaCl>NaBr>NaI。KF>KCl>KBr>KI,CaO>KCl。 C、金属晶体:金属晶体中金属阳离子所带电荷越多,半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。如:Na<Mg<Al,Li>Na>K。 合金的熔沸点一般说比它各组份纯金属的熔沸点低。如铝硅合金<纯铝(或纯硅)。 D、分子晶体:熔、沸点的高低,取决于分子间作用力的大小。分子晶体分子间作用力越大物质的熔沸点越高,反之越低。(具有氢键的分子晶体,熔沸点反常地高)如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3。 (1)组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。如:CH4<SiH4<GeH4<SnH4。 (2)组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。如熔沸点CO>N2,CH3OH>CH3—CH3。 (3)在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。 如:C17H35COOH>C17H33COOH;硬脂酸>油酸 (4)烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl>CH3Cl,CH3COOH>HCOOH。 (5)同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。 如:CH3(CH2)3CH3(正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。 芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低沸点按邻、间、对位降低) 针对性训练 一、选择题 1.下列性质中,可以证明某化合物内一定存在离子键的是() (A)溶于水(B)有较高的熔点(C)水溶液能导电(D)熔融状态能导电 2.下列物质中,含有极性键的离子化合是() (A)CaCl2(B)Na2O2(C)NaOH (D)K2S 3.Cs是IA族元素,F是VIIA族元素,估计Cs和F形成的化合物可能是()(A)离子化合物(B)化学式为CsF2(C)室温为固体(D)室温为气体 4.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面

晶体结构与性质知识总结(完善)

3-1、晶体的常识 一、晶体和非晶体 1、概述——自然界中绝大多数物质是固体,固体分为和两大类。 * 自范性——晶体能自发地呈现多面体外形的性质。本质上,晶体的自范性是晶体中粒子在微观空间里呈现周期性有序排列的宏观表象。 * 晶体不因颗粒大小而改变,许多固体粉末用肉眼看不到规则的晶体外形,但在显微镜下仍可看到。 * 晶体呈现自范性的条件之一是晶体生长的速率适当,熔融态物质凝固速率过快常得到粉末或没有规则外形的块状物。 * 各向异性——晶体的许多物理性质如强度、热导性和光导性等存在各向异性即在各个方向上的性质是不同的 二、晶胞 1、定义——描述晶体结构的基本单元。 2、特征—— (1)习惯采用的晶胞都是体,同种晶体所有的晶胞大小形状及内部的原子种类、个数和几何排列完全相同。 (2)整个晶体可以看作是数量巨大的晶胞“无隙并置”而成。 <1> 所谓“无隙”是指相邻晶胞之间没有任何间隙; <2> 所谓“并置”是指所有晶胞都是平行排列的,取向相同。 3、确定晶胞所含粒子数和晶体的化学式——均摊法分析晶胞与粒子数值的关系 (1)处于内部的粒子,属于晶胞,有几个算几个均属于某一晶胞。 (2)处于面上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 (3)处于90度棱上的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 (4)处于90度顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于60度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞;处于120度垂面顶点的粒子,同时为个晶胞共有,每个粒子有属于晶胞。 4、例举 三、分类

晶体根据组成粒子和粒子之间的作用分为分子晶体、原子晶体、金属晶体和离子晶体四种类型。 3-2、分子晶体和原子晶体 一、分子晶体 1、定义——只含分子的晶体。 2、组成粒子——。 3、存在作用——组成粒子间的作用为(),多原子分子内部原子间的作用为。 * 分子晶体中定含有分子间作用力,定含有共价键。 * 分子间作用力于化学键。 4、物理性质 (1)熔沸点与硬度——融化和变形只需要克服,所以熔沸点、硬度,部分分子晶体还可以升华。熔融一定破坏分子间的和可能存在的键,绝不会破坏分子内部的。 同为分子晶体的不同物质,一般来说尤其对于结构组成相似的分子,相对分子质量越大,熔沸点越;相对分子质量相差不大的分子,极性越大熔沸点越;含氢键的熔沸点会特殊的些。 例如: (2)溶解性——遵循同性互溶原理(或说相似相溶原理):即极性分子易溶于性溶剂(多为),如卤化氢(HX)、低级醇和低级羧酸易溶于极性溶剂水;非极性分子易溶于非极性(有机)溶剂,如硫、磷和卤素单质(X2)不易溶于极性溶剂水而易溶于非极性溶剂CS2、苯等。同含氢键的溶解性会更,如乙醇、氨气与水。 5、类别范畴 (1)除C、Si、B外的非金属单质,如卤素、氧气和臭氧、硫(S8)、白磷(P4)、足球烯(C60)、稀有气体等。 (2)除铵盐、SiO2、SiC、Si3N4、BN等外的非金属互化物,包括非金属氢化物和氧化物,如氨(NH3)、冰(H2O)、干冰(CO2)、三氧化硫(SO3)等。 (3)所有的酸分子(纯酸而非溶液)。 (4)大多有机物。 (5)除汞外常温下为液态和气态的物质。 (6)能升华的物质。如干冰、碘、等。 6、结构例析 如果分子间作用力只有范德华力,其分子占晶胞六面体的个顶角和个面心,若以一个分子为中心,其周围通常有个紧邻分子,这一特征称为分子密堆积,如O2、C60、CO2、I2等。 (1)干冰 固态的,色透明晶体,外形像冰,分子间作用力只有,熔点较,常压能升华,常作制冷剂或人工降雨。 二氧化碳分子占据立方体晶胞的个面心和个顶角,与每个二氧化碳分子距离最近且相等的二氧化碳分子有个,若正方体棱长为a,则这两个相邻的CO2的距离为。 (2)冰 固态的,色透明晶体,水分子间作用力除外,还有,氢键虽远小于共价键,但明显大于范德华力,所以冰的硬度较,熔点相对较。 每个水分子与周围距离最近且相等的水分子有个,这几个水分子形成一个的空间构型,晶体中水分子与氢键的个数之比为。这一排列使冰中水分子的空间利用率不高,留有相当大的空隙,所以冰的密度于液体水(4C的水密度最大,通常认为是1)。 (3)天然气水合物 ——可燃冰·海底储存的潜在能源,甲烷分子处于水分子形成笼子里,形式多样。 二、原子晶体 1、定义——相邻间以键结合而成空间网状的晶体。整块晶体是一个三维的共价键网状结构的

四种晶体性质比较

四种晶体性质比较1.晶体 (1)晶体与非晶体 (2)得到晶体的途径 ①熔融态物质凝固。 ②气态物质冷却不经液态直接_______________。 ③溶质从溶液中析出。 (3)晶胞 ①概念 描述晶体结构的基本单元。

②晶体中晶胞的排列——无隙并置 a.无隙:相邻晶胞之间没有____________。 b.并置:所有晶胞______排列、取向相同。 (4)晶格能 ①定义:气态离子形成1摩离子晶体释放的能量,通常取正值,单位:_________________。 ②影响因素 a.离子所带电荷数:离子所带电荷数越多,晶格能越大。 b.离子的半径:离子的半径________,晶格能越大。 ③与离子晶体性质的关系 晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度___________。2.四种晶体类型的比较

3.晶体熔沸点的比较 (1)不同类型晶体熔、沸点的比较 ①不同类型晶体的熔、沸点高低的一般规律:________________>离子晶体>____________。 ②金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。 (2)同种晶体类型熔、沸点的比较

①原子晶体: 原子半径越小―→键长越短―→键能越大―→ ②离子晶体: a .一般地说,阴、阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,其离子晶体的熔、沸点就越高,如熔点:MgO____MgCl 2______NaCl______CsCl 。 b .衡量离子晶体稳定性的物理量是晶格能。晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。 ③分子晶体: a .分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常地高。如H 2O >H 2Te >H 2Se >H 2S 。 b .组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH 4>GeH 4>SiH 4>CH 4。 c .组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点____________,如CO >N 2,CH 3OH >CH 3CH 3。 d .同分异构体,支链越多,熔、沸点越低。 ④金属晶体: 金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高,如熔、沸点:Na <Mg <Al 。 2.在下列物质中:NaCl 、NaOH 、Na 2S 、H 2O 2、Na 2S 2、(NH 4)2S 、CO 2、CCl 4、C 2H 2、SiO 2、SiC 、晶体硅、金刚石。 (1)其中只含有离子键的离子晶体是________;

晶体的类型和性质

高三化学教案:晶体的类型和性质 1.四种基本晶体类型 分类 晶体质点间作用力 物理性质 熔化时的变化 代表物 离子晶体 原子晶体 分子晶体 金属晶体 混合型晶体 要求: 物理性质应从熔、沸点、硬度、导电性等方面展开并回答。 熔化时的变化应从化学键或分子间作用力的破坏,以及破坏后成为的粒子来回答。 代表物应从物质的分类来回答,不能回答一些具体的物质。 2.四种基本晶体类型的判断方法 (1)从概念,物质分类上看,由__________组成,通过_________和_________强烈相互作用而形成的晶体为金属晶体。

构成晶体质点为_________,这些质点间通过_________间作用力,而形成的晶体为分子晶体。共价化合物一般为_________晶体,但SiO2、SiC为_________晶体;离子化合物一定为 _________晶体 (2)由晶体的物理性质来看 ①根据导电性,一般地:熔融或固态时都不导电的是_________晶体或_________晶体,熔融或固态都能导电的为_________晶体;固态时不导电,熔化或溶于水时能导电的一般为 _________晶体;液态、固态、熔融都不能导电,但溶于水后能导电的晶体是_________晶体。一种称为过渡型或混合型晶体是_________,该晶体_________导电 ②根据机械性能:具有高硬度,质脆的为_________晶体,较硬且脆的为_________晶体,硬度较差但较脆的为 _________晶体,有延展性的为_________晶体。 ③根据熔、沸点:_________晶体与_________晶体高于 _________晶体。_________晶体熔沸点有的高,有的低。 3.典型晶体的粒子数 物质 晶型 重复单位几何形状 粒子数 NaCl 每个Cl- 周围与它最近等距的Na+有______个 CsCl 立方体 每个Cs+(Cl-)等距的Cl-(Cs+)有______个 金刚石

四种晶体比较

四种晶体比较 This model paper was revised by the Standardization Office on December 10, 2020

四种晶体比较表 注:离子晶体熔化时需克服离子键,原子晶体熔化时破坏了共价键,分子晶体熔化时只克服分子间作用力,而不破坏化学键。 晶体熔沸点的比较 一、看常态:1、常态:固 >液 >气。

2、一般情况下,原子晶体>离子晶体 (金属晶体)>分子晶体。 3、原子晶体:共价键 (取决于原子半径)。 4、离子晶体:离子键 (取决于离子半径和离子电荷) 5、金属晶体:金属键 (取决于金属原子半径和价电子数) 6、分子晶体:①结构相似,分子量越大,熔沸点越高。 ②分子量相等,正>异>新。③氢键反常 二、看类型 三、分类比较 18.请完成下列各题: (1)前四周期元素中,基态原子中未成对电子与其所在周期数相同的元素有种。 (2)第ⅢA、ⅤA原元素组成的化合物GaN、GaP、GaAs等是人工合成的新型半导体材料,其晶体结构与单晶硅相似。Ga原子的电子排布式为。 在GaN晶体中,每个Ga原子与个N原子相连,与同一个Ga原子相连的N原子构成的空间构型为。在四大晶体类型中,GaN属于 晶体。 (3)在极性分子NCl 3 中,N原子的化合物为―3,Cl原子的化合价为+1,请 推测NCl 3 水解的主要产物是(填化学式)。 19.生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO 2、H 2 等)与H 2 混合,催化合成甲醇是生物质能利用的方法之一。 (1)上述反应的催化剂含有Cu、Zn、Al等元素。写出基态Zn原子的核外电子排布式。 (2)根据等电子原理,写出CO分子结构式。 (3)甲醇催化氧化可得到甲醛,甲醛与新制Cu(OH) 2的碱性溶液反应生成Cu 2 O 沉淀。 ①甲醇的沸点比甲醛的高,其主要原因是;甲醛分子中碳原子轨道的杂化类型为。 ②甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。

晶体的基本性质

晶体的基本性质 自限性:晶体具有自发形成几何多面体形态的性质,这种性质成为自限性。2、均一性和异向性:因为晶体是具有格子构造的固体,同一晶体的各个部分质点分布是相同的,所以同一晶体的各个部分的性质是相同的,此即晶体的均一性;同一晶体格子中,在不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,此即晶体的异向性。3、最小内能与稳定性:晶体与同种物质的非晶体、液体、气体比较,具有最小内能。晶体是具有格子构造的固体,其内部质点作规律排列。这种规律排列的质点是质点间的引力与斥力达到平衡,使晶体的各个部分处于位能最低的结果。 溶剂的选择方法 溶剂的选择运用溶剂提取法的关键,是选择适当的溶剂。溶剂选择适当,就可以比较顺利地将需要的成分提取出来。医学教育网搜集整理了溶剂的选择方法内容供大家参考,助大家顺利通过初级中药师考试。 选择溶剂要注意以下三点:①溶剂对有效成分溶解度大,对杂质溶解度小;②溶剂不能与中药的成分起化学变化;③溶剂要经济、易得、使用安全等。 1)水:水是一种强的极性溶剂。中草药中亲水性的成分,如无机盐、糖类、分子不太大的多糖类、鞣质、氨基酸、蛋白质、有机酸盐、生物碱盐及甙类等都能被水溶出。为了增加某些成分的溶解度,也常采用酸水及碱水作为提取溶剂。酸水提取,可使生物碱与酸生成盐类而溶出,碱水提取可使有机酸、黄酮、蒽醌、内酯、香豆素以及酚类成分溶出。但用水提取易酶解甙类成分,且易霉坏变质。某些含果胶、粘液质类成分的中草药,其水提取液常常很难过滤。沸水提取时,中草药中的淀粉可被糊化,而增加过滤的困难。故含淀粉量多的中草药,不宜磨成细粉后加水煎煮。中药传统用的汤剂,多用中药饮片直火煎煮,加温可以增大中药成分的溶解度外,还可能有与其他成分产生"助溶"现象,增加了一些水中溶解度小的、亲脂性强的成分的溶解度。但多数亲脂性成分在沸水中的溶解度是不大的,既使有助溶现象存在,也不容易提取完全。如果应用大量水煎煮,就会增加蒸发浓缩时的困难,且会溶出大量杂质,给进一步分离提纯带来麻烦。中草药水提取液中含有皂甙及粘液质类成分,在减压浓缩时,还会产生大量泡沫,造成浓缩的困难。通常可在蒸馏器上装置一个汽一液分离防溅球加以克服,工业上则常用薄膜浓缩装置。医学教育网 2)亲水性的有机溶剂:也就是一般所说的与水能混溶的有机溶剂,如乙醇(酒精)、甲醇(木精)、丙酮等,以乙醇最常用。乙醇的溶解性能比较好,对中草药细胞的穿透能力较强。亲水性的成分除蛋白质、粘液质、果胶、淀粉和部分多糖等外,大多能在乙醇中溶解。难溶于水的亲脂性成分,在乙醇中的溶解度也较大。还可以根据被提取物质的性质,采用不同浓度的乙醇进行提取。用乙醇提取比用水量较少,提取时间短,溶解出的水溶性杂质也少。乙醇为有机溶剂,虽易燃,但毒性小,价格便宜,来源方便,有一定设备即可回收反复使用,而且乙醇的提取液不易发霉变质。由于这些原因,用乙醇提取的方法是历来最常用的方法之一。甲醇的性质和乙醇相似,沸点较低(64℃),但有毒性,使用时应注意。 第四章溶剂选择

相关文档