文档库 最新最全的文档下载
当前位置:文档库 › 随机振动控制系统的正弦加随机测试(SOR)

随机振动控制系统的正弦加随机测试(SOR)

随机振动控制系统的正弦加随机测试(SOR)
随机振动控制系统的正弦加随机测试(SOR)

一些振动环境的特征在于来自往复式或旋转式机器(如转子叶片,螺旋桨或活塞)的准周期性激励。模拟这种情况的一种好方法是将一个或多个高级窄带或正弦振动分量叠加在低级宽带随机分布上。这些被称为混合模式随机测试。

EDM支持两种类型的混合模式随机测试:正弦+随机测试(SoR) 和随机+随机测试(RoR)。在每一种测试类型中,额外的振动目标谱被放置在常规宽带随机目标谱上。在正弦+随机(SoR)中,这个额外的目标谱由一个或多个正弦波组成,它会在指定的频率范围内进行扫频。随机目标谱可以表示基础激励或背景噪声水平,而正弦波表示强烈的单频激励。这比一个随机测试本身更能模仿一些真实世界的情况。

下图显示了Mil-810F中描述的SoR的典型分布。注意,随机宽带目标谱以功率谱密度或g2 / Hz为单位来定义,而正弦分量是单位为g的振幅来定义的。

当SoR运行时,正弦分量将被叠加显示在宽带随机目标谱上。

Spider振动台控制仪(如Spider-81)有强大的正弦+随机功能,允许有多达12个独立的正弦分量,或多达20个谐波。可以通过控制面板上的按钮手动控制这些随机分量,或者预先在运行计划中设置。每个扫频都有自己特定的扫频范围和速度。利用Spider-HUB交换机连接,可构建多达512个输入通道的硬件系统。当显示信号时,它可以以G2 / Hz的方式显示功率谱密度,这种方式适用于测量随机信号,或以G-Peak方式显示,这更适合测量正弦分量信号的幅度。

杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

高层楼房震动测试报告

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

ANSYS随机振动理论

§4.5随机振动(PSD)分析步骤 PSD分析包括如下六个步骤: 1.建造模型; 2.求得模态解; 3.扩展模态; 4.获得谱解; 5.合并模态; 6.观察结果。 以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。ANSYS/Professional产品中不能进行随机振动分析。 如果选用GUI交互方法进行分析,模态分析选择对话框(MODOPT命令)中包含有是否进行模态扩展选项(MXPAND命令),将其设置为YES就可以进行下面的:扩展模态。这样,第二步(求得模态解)和第三步(扩展模态)就合并到一个步骤中进行计算。 §4.4.9建造模型 该步与其它分析类型建立模型的过程相似,即定义工作名、分析的标题、单元类型、单元实常数、材料性质、模型几何形状等。注意以下两点: ·只有线性行为在谱分析中才是有效的。任何非线性单元均作为线性处理。如果含有接触单元,那么它们的刚度始终是初始刚度,不再改变; ·必须定义材料弹性模量(EX)(或其他形式的刚度)和密度(DENS)。材料的任何非线性将被忽略,但允许材料特性是线性的、各向同性或各向异性以及随温度变化或不随温度变化。 §4.5.0获得模态解 结构的模态解(固有频率和振型)是计算谱解所必须的。模态分析的具体过程在《模态分析》中已经阐述过,这里还需注意以下几点: ·使用Block Lanczos法(缺省)、子空间法或缩减法提取模态。非对称法、阻尼法、QR阻尼法以及PowerDynamics法对下一步谱分析是无效的;

·所提取的模态数目应足以表征在感兴趣的频率范围内结构所具有的响应; ·如果使用GUI交互式方法进行分析,模态分析设置[MODOPT]对话框的扩展模态选项置为NO状态,那么模态计算时将不进行模态扩展,但是可以选择地扩展模态(参看MXPAND命令的SIGNIF输入项的用法)。否则,将扩展模态选项置为YES状态。 ·材料相关阻尼必须在模态分析中进行指定; ·必须在施加激励谱的位置添加自由度约束; ·求解结束后退出SOLUTION处理器。 §4.5.1扩展模态 无论选用子空间法、Block Lanczos法还是缩减法,都必须进行模态扩展。关于模态扩展,《动力学分析指南—模态分析》部分“扩展模态”一节有详细讲述。另外还需注意以下几点: ·只有扩展后的模态才能在以后的模态合并过程中进行模态合并操作; ·如果对谱所产生的应力感兴趣,这时必须进行应力计算。在缺省情况下,模态扩展过程是不包含应力计算的,这同时意味着谱分析将不包含应力结果数据。 ·模态扩展可以作为一个独立的求解过程,也可以放在模态分析阶段; ·在模态扩展结束之后,应执行FINISH命令退出求解器(SOLUTION)。 正如《动力学分析指南—模态分析》部分中讲述的那样,在进行模态分析时执行MXPAND命令就可以将模态求解和模态扩展合并成一步(GUI交互方法和批处理方法)。 §4.5.2获得谱解 功率谱密度谱求解时,系统数据库必须包含模态分析结果数据,以及模态求解获得的下列文件:Jobname.MODE、Jobname.ESAV、Jobname.EMAT、Jobname.FULL (仅子空间法和Block Lanczos法有)和Jobname.RST。 1.进入求解器(/SOLU命令) Command: /SOLU GUI: Main Menu > Solution

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): 2 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位(:): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(C): (2) 1.2.6 对数衰减率(3): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗) : (5) 1.4.2 三角窗(Bartlett 或Fejer 窗) : 5 1.4.3 汉宁窗(Hanning 窗): 5 1.4.4 海明窗(Hamming 窗) (6) 1.4.5 高斯窗(Gauss 窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型:8 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13)

振动监测参数及标准

机械设备振动监测参数及标准 一、振动诊断标准的制定依据 1、振动诊断标准的参数类型 通常,我们用来描述振动的参数有三个:位移、速度、加速度。一般情况下,低频振动采用位移,中频振动采用速度,高频振动采用加速度。 诊断参数在选择时主要应根据检测目的而选择。如需要关注的是设备零部件的位置精度或变形引起的破坏时、应选择振动位移的峰值,因为峰值反映的是位置变化的极限值;如需关注的是惯性力造成的影响时,则应选择加速度,因为加速度与惯性力成正比;如关注的是零件的疲劳破坏则应选择振动速度的均方根值,因为疲劳寿命主要取决于零件的变形能量与载荷的循环速度,振动速度的均方根值正好是它们的反映。 2、振动诊断标准的理论依据 各种旋转机械的振动源主要来自设计制造、安装调试、运行维修中的一些缺陷和环境影响。振动的存在必然引起结构损伤及材料疲劳。这种损伤多属于动力学的振动疲劳。它在相当短的时间产生,并迅速发展扩大,因此,我们应十分重视振动引起的疲劳破坏。 美国的齿轮制造协会(AGMA)曾对滚动轴承提出了一

条机械发生振动时的预防损伤曲线,如下图所示。 图中可见,在低频区(10Hz 以下),是以位移作为振动标准,中频(10~1000Hz )是以速度作为振动标准,而在高频区(1KHz 以上)则以加速度作为振动标准。 理论证明,振动部件的疲劳与振动速度成正比,而振动所产生的能量与振动的平方成正比。由于能量传递的结果造成了磨损好其他缺陷,因此,在振动诊断判定标准中,是以速度为准比较适宜。 而对于低频振动,,主要应考虑由于位移造成的破坏,其实质是疲劳强度的破坏,而非能量性的破坏。但对于1KHz 以上的高频振动,则主要考虑冲击脉冲以及原件共振的影响。 3、振动诊断标准的分类

变频器机械可靠性测试规范V

变频器机械可靠性 测试规范 拟制:_____黄国华________日期:2010-08-01 审核:___________________日期:__________ 批准:___________________日期:__________

更改信息登记表 规范名称:变频器机械可靠性测试规范 规范编码: 评审会签区: 人员签名意见日期 目录 1. 目的...............................................................................................................................................

2. 范围............................................................................................................................................... 3. 定义............................................................................................................................................... 4. 引用标准....................................................................................................................................... 5. 测试设备....................................................................................................................................... 6. 试验环境....................................................................................................................................... 7. 测试项目....................................................................................................................................... 7.1.测试项目清单 ............................................................................................................ 7.2.试验样品工作状态半正弦波冲击试验 .................................................................... 7.3.试验样品非工作状态半正弦波冲击试验 ................................................................ 7.4.试验样品梯形波冲击试验 ........................................................................................ 7.5.试验样品工作状态正弦扫频试验 ............................................................................ 7.6.试验样品工作状态随机振动试验 ............................................................................ 7.7.试验样品非工作状态随机振动试验 ........................................................................ 7.8.试验中断处理 ............................................................................................................ 8. 数据记录及报告格式 ................................................................................................................... 8.1.机械可靠性测试数据记录表 .................................................................................... 8.2.机械可靠性测试报告格式 ........................................................................................ 变频器机械可靠性测试规范 1.目的 检验变频器产品机械可靠性是否满足标准和客户要求;本规范主要集中在验证变频器产品在冲击和振动环境因素规定限值内的工作能力,评定产品对贮存、运输、搬运及使用环境的适应性。 2.范围 本规范规定的机械可靠性测试方法,适用于英威腾电气股份有限公司开发的所有变频器产品。 3.定义 ●可靠性(reliability):产品在规定条件下、规定时间内完成规定功能的能力。 ●环境可靠性试验(environmental reliability test):采用自然暴露或人工模拟的方法 将产品暴露在特定环境中,为验证产品环境可靠性而开展的试验;完整的环境试验操作顺序,通常包括预处理(必要时)、初始检测(必要时)、条件试验、恢复、最后检测。 ●初始检测(initial examination and measurement):预处理后,条件试验之前对试验

标准振动试验介绍

标准振动试验介绍 简介 振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗能力. 物体或质点相对于平衡位置所作的往复运动叫振动。振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。描述振动的主要参数有 动频率为f时D 振动试验标准GJB 150.25-86 GB-T 4857.23-2003 GBT4857.10-2005 目前可以进行该试验的试验室有测量控制设备及系统实验室、环境可靠性与电磁兼容试验中心、苏州电器科学研究所。在现场或实验室对振动系统的实物或模型进行的试验。振动系统是受振动源激励的质量弹性系统 现在已被推广到动力机械、交通运输、建筑等各个工业部门及环境保护、劳动保护方面 及振动环境试验等内容。响应测量主要是振级的测量。为了检验机器、结构或其零部件的运行品质、安全可靠性以及确定环境振动条件各种实际工况下 ;对平稳随机振动, 级的度量。选定 动态特性参量的测定 动态特性参量的简易测定方法 ①固有频率测定用敲击或突然卸载 使系统产生自由振动,记录其衰减波形并与仪器中的时标信号比较,或将信号发生器产生的 ②振型测定手持木质或铝质探针接触被测 致判断振型。③阻尼测定可采用衰减振动法、共振法和相位法。衰减振动法是用记录仪 出阻尼值。机械导纳方法机械导纳是系统频域的特征参量(见机械阻抗)。大型复杂结构的固有频率多而密集, 图 时域识别方法直接利用振动的时间 (系统的时域特性参量之一,其傅里叶变换即机械导纳)的关系直接计算模态参量。对受迫振动,可以用数字

载荷识别指分析和确定振源的 谱分析或相关分析方法得出。振动环境试验为了了解产品的耐振寿命和性能指标的稳定 环境的振动、冲击条件下进行 法分两大类:①标准试验,包括耐预定频率试验、耐共振试验、正弦扫描试验、宽带随机振动 机振动试验、随机波再现试验、正弦波和随机波混合试验等。(见振动环境试验) 振动试验数据处理和分析 理法。振动试验意义和使用在运输 运输 振动摆放方位会影响到货 运箱、它的内包装、封装和内在产品。测试允许分析这些部件的相互作用。更改其中一个或 方法 A1重复振动(垂直运动) 测试 A2重复振动(旋转运动)测试 B单个货运箱共振(垂直运动)测试 C水平负载、复合负载、垂直负载共振测试 用性。这些方法符合ISO8318和ISO2247。方法A1和方法A2 在运输车里没有受到任何限制的单个货运箱及因单个负载或堆放负载的放大振动而受到重复振动的货运箱。备注1A1和方法A2产生不同 导致不同的损坏类型和强度。两种测试方法的测试结果不能相互关联。 B方法B 备注2 用方法C来测试。方法C 放。 4.8(包括测试强度、频率范围、测试周期) 这些测试的结果是相互不同的。振动试验设备使用方法仪器测试方法A1-重复振动 测试(垂直运动) 面的运动曲线类似垂直正弦输入(平面旋转振动是不接受的)的设备支撑。振动的双幅位移应

ABAQUS软件随机振动分析 final

ABAQUS软件随机振动分析 在工程中,结构一般需要对它进行随机振动分析。典型的例子是:通过机床的振动响应分析进行机床的结构设计,通过对结构的地震响应分析。在电子产品设计中,ABAQUS软件不仅仅能对电子产品进行冲击、热场、加工等过程进行数值模拟,还可以对电子产品在随机振动下产品的响应性能做出很好预测,以优化产品设计。 本例题就某电子产品在随机激励作用下的响应结构为例,采用如下图所示的简化模型,分析在特定随机激励(如图2)中,分析该结构的响应。 图 1 某电子产品结构简化图 图2 随机激励的谱分布 载荷边界条件为:四个底座固支,并在分析过程中,受到随机激励。需要分析整个结构在运动过程中的响应。 启动ABAQUS/CAE,在Start Session对话框中,选择Create Model Database按钮。

一导入模型 由于IGES文件给的是实体模型,我们在 计算中产用shell模型,所以我们需要通过 ABAQUS/CAE中对shell的编辑功能对模型进 行修改。 导入IGES文件成Shell格式。 1.在主菜单选择File ->Import->Part, 进入Import Part对话框。选择相应的 IGES文件,点击按钮。 2.在弹出的Create Part From IGES File 对话框中,如下图,对话框的Topology选择Shell选项,Name选项填写random。 二利用CAE编辑修改模型 在主菜单选择Shape ->Shell->Remove Face,用鼠标点击选择模型中的面,选上之后面会变红色,点击鼠标中键,就可以去掉该面。重复操作,得到下图模型。

随机振动-试验人员必须了解的参数及设置

随机振动-试验人员必须了解的参数及设置 江苏省电子信息产品质量监督检验研究院谢杰 一.简述 近年来,随机振动试验在我院所有振动试验中的比例越来越高,原因有三:1、科学进步,此类设备的软件大量普及,一般只需在原来的电磁振动台加上一套控制软件及配套设备就可实行。2、企业随着国际标准的大量采用,许多振动试验都采用随机振动。3、随机振动相对传统的正弦振动有着无法比拟的优点,它能模拟各种实际运输条件下可能遇到的振动情况,如模拟公路运输,模拟铁路运输,模拟海运运输等等。本文主要介绍对于试验人员来说必须了解的随机振动参数及设置要求。 二.随机振动数据 上图是某一随机振动试验后的试验数据,对于试验人员来说,必须了解其中的一些参数含义。 曲线中,横坐标是频率,纵坐标是PSD,一般简称为频谱曲线。 PSD:Power spectrum density 功率谱密度 PSD单位有二种:g2/Hz,(m2/Hz)2/Hz,二者之间换算:1 g2/Hz=96(m2/Hz)2/Hz PSD是随机振动中的重要参数,可理解为每频率单位中所含振动能量的大小,其值越大,相对应的频率段振幅值会变大,在试验中提高最低频率的PSD 值可明显感觉到振幅增大。 频谱曲线的特点:1、它是对数坐标,主要是为了表述画线方便。2、它有一条平线或多条平线及斜线组成,平线和斜线之间首尾相连组成。3、试验条件中,PSD值不变的是平线,用+dB/oct表示向上的斜线,用- dB/oct 表示向下的斜线。如-3 dB/oct 表示每增加一倍频率,PSD值下降一半。 频谱曲线中,中间一条是设定曲线,上面二条和下面二条是设备的保护及中断线,附加在中间设定值上的变化曲线是振动台实际控制曲线。

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.wendangku.net/doc/784946813.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦)

振动实验报告..

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 监测点选择、图形标注、现场标注。 振动监测参数的选择:做一些调整:长度、频率范围 状态判断标准和报警的设置 1 设备振动测点的选择与标注 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为 V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图 6-2在机器壳体上测量振动时,振动传感器定位的示意图振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:

国家标准《包装 运输包装件基本试验 第 23 部分 随机振 动试验方法

国家标准《包装运输包装件基本试验第23部分随机振动试验方法》(征求意见稿)编制说明 一、任务来源 根据全国包装标准化技术委员会文件《关于下达2009年第一批国家标准修订计划项目的通知》【包标委(2009)013号】,由全国包装标准化技术委员会归口,由中国包装科研测试中心负责牵头修订GB/T 4857.23-2003《包装运输包装件随机振动试验方法》。 二、目的和意义: 本次修订主要是是根据本标准依据的ASTM D 4728:1995的修订点而修订的,目前 ASTM标准的最新版本为ASTM D 4728:2006。 ASTM D 4728:2006除编辑方面做了一些调整外,其主要的修订点是取消了所有开环方法的描述,另外一方面本次修订的主要目的是增加中国公路振动的频谱,增加的这些频谱可以直接在实验室使用。 2003版给定的附录文件都是欧美方面的振动数据,没有符合中国国情的振动数据,这样使用欧美振动条件考核包装件在中国运输过程中受振动的影响就不合理。中国包装科研测试中心在经过长时间的振动数据积累,并基于大量数据分析的基础上,得到了“中国公路运输随机振动功率谱密度曲线及“中国京沪铁路运输随机振动功率谱密度曲线实例。”列在了附录B和C。 三、关于随机振动试验方法的说明: 包装件在运输过程中会受到各种复杂的危险情况,对这些危险情况了解不足需要对运输包装件进行随机振动试验。这种方法可以使所有的产品和包装经历共振的过程。 随机振动会对整体运输包装件、以及外包装、内包装、产品和密封等各个部分带来损害。随机振动试验方法可以对这些因素的相互作用进行分析。 随机振动试验很难与正弦振动试验建立对等关系。因为产品的阻尼是非线性的,所以每个产品对振动的反应也各不相同。 随机振动试验不存在的疲劳振动,强度低于正弦定频和扫频振动试验。

第13章-随机振动试验复习过程

第13章-随机振动试 验

第13章随机振动试验 13.1 试验目的、影响机理、失效模式 产品在运输和实际使用中所遇到的振动,绝大多数就是随机性质的振动(而不是正弦振动)。例如,宇航器和导弹在发射和助推阶段的振动;火箭发动机的噪声和气动噪声使结构产生的振动;飞机(特别是高速飞机)的大功率喷气发动机的振动;飞机噪声使飞机结构产生的振动和大气湍流使机翼产生振动;飞机着陆和滑行时的振动;车辆在不平坦的道路上行驶时产生的振动;多变的海浪使船舶产生的振动等等都属于随机性质的振动。因此,随机振动试验才能更真实反映产品的耐振性能。 随机振动和正弦振动相比,随机振动的频率域宽,而且有一个连续的频谱,它能同时在所有频率上对产品进行激励,各种频率的相互作用远比用正弦振动仅对某些频率或连续扫频模拟上述振动的影响更严酷更真实和更有效。另外,用随机振动来研究产品的动态特性和结构的传递函数比用正弦振动的方法更为简单和优越。 随机振动和正弦振动一样能造成导线摩擦、紧固件松动、活动件卡死,从而破坏产品的连接、安装和固定。当随机振动激励造成的应力过大时,会使结构产生裂纹和断裂,特别在严重的共振状态下更为显著。长时间的随机振动,由于交变应力所产生的累积损伤,会使结构产生疲劳破坏。随机振动还会导致触点接触不良、带电元件相互接触或短路、焊点脱开、导线断裂以及产生强电噪声等。从而破坏产品的正常工作,使产品性能下降、失灵甚至失效。 为了能在试验室内模拟产品在现场所经受到的实际随机振动及其影响,工程技术人员为此付出了许多的努力。早在六十年代,国际上对随机振动的研究就十分活跃。不仅在理论上有了重大突破,而且有了较完善的试验方法和试验设备。1962年美国军标810中首先规定了随机振动试验方法。1964年英国国防部标准07-55中也提出了随机振动试验。1973年IEC公布了四个具有不同再现性宽带模拟式随机振动试验方法,到上世纪90年代又公布了数字式随机振动试验方法。目前国内的随机振动试验已很普及,随机振动试验设备,特别是一般用途的随机振动控制仪价格也不高。 13.2 随机振动的描述 在随机振动试验中,由于振动的质点处于不规则的运动状态,永远不会精确的重复,对其进行一系列的测量,各次记录都不一样,所以没有任何固定的周期。在任何确定的时刻,其振幅、频率、相位都不能预先知道,因此就不可能用简单的周期函数和函数的组合来描述。图13-1为典型的宽带随机振动时间历程。

振动测量标准

振幅的定义是: 物体离开平衡位置的最大位移,叫振动的振幅.它是表示振动的强弱的物理量. 振速: 是指波动中各质点都在平衡位置附近做周期性振动,是变加速运动。质点并没有沿波的传播方向随波迁移。 加速度的定义是速度的变化量和所用时间的比值叫做物体运动的加速度. 振动,指的是振幅,既振动的幅度,单位是mm, % x) I& @3 H4 a振速,是说振动的速度,单位是mm/s, 1、mm是振幅值,mm/s是振速,也叫振动烈度。不同的转机可能按照制造厂的出厂说明采取不同的单位来考核。换算公式可以用:A= V×1000×60×2^(0.5)/(pi×w)A是振动位移峰峰值,单位um。V是振动烈度,w是转速(r/min)。 2、风机运行工况一般通过测量其轴承温度和振动来判定。振动大小可通过测量振动位移、振动速度、振动加速度的方式来判定。太仓港环保发电有限公司送风机和一次风机测量的是振动速度(单位为mm/s),引风机测量的是振动位移(单位为um)。 通常大家习惯于测量振动位移(即振幅),这就存在振动位移和振动速度二者相互换算,其换算公式为: V eff=7.4×10-5ns V eff---振动速度,单位为mm/s s------振动位移, 单位为um n------风机转速, 单位为r/min 3、mm/s指振速,mm指振幅,因为不能输入公式编辑器,简单地说二者换算关系为:Sf≈0.225vf/f,式中Sf 为振动的位移幅值,vf 为主频率为f的振动速度的均方根值。一般f值均为10Hz,所以Sf≈0.0225vf 。举例说如果vf =1.00mm/s,那么换算成振幅则为Sf≈0.0225mm。 《中华人民共和国机械行业标准(JB/T 10490-2004)·振动

相关文档
相关文档 最新文档