文档库 最新最全的文档下载
当前位置:文档库 › 高二数学(立体几何)复习资料两套

高二数学(立体几何)复习资料两套

高二数学(立体几何)复习资料两套
高二数学(立体几何)复习资料两套

高二数学(立体几何)①

一. 选择题:(将你认为的正确答案写到题号前)

1. 下列命题中正确的一个是

A. 四棱柱是平行六面体

B. 直平行六面体是长方体

C. 底面是矩形的四棱柱是长方体

D. 六个面都是矩形的六面体是长方体

2. 已知l ⊥α,m ?β,则下面四个命题其中正确的是①α∥β则l ⊥m ②α⊥β则l ∥m

③l ∥m 则α⊥β④l ⊥m 则α∥β

A.①②

B.③④

C.②④

D.①③

3. 如图,在棱长为1的正方体ABCD A B C D -1111中,M 和N 分别为11

A B

和1BB 的中点,那么直线AM 与CN 所成的角的余弦值是

C. 35

D. 2

5

4. 线段AB 两端点到平面α的 距离分别是6cm 和10cm ,则它的中点到α

的距离是 A. 6cm B. 8cm

C. 2cm

D.8cm 或2cm

5. 如图,正方体ABCD A B C D -

1111中,1BC 与对角面11BB D D 所成的角是

A.11C BD ∠

B.11C BO ∠

C.11C BB ∠

D.1C BD ∠

6. 已知二面角αβ--a 为 60,如果平面α内一点A 到平面β的距离

为A 在平面β上的射影A ′到平面α的距离为

7. 空间一点P 到二面角l αβ--的两个面的距离分别为1P 到l 的距离等于2,

则二面角l αβ--的大小为 A .75° B. 15°

C. 105°

D. 75°或15°

8. 如图代表未折叠正方体的展开图,将其折叠起来,变成正方体

后,图形是

A

B C D

二. 填空题:

9.已知BAC ∠在平面α内,PA 是平面的斜线,若60,PAB PAC BAC PA a ∠=∠=∠== ,则点P 到平面α的距离是

10.设P 为直角三角形ABC 所在平面外一点,9024,ACB PC cm ∠== ,P 到两直角边的

A B C A

B

C

D E

F 1

1

1

距离都是,则PC 与平面α所成的角为

11. 已知三棱锥D ABC -的三个侧面与底面全等,

且2AB AC BC ===,则以BC 为棱,以面BCD 与面BCA 的二面角的大小是

12. 已知、a b 是异面直线,a 上有A B 、两点相距8cm ,b 上有C D 、两点相距6cm ,AD 和BC 的中点分别为M N 、,且5MN cm =,则、a b 所成角的度数为 三. 解答题: 13.在空间四边形ABCD 中,AB BC CD DA AC BD =====,E F 、分别是BC 和AD 的中点,求异面直线AE 与CF 所成角的余弦值。

14.已知:如图,ABC △中,90,CD ACB ∠=⊥ 平面α,BD AD 、和平面α所成角分别为30°和45°,CD h =,求:D 点到直线AB 的距离。

15.正三棱柱ABC -A 1B 1C 1中,BC =2,AA 1=6,D 、E 分别是AA 1、B 1C 1的中点. (1)求证:面AA 1E ⊥面BCD ;

(2) 求直线A 1B 1与平面BCD 所成的角.

高二数学(立体几何)②

一.选择题:(将你认为的正确答案写到题号前)

1)两条异面直线的距离是:

(A)和两条异面直线都垂直相交的直线(B)和两条异面直线都垂直的直线

(C)它们的公垂线夹在垂足间的线段的长(D)两条直线上任意两点间的距离

2)边长为1的正方形ABCD,沿对角线AC折成直二面角后,B D

、两点的距离为:

(A)1 (B)2(C(D

3)已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行截面间的距离是:

(A)1 (B)

2(C)1或7(D)2或6

4)在平行六面体ABCD A B C D

-

1111

中,M为AC与BD的交点,若1

AB a

=

1

AD b

=

1

AA c

=

则下列向量中与

1

B M

相等的向量是:

(A)11

22

a b c

-++

(B)11

22

a b c

++

(C)11

22

a b c

-+

(D)11

22

a b c

--+

5)菱形ABCD中,∠A=60°,边长为3,沿对角线BD把它折成60°的二面角,则AC与BD的距离是

(A(B)3

4

(C)3

2

(D

6)△ABC和△DBC所在的平面互相垂直,AB=BC=BD,∠ABC=∠DBC=120则二面角A BD C

--的正切值为

(A)2 (B)-2(C(D

7)如图,在正方形ABCD A B C D

-

1111

中,M是棱

1

DD的中点,P为棱

11

A B

上任意一点,则直线OP与直线AM所成的角为

(A)

4

π

(B)

3

π(C)

2

π(D)与P点位置有关

8)如图,水平地面上有一个大球,现有如下方法测量球的大小,用一个锐角为45°的三角板,斜边紧靠球面,一条直角边紧靠地面,并使三角板与地面垂直,如果测得PA=5cm,则球的表面积为

(A)100πcm2(B)100(3+22)πcm2

(C)100(3-22)πcm2 (D)200πcm2

F

E

G D

1C 1

B 1

A 1D C

A E

F D 1

C 1

B 1

A 1D

C

B

A

P

N

M D

C

B

A

二. 填空题:

9)在半径为25cm 的球内有一个截面,它的面积是249cm π,那么球心到这

个截面的距离为 10)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,G 、E 分别为BB 1、C 1D 1

的中点,点F 是正方形ADD 1A 1的中心,则四边形BGEF 在正方体六个面内的

射影图形的面积的最大值为

11)已知长方体ABCD-A 1B 1C 1D 1中,AB = 5 , AA 1 = 4 , AD = 3,从点A 出发沿着表面运动到C 1的最短路线的长是

12)已知△ABC 中,AB=9,AC=15,∠BAC=120°,△ABC 所在平面外一点P 到此三角形三个顶点的距离都是14,则点P 到平面ABC 的距离是

三. 解答题:

13)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,PA =AD =a ,M 、N 分别是AB 、PC 的中点.

(1)求平面PCD 与平面ABCD 所成的二面角的大小; (2)求证:平面MND ⊥平面PCD .

14)在长方体ABCD -A 1B 1C 1D 1中,AB

AA 1=1,AD =3,E 、F 分别是AB 、C 1D 1的中点.(1)求证:A 1B 1⊥EF ;(2)求直线A 1B 1与平面A 1EF 所成的角.

15)如图,斜三棱柱ABC -A 1B 1C 1的底面是边长为a 的正三角形,侧棱AA 1长为

3

2

a ,它和AB 、AC 均为60?。 (1)求证:平面A 1BC ⊥平面ABC ;(2)求A 到侧面BC 1的距离。

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高二数学 三角函数高考解答题常考题型

( )() 2 2 2αβ β ααβ+=- -- 等), 如(1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:3 22); (2)已知02πβαπ<<<<,且129cos()βα-=-,2 23 sin()αβ-=,求cos()αβ+的值 (答:490729 ); (3)已知,αβ为锐角,sin ,cos x y αβ==,3 cos()5 αβ+=- ,则y 与x 的函数关系为______(答:2343 1(1)555 y x x x =- -+<<) 三、解三角形 Ⅰ.正、余弦定理⑴正弦定理 R C c B b A a 2sin sin sin ===(R 2是AB C ?外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③ C B A c b a C c B b A a sin sin sin sin sin sin ++++===。 ⑵余弦定理:A bc c b a cos 22 2 2 -+=等三个;注:bc a c b A 2cos 2 22-+=等三个。 Ⅱ。几个公式: ⑴三角形面积公式:))(2 1 (,))()((sin 2 1 21c b a p c p b p a p p C ab ah S ABC ++= ---=== ?; ⑵内切圆半径r= c b a S ABC ++?2;外接圆直径2R= ;sin sin sin C c B b A a == ⑶在使用正弦定理时判断一解或二解的方法:⊿ABC 中,sin A B A >?Ⅲ.已知A b a ,,时三角形解的个数的判定: 其中h=bsinA, ⑴A 为锐角时: ①a

2015年高二数学学业水平考试复习学案(1318)立体几何

俯视图侧视图 正视图高二学考必修二学案 第1课 空间几何体的结构、三视图和直观图 一、要点知识:1、棱(圆)柱、棱(圆)锥、棱(圆)台的结构特征: (1)___________________________________,_______________________________________, _______________________________________,由这些面所围成的多面体叫做棱柱。 (2)___________________________________,____________________________由这些面所围成的多面体叫做棱锥。 (3)______________________________________________________这样的多面体叫做棱台。 (4)______________________________________________________叫做圆柱,旋转轴叫做_______,垂直与轴的边旋转而成的圆面叫做_______,平行与轴的边旋转而成的曲面叫做______,无论旋转到什么位置,不垂直于轴的边都叫做___________ (5) _____________________________________________________所围成的旋转体叫做圆锥。 (6) _____________________________________________________叫做圆台。 (7) _____________________________________________________叫做球体,简称球。 2、中心投影、平行投影及空间几何体的三视图、直观图 (1)光由一点向外散射形成的投影,叫做______________ (2)在一束平行光线照射下形成的投影,叫做__________,投影线正对着投影面时,叫做正投影,否则叫斜投影。 3、正视图:光线从物体的_______投影所得的投影图,它能反映物体的_______和长度。 侧视图:光线从物体的________投影所得的投影图,它能反映物体的高度和宽度。 俯视图:光线从物体的________投影所得的投影图,它能反映物体的长度和宽度。 学业水平考试怎么考 1. 下列几何体中,正视图、侧视图和俯视图都相同的是( ). A .圆柱 B.圆锥 C.球 D.三菱柱 2、如图是一个几何体的三视图,则该几何体为( ) A 、球 B 、圆柱 C 、圆台 D 、圆锥 3.如图是一个几何体的三视图,则该几何体为( ) A.球 B.圆锥 C.圆柱 D.圆台 二、课前小练: 1、有一个几何体的三视图如下图所示,这个几何体应是一个( ) A 、棱台 B 、棱锥 C 、棱柱 D 、都不对 2、下列结论中 (1).有两个面互相平行,其余各面都是平面四边形的几何体叫棱柱 ; (2).有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱; (3).用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台; (4).以直角三角形的一条直角边所在直线为旋转轴将直角三角形旋转一周而形成的曲面所围成的几何体叫 圆锥。其中正确的结论是( ) A.3 B.2 C.1 D.0 3、将图1所示的三角形绕直线l 旋转一周,可以得到如图2所示的几何体的是哪一个三角 形( ) 4、下面多面体是五面体的是( ) C ′ A ′ Y ′ D ′

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高二数学三角函数化简及证明测试题

a 2sin 4-a 2cos 4a 2cos 2a 2sin ,21tan +-=则252 5-14114 1-a 4asin 2sin 41a 8sin -a 8cos +]sin )a 2[sin(2 1)cosa sin(a βββ-+-+§3.2.2 三角函数化简及证明 编者:任传军 【学习目标 细解考纲】 1. 能正确运用三角公式,进行简单三角函数式的化简和恒等式证明(包括引出半角、积化和差、和差化积公式,但不要求记忆); 2. 掌握三角函数式的化简和证明的方法及步骤。 【知识梳理、双基再现】 1.cosαcosβ= ;sinαcosβ= 2.sinθ+sinφ= ; sinθ-sinφ= ; cos θ+cos φ= ; cos θ-cos φ= 【小试身手、轻松过关】 1.已知 的值是( ) A. B. C. D. 2. 4cos 22sin 2+-等于 ( ) A. 2sin B. 2cos - C. 2cos 3 D. 2cos 3- 3. 等于( ) A. cosa B. cos2a C. sina D a 2sin 4.化简4cos 224sin 12+++的结果是 。 【基本训练、锋芒初显】 5. 可化简为( ) A. ββsin )a 2sin(++- B. )a 2sin(β+-

)2 x 4tan()4x x tan(--+ππ2x tan 2 x tan 20 70sin 020sin -010cos 22123a a -1tan =θ=++θθθθcos -a 2sin cos a 2sin =-+2a 4sin 82a 2sin 6a 2cos =-+)cos(a )sin(a ββa)4 (2a)sin 4tan(21 a 2cos 2+--ππsina sin )cos(a 2sina )a 2sin(βββ=+-+ C. βsin D. 0 6.化简 等于 A. tanx B. 2tanx C. D. . 7. 的值是( ) A. B. C.3 D. 2 8. )1020tan 3( 010cos 070tan -?等于( ) 9. 若 (其中0

高二立体几何大全

立体几何习题 1. 如图,四棱锥P-ABCD 的底面是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面 (1) 证明MF 是异面直线AB 与PC 的公垂线; (2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值 2. 已知三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均为a ,侧面A 1ACC 1⊥底面ABC ,A 1B =2 6a , (Ⅰ)求异面直线AC 与BC 1所成角的余弦值; (Ⅱ)求证:A 1B ⊥面AB 1C . 3. 如图,四棱锥S ABCD -的底面是边长为1的正方形,SD 垂直于底面 ABCD ,SB = 3 1.求证BC SC ⊥; 2.求面ASD 与面BSC 所成二面角的大小; 3.设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小 B C D A P M F E

4. 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 5. 如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 6. 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ; (II )求以AC 为棱,EAC 与DAC 为面的二面角 的大小; (Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 1 B 1D B A 1E F B C D A P E

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

高中高二数学必修三《三角函数公式》整理.doc

高二数学必修三《三角函数公式》整理【倍角公式】 tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 【半角公式】 sin(A/2)= √((1-cosA)/2)sin(A/2)=- √((1-cosA)/2) cos(A/2)= √((1+cosA)/2)cos(A/2)=-√((1+cosA)/2) tan(A/2)= √((1-cosA)/((1+cosA))tan(A/2)=- √((1-cosA)/((1+cosA)) ctg(A/2)= √((1+cosA)/((1-cosA))ctg(A/2)=- √((1+cosA)/((1-cosA)) 【两角和公式】 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 【积化和差公式】 sin α· cosβ=1/2[sin(α+β-β)+sin()]α cosα· sin β=1/2[sin(-sin(α+αβ)-)] cosα· cosβ=1/2[cos( α+β-)+cos(β)] α sin α· sin-1/2[cos(β= α+-β)cos( α-β)] 【和差化积公式】 sin α+sin β=2sin( α+β)/2-β·)/2cos( α sin α-sin β=2cos( α+β)/2 ·-βsin()/2 α cosα+cosβ=2cos( α+β)/2 ·-βcos()/2 α cosα-cosβ=-2sin( α+β)/2 ·-sin(β)/2α

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==, F , G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高二数学三角函数知识点

高二数学三角函数知识点 归纳 1. 终边与终边相同的终边在终边所在射线上 . 终边与终边共线的终边在终边所在直线上 . 终边与终边关于轴对称 . 终边与终边关于轴对称 . 终边与终边关于原点对称 . 一般地:终边与终边关于角的终边对称 . 与的终边关系由“两等分各象限、一二三四”确定. 2.弧长公式:,扇形面积公式:,1弧度1rad . 3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正. 4.三角函数线的特征是:正弦线“站在轴上起点在轴上”、余弦线“躺在轴上起 点是原点”、正切线“站在点处起点是”.务必重视“三角函数值的大小与单位圆上相 应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵 坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系. 为 锐角 . 5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函 数的取值,精确确定角的范围,并进行定号”; 6.三角函数诱导公式的本质是:奇变偶不变,符号看象限. 7.三角函数变换主要是:角、函数名、次数、系数常值的变换,其核心是“角的变 换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 常值变换主要指“1”的变换: 等. 三角式变换主要有:三角函数名互化切割化弦、三角函数次数的降升降次、升次、运 算结构的转化和式与积式的互化.解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.

注意:和差角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次升次公式中 的符号特征.“正余弦‘三兄妹—’的联系”常和三角换元法联系在一起 . 辅助角公式中辅助角的确定:其中角所在的象限由a, b的符号确定,角的值由 确定在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为的情形. 有实数解 . 8.三角函数性质、图像及其变换: 1三角函数的定义域、值域、单调性、奇偶性、有界性和周期性 注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来, 某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是 偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是 , 但的周期为,y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗? 2三角函数图像及其几何性质: 3三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换. 4三角函数图像的作法:三角函数线法、五点法五点横坐标成等差数列和变换法. 9.三角形中的三角函数: 1内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是 钝角任意两边的平方和大于第三边的平方. 2正弦定理: R为三角形外接圆的半径. 注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有 两解. 3余弦定理:等,常选用余弦定理鉴定三角形的类型. 感谢您的阅读,祝您生活愉快。

高二文科数学立体几何平行与垂直部分练习题

高二文科数学立体几何平行与垂直部分练习题 1.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE ; (3)求直线BE 与平面1A AC 所成角的正弦值. 2.如图,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F.求证:EF ∥平面ABCD. 3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明:PB //平面AEC ; (2)设1,3AP AD ==三棱锥P ABD -的体积34 V =求A 到平面PBC 的距离.

A D B C P E 4.如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点. (1)求证:MN∥平面PAD; (2)求证:MN⊥DC; 5.已知四棱锥P ABCD -的底面为直角梯形,// AB DC,⊥ = ∠PA DAB, 90ο底面ABCD,且1 PA AD DC ===,2 AB=,M是PB的中点. (1)求证:CM PAD P面; (2)证明:面PAD⊥面PCD; (3)求AC与PB所成的角的余弦值; (4)求棱锥M PAC -的体积。 6.已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点 A B C D P N

(1)求证:AN∥平面MBD; (2)求异面直线AN与PD所成角的余弦值; (3)求二面角M-BD-C的余弦值. 7.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC⊥平面BDE 8.在四棱锥ABCD P-中,底面ABCD为矩形,ABCD PD底面 ⊥,1 = AB,2 = BC,3 = PD,F G、分别为CD AP、的中点. (1) 求证:// FG平面BCP; (2) 求证:PC AD⊥; F G P D C B A 9.如图,已知在侧棱垂直于底面的三棱柱111 ABC A B C -中,3 AC=,5 AB=,4 BC=,P M D C B A N

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

高二数学三角函数知识点总结

高二数学三角函数知识点总结 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα

cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 锐角三角函数公式 两角和与差的三角函数: sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+co sα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

高中数学立体几何习题

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 A E D 1 C B 1 D A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面. S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; (2)当90APB ∠=o ,24AB BC ==时,求MN 的长。 A A B 1 C 1 C D G E F

相关文档
相关文档 最新文档