文档库 最新最全的文档下载
当前位置:文档库 › Ch2导数与极限2.3.1-3

Ch2导数与极限2.3.1-3

§2.3 函数的连续性

?函数连续的概念

?函数连续的运算性质

?初等函数的连续性

?函数的间断点及其分类

?闭区间上连续函数的性质

考察下列图形

x

y

x

a y

a

x

y

a

a x

y

x

y

a x

y

2.3.1 函数连续的概念

连续函数的图形是一条连绵不断的曲线.

1.函数的增量

.

,),,(,),()(0000的增量称为自变量在点内有定义在设函数x x x x x N x x N x f -=?∈?δδ.

)(),()(0的增量相应于称为函数x x f x f x f y ?-=?x

y

x

y

x x x ?+0)

(x f y =x

?0x x

+?0

x x

?y

?y

?)

(x f y =

2.连续的定义

定义 设函数)(x f 在),(0δx N 内有定义,如果当自变量的增量x ?趋向于零时,对应的函数的增量y ?也趋向于零,即0lim 0

=?→?y x 或

0)]()([lim 000

=-?+→?x f x x f x ,那末就称函数

)(x f 在点0x 连续,0x 称为)(x f 的连续点.

,

0x x x ?+=设),()(0x f x f y -=?,00x x x →→?就是).

()(00x f x f y →→?就是

:

""定义δ-ε.

)()(,,0,000εδδε<-<->?>?x f x f x x 恒有时使当连续的等价关系:

lim 0

x y ?→??=f (x 0)

f (x 0+?x )

?x

?y

x +?x y =f (x )x x

y

O

0lim ()()

x x f x f x →=

注:0()f x x 若在处连续,

()

0lim ()()lim x x x x f x f x f x →→==则,交换运算次序。

可以和函数符号说明极限符号f lim 定义000(0)()()f x f x f x x -=若,则称在点左连续;

000(0)()()f x f x f x x +=若,则称在点右连续。

00()()f x x f x x ?在点处连续在点既左连续又右连续。

定理16定义

内连续;

在处连续,则称在点,),()()(),(b a x f x x f b a x ∈?上连续。

在处左连续,则称处右连续,在在又若],[)()(b a x f b a x f

上的连续性。在讨论函数例),(||)(1∞+-∞=x x f 解

??

?<-≥=0

,

0,)(x x x x x f 时,0>a 上连续.

与在),0()0,()(∞+-∞∴x f =+)00(f

x x +→0

lim ,

0==-)00(f )(lim 0

x x --

→,

0=)0()00()00(f f f =-=+则连续.

在所以0)(=x x f 上连续.

在综上所述,),()(∞+-∞x f )(lim x f a

x →x a

x →=lim a =)(a f =时,0

x →)(lim x a

x -=→a -=)(a f =分段函数要讨论左、右连续

y

x

O

y =|x|

例1

例2.0,0,

0,

0,1sin )(处连续在试证函数=?????=≠=x x x x

x x f 证,

01

sin lim 0=→x

x x ,

0)0(=f 又由定义知

.

0)(处连续在函数=x x f ),0()(lim 0

f x f x =→左右表达式相同则直接讨论

2.3.2 连续函数的运算性质

定理17.

)

0)(()()

(),()(),()(,)(),(000处也连续在点则处连续在点若函数x x g x g x f x g x f x g x f x x g x f ≠?±例如,

,

),(cos ,sin 内连续在+∞-∞x x .

csc ,sec ,cot ,tan 在其定义域内连续故x x x x A 、连续函数的四则运算性质

任何多项式及有理函数在其定义域内都是连续函数。

定理18)].

(lim [)()]([lim ,

)(,)(lim 0

000x f u f x f u u f u x x x x x x x ???→→→===则有点连续在函数若证,

)(0连续在点u u u f = .)()(,,0,000成立恒有时使当εηηε<-<->?>?u f u f u u ,

)(lim 00

u x x x =→? 又,

0,0,00时使当对于δδη<-<>?>x x B 、复合函数的连续性

.

)(00成立恒有η?<-=-u u u x 将上两步合起来:

,

0,0,00时使当δδε<-<>?>?x x )()]([)()(00u f x f u f u f -=-?.成立ε<)()]([lim 00

u f x f x x =∴→?)].

(lim [0

x f x x ?→=

意义 1.极限符号可以与连续函数符号互换;

.

))((.2的理论依据变量代换x u ?=例3.)

1ln(lim 0

x

x x +→求.1=x

x x 10

)

1ln(lim +=→原式])1(lim ln[1

x

x x +=→e ln =解

例4.1lim 0x e x

x -→求.

1=)

1ln(lim

0y y

y +=→原式解

,

1y e x

=-令),

1ln(y x +=则.

0,0→→y x 时当y

y y 1

0)

1ln(1lim +=→同理可得

.ln 1lim 0a x

a x

x =-→

.

)]([,)(,)(,)(00000也连续在点则复合函数连续在点而函数且连续在点设函数x x x f y u u u f y u x x x x u =?====?=?=定理19注意定理17是定理16的特殊情况.

例如,,

),0()0,(1

内连续在∞+-∞= x

u ,

),(sin 内连续在∞+-∞=u y .

),0()0,(1

sin 内连续在∞+-∞=∴ x

y

C 、反函数的连续性

定理20例如,,

]2

,2[sin 上单调增加且连续在π

π-=x y .

]1,1[arcsin 上也是单调增加且连续在故-=x y ;]1,1[arccos 上单调减少且连续在同理-=x y .

],[cot ,arctan 上单调且连续在+∞-∞==x arc y x y 反三角函数在其定义域内皆连续.

()()).

(,),(或减少增加上也连续并且严格单调在数则其反函函数的值域为或减少严格单调增加上连续并且在区间如果函数y y x I y x I I x f y ?==

2.3.3 初等函数的连续性

三角函数及反三角函数在它们的定义域内是连续的.

★)1

a

a

y x

指数函数

>

=a

,0

(≠

在+∞

-∞

(内单调且连续

;

)

,

★)1

a

x

y

对数函数

=a

>

(

,0

log≠

a

在+∞

,0(内单调且连续

;

)

定理21基本初等函数在定义域内都是连续的.★μ

x y =x

a a

log μ=,u

a y =.

log x u a μ=,

),

0(内连续在∞+,

不同值讨论μ(均在其定义域内连续)

定理22

一切初等函数在其定义区间内都是

连续的.

定义区间是指包含在定义域内的区间.

1. 初等函数仅在其定义区间内连续, 在

其定义域内不一定连续;例如,

,

1cos -=x y

,4,2,0:π±π±=x D 这些孤立点的邻域内没有定义.,

)1(3

2

-=

x x y ,

1,0:≥=x x D 及在0点的邻域内没有定义.

.

),1[上连续函数在区间+∞注意注意

2. 初等函数求极限的方法代入法.

)

()

()(lim 000

定义区间∈=→x x f x f x x

例5

.

1sin lim 1

-→x

x e 求1sin 1

-=e 原式.

1sin -=e 例6.1

1lim

2

0x

x x -+→求解

解)11()

11)(11(lim 22

2

++++-+=→x x x x x 原式11lim 20

++=→x x x 2

=.0=

2

cos 0

e

e

lim

x

x

x -→计算极限;

解:

)

1e

(e e e

01

cos cos -=-→-x x

x 因当

)1(cos e ~-x 2

2e ~x

-

2e 2e lim 220-=-=→x

x

x 故原式.

导数和极限精辟总结(全)

导数和导数的极限 函数 )(x f 在 0x 点的左导数定义为 )(0x f -'x x f x x f x ?-?+=-→?)()(lim 000 。 函数 )(x f 在 0x 点的右导数定义为 )(0x f +'x x f x x f x ?-?+=+→?)()(lim 000 。 函数 )(x f 在 0x 点导数的左极限定义为 )0(0-'x f )(lim 0 0x f x x '=-→ 。 函数 )(x f 在 0x 点导数的右极限定义为 )0(0+'x f )(lim 0 0x f x x '=+→ 。 在很多情况下,导数的左极限 )(lim 0 0x f x x '-→ 往往就是左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 往往就是右导数 )(0x f +' 。 例如,函数 ?????≥<=1 11)(2x x x x x f 。 在 1=x 点的左导数为 )1(-'f 1111lim )1()1(lim 00-=?-?+=?-?+=-→?-→?x x x f x f x x ;导数的左极限为 )(lim 01x f x '-→1)1(lim )1(lim 20101-=-='=-→-→x x x x ,两者是一样的。 在 1=x 点的右导数为 21)1(lim )1()1(lim )1(200=?-?+=?-?+='+→?+→?+x x x f x f f x x ;导数的右极限为 )(lim 01x f x '+→2)2(lim )(lim 0 1201=='=+→+→x x x x ,两者也是一样的。 但有时候,导数的左极限 )(lim 0 0x f x x '-→ 并不等于左导数 )(0x f -' ,导数的右极限 )(lim 00x f x x '+→ 并不等于右导数 )(0x f +' 。

极限和导数

一、极限 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。考研教育\网 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行计算,如果最大的分母和最小的分母相除的极限不等于1,则凑成定积分的定义的形式进行计算;单调有界收敛定理可用来证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括: 1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性; 2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式; 3、渐近线(水平、垂直、斜渐近线); 4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。 二、导数 求导与求微分每年直接考查的知识所占分值平均在10分到13分左右。常考题型:(1)利用定义计算导数或讨论函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。 对于导数与微分,首先对于它们的定义要给予足够的重视,按定义求导在分段函数求导 中是特别重要的。应该熟练掌握可导、可微与连续性的关系。求导计算中常用的方法是四则运算法则和复合函数求导法则,一元函数微分法则中最重要的是复合函数求导法及相应的一阶微分形式不变性,利用求导的四则运算法则与复合函数求导法可求初等函数的任意阶导数。幂指函数求导法、隐函数求导法、参数式求导法、反函数求导法及变限积分求导法等都是复合函数求导法的应用。 导数计算中需要掌握的常见类型有以下几种: 1、基本函数类型的求导; 2、复合函数求导; 3、隐函数求导,对于隐函数求导,不要刻意记忆公式,记住计算方法即可,计算的时候要注意结合各种求导法则;

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

高等数学习题及解答(极限-连续与导数)

高等数学习题库 淮南联合大学基础部 2008年10月

第一章 映射,极限,连续 习题一 集合与实数集 基本能力层次: 1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B 解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }. 2: 证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。即结论成立。 基本理论层次: 习题二 函数、数列与函数极限 基本能力层次 1: 解: 2: 证明:由得cxy ay ax b -=+即 ay b x cy a += -,所以 ()x f y = 所以命题成立

3: (1)2 2x y -= (2)lg(sin )y x = (3 []y x = (4)0,01,0x y x ≥?? =??取N =[1 ω ],则当n>N 时,就有 11|1|n n n ω--=<有定义变知1lim 1n n n →∞-=成立 5:求下列数列的极限 (1)lim 3n n n →∞ (2)222 3 12lim n n n →∞+++ (3) (4)lim n 解:(1) 233n n n n <,又 2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于 222 3 312(1)(21)111 (1)(2)6n n n n n n n n n ++ +++= =++ 又因为:1111 lim (1)(2)63 n n n n →∞++=,所以:2223121 lim 3 n n n →∞+++ (3)因为: 所以: (4) 因为:111n n ≤+,并且1 lim(1)1n n →∞+=, 故由夹逼原理得 1n =

高数极限求法总结

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方 1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!) E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!!

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

极限与导数

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右 极限。类似地)(lim 0 x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0 处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy , 即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。 若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) )()(']')(1[2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。

函数、极限、连续与导数练习题

一、函数、极限、连续练习题 1.01lim sin x x x →?=( ). A .1 B . 0 C .不存在 D .∞ 2. 设()f x 的定义域是[0,1],则(tan )f arc x 的定义域为( ). A.[0,1] B.[0,]4π C.[0,tan1] D.(,)22 ππ- 3.1()3arctan f x x x =-+的连续区间为( ). A .(,3)-∞ B .(,3]-∞ C .(,0)(0,3]-∞和 D .(,0)(0,3)-∞和 4.当x →+∞时,对数函数ln x 、幂函数()n x n 为正整数、指数函数(0)x e λλ> 增大速度最快的是( ). A. ln x B. n x C . x e λ D. 一样快 5.当0x →时,2 cos x x x e e -是n x 的同阶无穷小,则n 为( ). A .5 B .4 C .52 D .2 6.已知2 lim()01 x x ax b x →∞--=+,其中a,b 是常数,则( )。 ()1,1()1,1()1,1()1,1A a b B a b C a b D a b ===-===-=-=- 7. 设函数22132 x y x x -=-+,则1x =是它的( ). A .跳跃间断点 B .可去间断点 C .无穷间断点 D .振荡间断点 8.设函数11,0()ln(1),10 x e x f x x x -??>=??+-<≤? 则0x =是( ). A .可去间断点 B .跳跃间断点 C .无穷间断点 D .振荡间断点 9.设()f x 在2x =连续,且2()3lim 2 x f x x →--存在,则(2)f =________. 10.设22,0,0(),()2,0,0x x x x g x f x x x x x -≤?-≥?? ,则[()]g f x =_____________.

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

导数极限知识总结

导数极限知识总结——仅作了解切忌深究 一.洛必达法则是什么(鄙人觉得高中数学神器) 洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。 在导数问题的3)问中通常会出现形似 的式子,而一般会出现求其导数,极值,甚至是某一点极限的问题,洛必达法则就是解决这一类而且不能用普通导数解决的问题。 引入:试求 试求 x x x x x sin sin lim +-∞→ 显而易见,这两个极限在以往的算法中一个是 式,一个则是∞ ∞ ,无法求导,这时就需要用到高端大气上 档次的洛必达法则了。 1.使用条件 定理1 若函数)(x f 与函数)(x g 满足下列条件: (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)0)(lim 0 =+→x f a x 0)(lim 0 =+→x g a x (3)A x g x f a x =+→)(')('lim 0 则A x g x f x g x f a x a x ==+→+→) (') ('lim )()(lim 00(包括A 为无穷大的情形) 定理2 若函数)(x f 和)(x g 满足下列条件 (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)∞=+→)(lim 0 x f a x ∞=+→)(lim 0 x g a x (3) A x g x f a x =+→)(')('lim 则A x g x f x g x f a x a x ==+→+→) (') ('lim )()(lim 00(包括A 为无穷大的情形) 此外法则所述极限过程对下述六类极限过程均适用: -∞→+∞→∞→→→→- + x x x x x x x x x ,,,,,000。 简而言之,当满足 或 ∞ ∞的不定式时,A x g x f x g x f a x a x ==+→+→) (')('lim )() (lim 0000 PS :一次求导不行仍未不定式,则多次求导 于是上面的两个式子可以这样解 例一. = = = 例二.1)sin sin (lim cos 1cos 1lim sin sin lim -=-=+-=+-∞→∞→∞→x x x x x x x x x x x (此为错解)

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

考研数学极限与导数复习方法

考研数学极限与导数复习方法 我们在进行考研数学的备考复习时,需要掌握好极限与导数的复习方法。小编为大家精心准备了考研数学极限与导数复习秘诀,欢迎大家前来阅读。 考研数学极限与导数复习技巧 极限 极限是考研数学每年必考的内容,在客观题和主观题中都有可能会涉及到平均每年直接考查所占的分值在10分左右,而事实上,由于这一部分内容的基础性,每年间接考查或与其他章节结合出题的比重也很大。极限的计算是核心考点,考题所占比重最大。熟练掌握求解极限的方法是得高分的关键。 极限的计算常用方法:四则运算、洛必达法则、等价无穷小代换、两个重要极限、利用泰勒公式求极 限、夹逼定理、利用定积分求极限、单调有界收敛定理、利用连续性求极限等方法。 四则运算、洛必达法则、等价无穷小代换、两个重要极限是常用方法,在基础阶段的学习中是重点,考生应该已经非常熟悉,进入强化复习阶段这些内容还应继续练习达到熟练

的程度;在强化复习阶段考生会遇到一些较为复杂的极限计算,此时运用泰勒公式代替洛必达法则来求极限会简化计算,熟记一些常见的麦克劳林公式往往可以达到事半功倍之效;夹逼定理、利用定积分定义常常用来计算某些和式的极限,如果最大的分母和最小的分母相除的极限等于1,则使用夹逼定理进行 计算,如果最大的分母和最小的分母相除的极限不等于1,则 凑成定积分的定义的形式进行计算;单调有界收敛定理可用来 证明数列极限存在,并求递归数列的极限。 与极限计算相关知识点包括:1、连续、间断点以及 间断点的分类:判断间断点类型的基础是求函数在间断点处的左、右极限,分段函数的连续性问题关键是分界点处的连续性,或按定义考察,或分别考察左、右连续性;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数的定义直接计算或检验,存在的定义是极限存在,求极限时往往会用到推广之后的导数定义式;3、渐近线(水平、垂直、斜渐近线);4、多元函数微分学,二重极限的讨论计算难度较大,多考察证明极限不存在。 导数 求导与求微分每年直接考查的知识所占分值平均在 10分到13分左右。常考题型:(1)利用定义计算导数或讨论 函数可导性;(2)导数与微分的计算(包括高阶导数);(3)切线与法线;(4)对单调性与凹凸性的考查;(5)求函数极值与拐点;(6)对函数及其导数相关性质的考查。

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

相关文档
相关文档 最新文档