文档库 最新最全的文档下载
当前位置:文档库 › cxy选修2-2定积分学生版

cxy选修2-2定积分学生版

cxy选修2-2定积分学生版
cxy选修2-2定积分学生版

选修2-2_定积分及其应用讲义

题型有三:一类基本计算;二类几何意义;三类函数性质.

一、基本计算

1.已知t >0,若0(22)t

x dx -?=8,则t =___________.

2.(2010湖南卷理5)421

dx x ?等于( )

A .-2ln2

B .2ln2

C .-ln2

D .ln2

3.计算3

11()x dx x +?=___________.

4.在等比数列{a n }中,首项a 1=23,a 4=4

1(12)x dx +?,则公比q 为___________.

二、几何意义

1.抛物线y =x 2-x 与x 轴围成的图形面积为( )

A .1

8 B .1 C .1

6 D .1

2

2.由抛物线y 2=x 和直线x =2所围成图形的面积为___________.

3.(2010山东卷理7)由曲线y =x 2,y =x 3围城的封闭图形面积为( )

A .1

12 B .1

4 C .13 D .7

12

4.曲线y =1-x 2与x 轴围成图形的面积是___________.

5.定积分0?的值为( )

A .9π

B .3π

C .9

4π D .9

6.2

200cos 2x dx π

+=??___________.

x y O A C y x =2y x

= (1,1) B 7.下列四条曲线(直线)所围成的区域的面积是 ( )

(1)y =sin x ; (2)y =cos x ; (3)x =-4π

; (4)x =4π

A

B .

C .0 D

.2

8.从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( )

A .12

B .13

C .14

D .16

9.(2010陕西卷理13)从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分部分的概率为____________

10.(2012上海理13)已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B (12

,5)、C (1,0),函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为___________.

11.(2012湖北理3)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )

A .

25π B .43 C .32 D .2π

12.(2012福建理6)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ) A .

14

B .15

C .16

D .17

三、函数性质(奇偶性)

若f (x )在[-a ,a ]上是连续奇函数,则

()a a f x dx -?=0; 若f (x )在[-a ,a ]上是连续偶函数,则

0()2()a a a f x dx f x dx -=??=0. 1.已知f (x )为偶函数且

60()f x dx ?=8,则66()f x dx -?等于( ) A .0 B .4 C .8 D .16

2.曲线y =3-3x 2与x 轴所围成的图形面积为___________.

3.f (x )=e |x |,则

11()f x dx -?= .

4.求积分

3432sin )x x dx -?=________________.

5.1

1)x dx -?=( )

A .π

B .2π

C . π+1

D . π-1

6.(2012山东理15)设a >0.若曲线y x =a ,y =0所围成封闭图形的面积为a ,则a =_________.

7.(2012江西理11)计算定积分1

21(sin )x x dx -+?=___________.

8.(2012湖南理15)函数f (x )=sin(ωx +?)的导函数y =f ′(x )的部分图象如图4所示,其中,P 为图象与y 轴的交点,A ,C 为图象与x 轴的两个交点,B 为图象的最低点.

(1)若?=6π,点P 的坐标为(0,2

),则ω=___________; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC

内的概率为___________.

四、实际问题

1、一列火车在平直的轨道上行驶,由于特殊情况,火车以速度t

t t v ++-=1555)((单位:s m /)紧急刹车至停止。求紧急刹车后火车运行的路程。

五、补充:分割图形求面积

1、求由曲线x y x y x y 31

,2,-=-==围成图形的面积。

高二定积分的简单应用(理科)

年 级 高二 学科 数学 内容标题 定积分的简单应用(理科) 编稿老师 胡居化 一、教学目标 1. 能用定积分知识解决在物理学中的一些简单问题及求曲边图形的面积等问题 2. 体会数与形结合的思想、等价转化的数学思想的应用. 二、知识要点分析 1. 定积分在物理学中的简单应用 (1)变速直线运动的路程:作变速直线运动的物体在时间t=a 到时间t=b (a

(2)求曲边图形面积的一般步骤: (a )画图,并将图形分割成若干个曲边梯形 (b )对每个曲边梯形确定其存在的范围,从而确定积分的上下限. (c )确定被积函数 (d )求出各曲边梯形的面积和,即各种定积分的绝对值之和. 【典型例题】 知识点一:定积分在物理学中的简单的应用 例1:一物体在力F ?? ?>+≤≤=) 2(,43) 20(,10)(x x x x (单位:N )的作用下沿力F 相同的方向, 从x=0处运动到x=4处(单位:米),这力F (x )所做的功是( ) A . 44 B . 46 C . 48 D . 50 【题意分析】本题考查物理学中的变力做功问题,物体在x=0到x=4距离内所做的功是函 数F (x )在区间[0,4]上的定积分. 【思路分析】由已知F (x )的表达式是分段函数,故物体所做的功是函数F (x )在[0,2],[2,4]上的积分之和. 【解题步骤】由定积分的物理意义知: ????++=+=42202042)43(10)()(dx x dx dx x F dx x F W =4222 0|)42 3(|10x x x ++ =46, 故选(B ) 【解题后的思考】本题考查的知识点是利用定积分求变力做功的问题,易错点是:认为F (x )在区间[0,4]内所做的功是 ? +4 )43(dx x . 例2:一物体做变速直线运动,其v -t 曲线(如图所示),求物体在s s 62 1 -内的运动路程. 【题意分析】本题考查物理学中变速直线运动路程问题,由v (t )曲线知:0)(≥t v ,故在 s s 621-间的物体运动的路程是v (t )在区间]6,2 1 [上的定积分.

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

北师大版数学高二选修2试题 4.3定积分的简单应用--简单几何体的体积

4.3定积分的简单应用 定积分在物理中应用及简单几何体的体积同步练习 1.物本做变速度直线运动经过的路程s ,等于其速度函数v = v (t ) (v (t )≥0 )在时间区间 [a ,b ]上的 定积分 ,即?=b a dt t v s )(. 2.质点直线运动瞬时速度的变化为v (t ) = – 3sin t ,则 t 1 = 3至t 2 = 5时间内的位移是 ()dt t ?-5 3sin 3.(只列式子) 3.变速直线运动的物体的速度v (t ) = 5 – t 2,初始位置v (0) = 1,前2s 所走过的路程为 3 25 . 4.如果物体沿恒力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的功W = F (b —a ). 5.如果物体沿与变力F (x )相同的方向移动,那么从位置x = a 到x = b 变力所做的 功W =?b a dx x F )(. 6.一物体在力F (x ) =10(02)34(2)x x x ≤≤?? +>?(单位:N )的作用下沿与力F (x )做功为( B ) A .44J B .46J C .48J D .50J 7.证明:把质量为m (单位kg )的物体从地球的表面升高h (单位:m )处所做的功W = G ·() Mmh k k h +,其中G 是地球引力常数,M 是地球的质量,k 是地球的半径. 证明:根据万有引力定律,知道对于两个距离为r ,质量分别为m 1、m 2的质点,它们之间的引力f 为f = G ·122 m m r ,其中G 为引力常数. 则当质量为m 物体距离地面高度为x (0≤x ≤h )时,地心对它有引力f (x ) = G ·2 ()Mm k x +故该物体从地面升到h 处所做的功为 0()h W f x =?d x =20() h Mm G k x ?+?·d x = GMm 201()h k x +? d (k + 1) = GMm 01()|h k x -+ =11()() Mnh GMm k G k h k k h -+=?++. 8.直线2y x =,1x =,2x =与x 轴围成的平面图形绕旋x 轴转一周得到一个圆台,

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

高中培优讲义定积分及其简单应用

第十三讲定积分及其简单应用 教学目标:1、了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 2、了解微积分基本定理的含义. 一、知识回顾课前热身 知识点1、定积分 (1)定积分的相关概念在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质 ①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x. (4).定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么? 提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积. 知识点2、微积分基本定理如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式.为了方便,常把F(b)-F(a)记成F(x)|b a,即∫b a f(x)d x=F(x)|b a=F(b)-F(a). 基础练习 1.∫421 x d x等于( ) A.2ln 2 B.-2ln 2 C.-ln 2 D.ln 2 解析:选D ∫421 x d x=ln x |42=ln 4-ln 2=ln 2. 2.一质点运动时速度和时间的关系为V(t)=t2-t+2,质点作直线运动,则此物体在时间[1,2]内的位移

(完整版)高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格, f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如检查/()

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

最新高中数学选修2-2-定积分的简单应用

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题. 知识点一 定积分在求几何图形面积方面的应用 1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,??a b f (x )d x >0,所以S =??a b f (x )d x . (2)如图②,f (x )<0,??a b f (x )d x <0,所以S =??????a b f (x )d x =-??a b f (x )d x . (3)如图③,当a ≤x ≤c 时,f (x )≤0,??a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,??a b f (x )d x >0.所以 S =???? ? ?a c f (x )d x +??c b f (x )d x =-??a c f (x ) d x +? ?c b f (x )d x . 2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =??a b [f (x )-g (x )]d x .

(2)如图⑤,当f (x )>0,g (x )<0时,S =? ?a b f (x )d x +??????a b g (x )d x =??a b [f (x )-g (x )]d x . 3.当g (x )<f (x )≤0时,同理得S =??a b [f (x )-g (x )]d x . 思考 (1)怎样利用定积分求不分割型图形的面积? (2)当f (x )<0时,f (x )与x 轴所围图形的面积怎样表示? 答案 (1)求由曲线围成的面积,要根据图形,确定积分上下限,用定积分来表示面积,然后计算定积分即可. (2)如图,因为曲边梯形上边界函数为g (x )=0,下边界函数为f (x ),所以 S =??a b (0-f (x ))d x =-??a b f (x )d x . 4.利用定积分求平面图形面积的步骤: (1)画出图形:在平面直角坐标系中画出曲线或直线的大致图象; (2)确定图形范围,通过解方程组求出交点的横坐标(或纵坐标),确定积分上、下限; (3)确定被积函数; (4)写出平面图形面积的定积分表达式; (5)利用微积分基本定理计算定积分,求出平面图形的面积,写出答案. 知识点二 定积分在物理中的应用 1.在变速直线运动中求路程、位移 路程是位移的绝对值之和,从时刻t =a 到时刻t =b

知识讲解_定积分的简单应用(基础)

定积分的简单应用 【学习目标】 1.会用定积分求平面图形的面积。 2.会用定积分求变速直线运动的路程 3.会用定积分求变力作功问题。 【要点梳理】 要点一、应用定积分求曲边梯形的面积 1. 如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线()y f x =(()0f x ≥)围成的曲边梯形的面积: ()[()()]b b a a S f x dx f x g x dx ==-?? 2.如图,由三条直线x a =,x b =()a b <,x 轴(即直线()0y g x ==)及一条曲线 ()y f x =(0)(≤x f )围成的曲边梯形的面积: ()()[()()]b b b a a a S f x dx f x dx g x f x dx = =-=-? ?? 3.由三条直线,(),x a x b a c b x ==<<轴及一条曲线()y f x =(不妨设在区间[,]a c 上 ()0f x ≤,在区间[,]c b 上()0f x ≥)围成的图形的面积: ()c a S f x dx = + ? ()b c f x dx ? =()c a f x dx -?+()b c f x dx ?. 4. 如图,由曲线11()y f x =22()y f x =12()()f x f x ≥及直线x a =,x b =()a b <围

成图形的面积: 1212[()()]()()b b b a a a S f x f x dx f x dx f x dx =-=-??? 要点诠释: 研究定积分在平面几何中的应用,其实质就是全面理解定积分的几何意义: ① 当平面图形的曲边在x 轴上方时,容易转化为定积分求其面积; ② 当平面图形的一部分在x 轴下方时,其在x 轴下的部分对应的定积分为负值,应取其相反数(或绝对值); 要点二、求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形; (2)确定图形范围,通过解方程组求出交点的横坐标,定出积分上、下限; (3)确定被积函数,特别要注意分清被积函数的上、下位置; (4)写出平面图形面积的定积分表达式; (5)运用微积分基本定理计算定积分,求出平面图形的面积。 要点三、定积分在物理中的应用 ① 速直线运动的路程 作变速直线运动的物体所经过的路程S ,等于其速度函数()(()0)v v t v t =≥在时间区间 [,]a b 上的定积分,即()b a S v t dt =?. ②变力作功 物体在变力()F x 的作用下做直线运动,并且物体沿着与()F x 相同的方向从x a =移动到x b =()a b <,那么变力()F x 所作的功W = ()b a F x dx ? . 要点诠释: 1. 利用定积分解决运动路程问题,分清运动过程中的变化情 况是解决问题的关键。应注意的是加速度的定积分是速度,速度的定积分是路程。 2. 求变力作功问题,要注意找准积分变量与积分区间。 【典型例题】 类型一、求平面图形的面积 【高清课堂:定积分的简单应用 385155 例1】 例1.计算由两条抛物线2 y x =和2 y x =所围成的图形的面积. 【思路点拨】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

高中数学选修2-2 定积分的简单应用

[学习目标] 1.理解定积分的几何意义,会通过定积分求由两条或多条曲线围成的图形的面积.2.掌握利用定积分求曲边梯形面积的几种常见题型及方法.3.通过具体实例了解定积分在物理中的应用,会求变速直线运动的路程和变力做功的问题. 知识点一 定积分在求几何图形面积方面的应用 1.求由一条曲线y =f (x )和直线x =a ,x =b (a <b )及y =0所围成的平面图形的面积S . (1)如图①,f (x )>0,??a b f (x )d x >0,所以S =??a b f (x )d x . (2)如图②,f (x )<0,??a b f (x )d x <0,所以S =???? ? ?a b f (x )d x =-??a b f (x )d x . (3)如图③,当a ≤x ≤c 时,f (x )≤0,??a c f (x )d x <0;当c ≤x ≤b 时,f (x )≥0,??a b f (x )d x >0.所以 S =???? ? ?a c f (x )d x +??c b f (x )d x =-??a c f (x ) d x +? ?c b f (x )d x . 2.求由两条曲线f (x )和g (x )(f (x )>g (x )),直线x =a ,x =b (a <b )所围成平面图形的面积S . (1)如图④,当f (x )>g (x )≥0时,S =??a b [f (x )-g (x )]d x . (2)如图⑤,当f (x )>0,g (x )<0时,S =??a b f (x )d x +???? ? ?a b g (x )d x =? ?a b [f (x )-g (x )]d x .

高中数学人教版选修2-2导数及其应用(定积分)知识点总结

数学选修2-2导数及其应用(定积分)知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

高中数学选修2-2 定积分复习题(附答案)

定积分复习题 1、求下列定积分 (1)dx x x )cos sin 2(2 0+?π 2、dx b ax x M 2 311)(+-?=-,b a ,为何值时,M 最小。 3、 已知0))(13(10=++?dx b x ax ,R b a ∈,,试求b a ?的取值范围。 4、求抛物线x y =2 与直线032=--y x 所围成的图形的面积。 5、求由抛物线52x y = ,12 -=x y 所围成图形的面积。 6、由抛物线 342 -+-=x x y 及其在点A (0,-3),B (3,0)处两切线所围成图形的面积。 7、曲线C :12322 3+--=x x x y ,点)0,21(P ,求过P 的切线l 与C 围成的图形的面积。 8、抛物线 bx ax y +=2在第一象限内与直线4=+y x 相切。此抛物线与x 轴所围成的图形的面积记为S 。求使S 达到最大值的a ,b 值,并求max S 。 课外练习: 1. 将和式的极限)0(321lim 1>+++++∞→p n n p p p p p n 表示成定积分( ) A. dx x 110? B. dx x p 10? C. dx x p )1(10? D. dx n x p )(10? 2. 下列等于1的积分是( ) A. xdx 10? B. dx x )1(10+? C. dx 11 0? D. dx 21 10 ? 3. = -?dx x 4210( )

A. 321 B. 322 C. 323 D. 325 4. 已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的路程为( ) A. 320gt B. 20gt C. 220gt D. 620 gt 5. 曲线 ] 23 ,0[,cos π∈=x x y 与坐标所围成的面积( ) A. 4 B. 2 C. 25 D. 3 6. =+?-dx e e x x )(10( ) A. e e 1+ B. e 2 C. e 2 D. e e 1 - 7. 求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x 为积分变量,则积分区间 为( ) A. ],0[2 e B. [0,2] C. [1,2] D. [0,1] 8. 由直线1,+-==x y x y ,及x 轴围成平面图形的面积为( ) A. dy y y ])1[(1 0--? B. dx x x ])1[(210 -+-? C. dy y y ])1[(210--? D. dx x x )]1([1 0+--? 9. 如果1N 力能拉长弹簧cm 1,为将弹簧拉长6cm ,所耗费的功是( ) A. 0.18 B. 0.26 C. 0.12 D. 0.28 10. 将边长为1米的正方形薄片垂直放于比彼一时为ρ的液体中,使其上距液面距离为2米,则该正方形薄片所受液压力为( ) A. dx x ρ32? B. dx x ρ)2(21+? C. dx x ρ1 0? D. dx x ρ)1(3 2+? 11. 将和式)212111( lim n n n n +++++∞ → 表示为定积分 。 12. 曲线 1,0,2 ===y x x y ,所围成的图形的面积可用定积分表示为 。 13. 由x y cos =及x 轴围成的介于0与π2之间的平面图形的面积,利用定积分应表达为 。 14. 计算下列定积分的值。 (1)dx x x )4(2 31-?- (2)dx x 5 21)1(-? (3)dx x x )sin (2 0+?π (4) xdx 222 cos ππ-? 15. 求曲线x x x y 22 3++-=与x 轴所围成的图形的面积。 16. 设)(x f y =是二次函数,方程0)(=x f 有两个相等的实根,且22)(+='x x f 。 (1)求)(x f y =的表达式; (2)求)(x f y =的图象与两坐标轴所围成图形的面积; (3)若直线t x -=(10<

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高中数学选修系列2选修22《微积分基本定理与定积分计算》 教案

§3 微积分基本定理与定积分计算 一、目标预览 1.理解并能熟练运用微积分基本定理. 2.掌握定积分的常用计算方法. 3.了解定积分与不等式的常用证明方法. 4.了解定积分相关知识的综合应用. 二、概念入门 设],[b a R f ∈,称函数? = Φx a dt t f x )()(]),[(b a x ∈为函数 )(x f 在],[b a 上的变上限定积分;类似地可定义变下限定积分: ?=ψb x dt t f x )()(. 注(i )由)(R 积分的性质,)(x Φ的定义有意义. (ii )由)(R 积分的性质易证],[)(b a C x ∈Φ. 三、主要事实 1.微积分基本定理 若],[b a C f ∈,则)()(x f x =Φ']),[(b a x ∈,即 ?=x a x f dt t f dx d )()(,],[b a x ∈. 注(i )证明由导数的定义及第一积分中值定理即得. (ii )通过微分中值定理(推论),可获得微积分基本定理如下的等价表述: 若],[b a C f ∈,而且)()(x f x F =']),[(b a x ∈,则 ? -=x a a F x F dt t f )()()(]),[( b a x ∈. (iii)微积分基本定理及其等价表述沟通了不定积分与定积 分、微分与积分的内在联系. (iv )利用微积分基本定理及复合函数微分法可得下述的变限

?'-'=) ( ) ( )())(()())(())((x x x x f x x f dt t f dx d ψ???ψψ? ? =ξ )() ()()(a b a dx x f a g dx x g x f ?=b dx x g b f )()(ξ 积分求导公式: 若],[b a C f ∈,)(x ?、)(x ψ在],[d c 上可微而且]),([d c ?、 ],[]),([b a d c ?ψ,则 2.第二积分中值定理 (1)(旁内(Bonnet ,1819-1892[法])型第二积分中值定理)若],[b a R f ∈,而且)(x g 是],[b a 上非负递减(相应地递增)函数,则存在],[b a ∈ξ使得 (相应地) (2)(Werierstrass 型第二积分中值定理)若],[b a R f ∈, )(x g 是],[b a 上的单调函数,则存在],[b a ∈ξ使得 ??? +=b a b a dx x f b g dx x f a g dx x g x f )()()()()()(ξ ξ. 证(1)令? = x a dt t f x F )()(]),[(b a x ∈,利用g 的可积性得 ? ? --=→∑=i i x x i n i T b a dx x f x g dx x g x f 11 0|||| 1 )()(lim )()( ))()()((lim 111 0||||--=→-∑=i i i n i T x F x F x g 再由 ))()()((111 --=-∑i i i n i x F x F x g )()()]()()[(1111 ---=+-∑=n i i i n i x g b F x g x g x F

高二定积分及其简单应用

定积分及其简单应用 定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么? 提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. ②一般情况下,定积分∫b a f (x )d x 的几何意义是介于x 轴、曲线f (x )以及直线x =a ,x =b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数. 3.直线x =0,x =2,y =0与曲线y =x 2 所围成的曲边梯形的面积为________. 解析:∫20x 2 d x =13x 3 |20=83. 答案:83 4.∫101-x 2 d x =________. 解析:由定积分的几何意义可知,∫101-x 2d x 表示单位圆x 2+y 2 =1在第一象限内部 分的面积,所以 ∫101-x 2 d x =14π. 答案:14π 例1、利用微积分基本定理求下列定积分: (1)∫21(x 2+2x +1)d x ; (2)∫π0(sin x -cos x )d x ; (3)∫2 0x (x +1)d x ; (4)∫2 1 ? ????e 2x +1x d x ; (5)20 π ? sin 2x 2d x . [解答] (1)∫2 1 (x 2 +2x +1)d x =∫21 x 2d x +∫21 2x d x +∫21 1d x =x 3 3 |21+x 2 |21+x |2 1=193 . (2)∫π0(sin x -cos x )d x =∫π0sin x d x -∫π0cos x d x =(-cos x ) |π0-sin x |π 0=2. (3)∫20x (x +1)d x =∫20(x 2+x )d x =∫20x 2d x +∫2 0x d x =13x 3 |20+12x 2 |20=? ?? ??13×23-0+ ? ?? ??12×22-0=143. (4)∫21? ????e 2x +1x d x =∫21e 2x d x +∫211x d x =12e 2x |21+ln x |2 1=12e 4-12e 2+ln 2-ln 1=12e 4-12e 2+ ln 2.

高中数学选修2-2 同步练习 定积分的概念+微积分基本定理+定积分的简单应用(解析版)

第一章 导数及其应用 1.5 定积分的概念 1.6 微积分基本定理 1.7 定积分的简单应用 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.当n 的值很大时,函数2()f x x =在区间,[ ]1i i n n -上的值可以用下列函数值近似代替的是 A .()1f n B .()2 f n C .()f i n D .()0f 【答案】C 【解析】用区间,[]1i i n n -内的任意一个函数值都可近似代替这个区间对应的函数值.故选C . 2. π20 (sin )d x x x -=? A .2 π14- B .2π18- C .2π8 D .2 π18 + 【答案】B 【解析】 ππ2 222 00 1π(sin )(cos )|128 d x x x x x +=-=-? .故选B . 3.若2 2 11 d s x x = ? ,1 22 d 1 s x x =? ,132d e x s x =?,则123s s s ,,的大小关系为 A .123s s s << B .213s s s << C .231s s s << D .321s s s << 【答案】B

4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲 和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是 A .在t 1时刻,甲车在乙车前面 B .t 1时刻后,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 【答案】A 5.物体A 以231(m /s)v t =+的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5m 处,同时以10(m /s)v t =的速度与A 同向运动,出发后物体A 追上物体B 所用时间(s)t 为 A .3s B .4s C .5s D .6s 【答案】C 【解析】物体A 经过s t 行驶的路程为2 (31)d t t t +?,物体B 经过s t 行驶的路程为0 10d t t t ?, 则有 2323200 (3110)(d 5)|55t t t t t t t t t t t +-=++-=-=? ,解得5t =.故选C . 6.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度25 ()731v t t +t =-+(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是 A .1+25ln 5 B .8+25ln 113 C .4+25ln 5 D .4+50ln 2 【答案】C

相关文档 最新文档