文档库 最新最全的文档下载
当前位置:文档库 › 短链脂肪酸的产生及作用_王子花

短链脂肪酸的产生及作用_王子花

短链脂肪酸的产生及作用_王子花
短链脂肪酸的产生及作用_王子花

专论与综述

机体肠道微生态系统中存在着大量细菌来维持肠道的微生态平衡,其的一个主要功能是代谢功能,表现为对膳食中难消化物质的发酵。细菌可以通过不同的代谢途径来发酵底物,产生能量和营养物质供给自身生长,同时对宿主产生有利的影响。短链脂肪酸(short-chainfattyacids,SCFA)是大肠细菌代谢的主要终产物,是碳链为1~6的有机脂肪酸,主要由厌氧微生物发酵难消化碳水化合物而产生。SCFA的重要作用表现为:可以影响结肠上皮细胞的转运,促进结肠细胞和小肠细胞的代谢、生长、分化,为肠粘膜上皮细胞及肌肉、肾、心、脑提供能量,增加肠道血供,影响肝脂质与碳水化合物的调控等。

1底物对SCFA产生的影响

对健康个体来说,底物利用率、微生物区系的细菌种类、小肠转运时间都是决定肠道SCFA的数量与种类的因素。由于大肠近端碳源的消耗快,特别是易消化的碳水化合物,当残留物向肠道远端移动时,细菌对底物利用率逐渐减少,这就影响了SCFA的类型与产量。体内与体外研究都表明,消化物对细菌的生理与代谢有很大的影响,可使结肠内蛋白质降解、氨基酸发酵而产生SCFA。

小肠内不被消化吸收的复杂碳水化合物(寡糖、非淀粉多糖、抗性淀粉等)进入大肠后被细菌发酵产生乙酸、丙酸、丁酸、二氧化碳、甲烷、氢气和水,其中短链脂肪酸(乙酸、丙酸、丁酸)所占比例高达85%,占产物的大部分。许多实验研究的表明,碳水化合物底物的不同,发酵产生的短链脂肪酸的比例和生理作用也不同。

1.1寡糖寡糖是指由2~10个单糖通过糖苷键连接而成的低度聚合物,可以通过在肠道的发酵对机体产生积极的作用。许多研究发现果寡糖可改善机体胆固醇代谢,这与其发酵产生的短链脂肪酸有关。许梓荣等研究表明,日粮中添加1.5%果寡糖可以提高结肠中乙酸,丙酸,丁酸以及血浆中乙酸水平,添加0.5%,1.0%,1.5%的果寡糖会使结肠中丙酸含量显著提高,且作者认为,果寡糖抑制肝脏HMG-CoA还原酶的活性可能是通过其发酵产物丙酸和乙酸起作用的。给断奶仔猪饲喂一定量的异麦芽糖低聚糖,会使其盲肠、结肠内的乙酸、丙酸、丁酸浓度显著升高,研究表明肠道中SCFA的升高,pH值的降低有利于肠粘膜保持完整的形态结构并促进粘膜细胞的增殖。粪便细菌的体外发酵实验表明,不同种类的寡糖被降解成不同种类的短链脂肪酸,果胶与木聚糖降解的主要产物是乙酸,阿拉伯半乳糖的则以丙酸为主。

1.2非淀粉多糖非淀粉多糖是大多数膳食纤维的主要组成部分,其经肠道细菌发酵产生短链脂肪酸,这可能影响肝脏葡萄糖的生成。不同的多糖发酵可以产生不同比例的SCFA,这主要是由于碳水化合物结构的不同而影响肠道中不同菌群的发酵能力。常见的非淀粉多糖包括谷物β-葡聚糖、戊聚糖等。谷物β-葡聚糖被证明具有降低血清胆固醇和调节糖尿病人血糖水平生理功能,它的这些作用的发挥与其在消化道的代谢有关,β-葡聚糖在消化道的发酵产物会影响它的生理活性,添加不同分子量和不同剂量的燕麦β-葡聚糖能够促进肠道中双歧杆菌和乳酸杆菌的增值,抑制大肠杆菌的作用。肠道中益生菌的存活影响着底物的发酵能力,已有研究报道,一种含乳酸杆菌的燕麦发酵饮料可以增加人体粪便的SCFA含量、影响粪便pH值以及粪便的细菌量;而添加双歧杆菌和乳酸的酸奶在连续饮用3w后却不能改变粪便中SCFA的量,说明底物的发酵能力和肠道中的菌群变化有关。申瑞玲等研究表明给小鼠灌喂燕麦β-葡聚糖可以增加结肠内丁酸的产生。丁酸盐是所有发酵产物中最重要的一种,它是人类结肠、盲肠上皮细胞最重要的能量来源,在维持肠道内环境稳定和预防结肠癌发生等方面发挥良好的作用。

1.3淀粉多糖TatsuyaMorita等实验结果显示,给大鼠饲喂直链玉米淀粉与土豆的混合物时,大鼠盲肠内产生大量丁酸。抗性淀粉也是一种结肠菌发酵的底物,大鼠盲肠内容物中SCFA含量随抗性淀粉摄入量的增加而增加。David等对健康人群所做的实验发现,含有抗性淀粉的膳食可以增加粪中丁酸的产生,且产生的平均粪丁酸与SCFA之比高出对照组31%,这是对结肠健康有利的。有人提出结肠疾病如溃疡性结肠炎是能源缺乏性疾病,而丁酸是结肠细胞的一种重要能源。虽然还没有证实结肠丁酸可以预防结肠癌,但结肠癌的病人经测定其血液中丁酸与SCFA之比正常时低。

短链脂肪酸的产生及作用

王子花1,申瑞玲1,2,李文全1

(1.山西农业大学动物科技学院,太谷030801;2.郑州轻工业学院食品与生物工程学院,郑州450002)

摘要:短链脂肪酸是大肠细菌的代谢主产物。近年来的研究表明短链脂肪酸可以通过调节结肠细胞的代谢来维持正常的大肠功能,从而预防疾病的发生。文章综述了不同底物对短链脂肪酸产生的影响,以及不同的短链脂肪酸的重要作用,提出其在临床应用上具有广阔的前景。

关键词:底物;乙酸;丙酸;丁酸;产生;生理作用

作者简介:王子花(1981~),女,山西原平人,山西农业大学动

物科技学院在读硕士,专业方向:基础兽医学;

申瑞玲(1967~),女,山西灵石人,郑州轻工业学院食品与生物

工程学院,副教授。

畜牧兽医科技信息2007.02

12

2SCFA的作用

短链脂肪酸是体内重要的发酵产物,在很多方面都起着重要的作用。SCFA可以影响结肠上皮细胞的转运,促进结肠细胞和小肠细胞的代谢、生长、分化,为肠粘膜上皮细胞及肌肉等提供能量,对肠道上皮有营养作用。短链脂肪酸能维持大鼠移植小肠粘膜形态,减轻移植肠上皮细胞超微结构损伤,并能改善移植肠对氨基酸的吸收能力。SCFA在肝脏代谢可致酮体(乙酰乙酸、β-羟丁酸)及氨基酸(谷氨酰胺、谷氨酸)生成增加,而酮体及谷氨酰胺是小肠的主要供能底物,对肠道粘膜有较强的促生长作用。SCFA可以降低肠道pH值,这可以防止病原菌的侵袭。还有报道说SCFA可以防止腹泻的发生。2.1乙酸乙酸是膳食纤维发酵的主要代谢物,也是胆固醇合成的最主要的底物,在机体内,大部分乙酸被吸收入血液,进入肝脏的代谢,作为周边组织的能源。在瘤胃动物,乙酸是重要的代谢养分,这是因为所有到达瘤胃的葡萄糖均为细菌的发酵产物。当人食用含发酵碳水化合物的食物后,会在其静脉血中发现有乙酸的存在。乙酸来源于盲肠,被肠道上皮组织摄取后,在门静脉血液中出现,最终穿过肝脏进入外周组织而被肌肉代谢。当门静脉中的乙酸降低到临界水平以下时,肝脏会分泌游离乙酸。乙酸可以被许多组织摄取和利用,是机体从小肠不能消化吸收的碳水化合物中得到能量的主要途径。膳食中补充乙酸可以降低餐后血糖和胰岛素反应,这种作用可能由上消化道机制(如阻抑胃排空或抑制消化酶活性等)所介导。

2.2丙酸SCFA混合物可以刺激盲肠膳食纤维的发酵,从而影响血液胆固醇水平,尤其是丙酸,经结肠吸收以后由肝脏代谢用作能源,并可以抑制肝胆固醇的合成。有文献报道,日粮中添加丙酸钠会使猪血清中胆固醇水平以及肝脏中HMG-CoA还原酶活性显著降低。但Hara等的实验发现给大鼠饲喂SCFA的混合物可以降低血液胆固醇水平,而乙酸是其中的有效成分,它可以抑制外周组织胆固醇的合成,但其具体的作用机制还不清楚。这显示SCFA中降低血液胆固醇的成分是有争议的,需要进一步的研究才能证实。体外实验表明丙酸可能抑制胆固醇的合成,提高高密度脂蛋白胆固醇和甘油三脂;膳食中的丙酸还能降低血糖和胰岛素水平,肝中的丙酸可以调节碳水化合物和脂肪的代谢。在反刍动物类,丙酸是合成葡萄糖的主要前体,而在人类,丙酸是在后肠发酵,目前尚未证明丙酸对人体的碳水化合物代谢有何显著影响。而在瘤胃动物中,丙酸是主要的葡萄糖前体。有研究表明长期给予丙酸盐可降低空腹血糖浓度,这可能与抑制肝脏释放葡萄糖有关。

2.3丁酸丁酸能被上皮细胞吸收利用,是人类结肠、盲肠上皮细胞最重要的能量来源,同时在促进细胞分化成熟、调节基因表达、维持肠道内环境稳定和预防结肠癌发生等方面发挥良好的作用。它是正常结肠细胞生长的首先原料,可以通过稳定DNA和修复损伤来促进正常细胞的形成。丁酸对于维持结肠粘膜的完整性,抵御诸如癌症和溃疡性结肠炎等疾病的发生等起着重要的作用。同时,丁酸对于结肠细胞的增值也是很重要的。丁酸是保护机体抵抗结肠癌的一个重要因素,不同水平的丁酸可以减少肿瘤细胞的生长,诱导癌细胞的分化,抑制肿瘤基因,诱导癌细胞凋亡。丁酸对粘膜还有营养作用,在主要的三种SCFA中,以丁酸对结肠细胞的营养作用最强。

3小结

总之,短链脂肪酸作为结肠厌氧微生物对难消化碳水化合物酵解的终产物,可以促进钠的吸收,促进结肠上皮细胞增殖与粘膜生长,刺激胃肠激素生成,是结肠粘膜重要的营养素,对人类大肠的代谢和功能起着重要的作用,遵循这一点,大量的临床研究正在开发利用SCFA。当大肠内产生的短链脂肪酸量增加时可以很好地调节改善大肠功能。我们可以通过调整膳食结构使SCFA向着有益结肠健康的方向发展。

参考文献

[1]GuarnerF,MalageladaJ-R,Gutflorainhealthanddisease[J].Lancet,2003,361:512~519.

[2]SandraMacfarlaneandGeorgeTMacfarlane,Regulationofshort-chainfattyacjdproduction[J],ProceedingsoftheNutritionSociety,2003,62:67-72

[3]许勤.短链脂肪酸的代谢及在肠道外科中的作用[J].肠外与肠内营养.1999,6(4):218~223

[4]胡彩虹,占秀安,许梓荣,果寡糖对肉仔鸡肌肉中胆固醇水平的影响及其机理探讨[J],畜牧兽医学报,2003,34(4),349~355[5]许梓荣,胡彩虹,夏枚生,果寡糖对肥育猪胆固醇代谢的影响[J],营养学报,2002,24(4):393-397

[6]张宏福,张莉,方路等,异麦芽低聚糖对断奶仔猪肠道VFA浓度、pH值及粘膜形态结构的影响[J],动物营养学报,2002,14(1):19-24

[7]Reimer,A.R.,Thomson,A.B.R.,Rajotte,R.V.,etal.Proglucagonmessengerribonucleicacidandintestinalglucoseuptakearemodulatedbyfermentablefiberandfoodintakeindiabeticrats[J].Nutr.Res.2000,20:851~864.

[8]Johansson,M.L.,Nobaek,S.,Berggren,A.,etal.SurvivalofLactobacillusplantarumDSM9843(299v),andeffectontheshort-chainfattyacidcontentoffacesafteringestionofarose-hipdrinkwithfermentedoats[J].InternationalJournalofFoodMicrobiology.1998,42:29~38.

[9]申瑞玲,王章存,姚惠源,燕麦β-葡聚糖对小鼠肠道菌群的影响[J],食品科学,2005,26(2):208-212

[10]TatsuyaMorita,SeiichiKasaoka,AkiraOh-hashi,Michiyoshilkai,etal,ResistantProteinsAlterCecalShort-ChainFattyAcidProfilesinRatsFedHighAmyloseCornstarch[J],JournalofNutrition,1998,128:1156-1164

[11]何梅,洪洁,杨月欣等,抗性淀粉对大鼠肠道菌群的影响[J],卫生研究,2005,34,1,85-87

[12]S.Petkevicius,K.D.Murrell,etal,Effectsofshort-chainfattyacidsandlacticacidsonsurvivalofOesophagostomumdentatuminpigs[J],VeterinaryParasitology,2004,122:293-301

[13]侯会池,黎介寿,膳食纤维的生理作用及临床应用[J],实用临床医药杂志,2004,8,5:12-15

[14]屠友金,胡彩虹,低聚果糖和丙酸钠对肥育猪胆固醇代谢的影响[J],中国粮油学报,2005,20,1:65-68

[15]HiroshiHara,SatokoHaga,etal,Short-ChainFattyAcidsSuppressCholesterolSynthesisinRatLiverandIntestine[J],JournalofNutrition,1999,129:942-948

专论与综述

畜牧兽医科技信息2007.0213

短链脂肪酸代谢组学检测具体方法及步骤

短链脂肪酸代谢组学检测具体方法及步骤 短链脂肪酸(SCFAs),主要包括乙酸、丙酸、丁酸、异丁酸、戊酸、异戊酸,是由微生物对未被消化的碳水化合物(少数情况下是蛋白)发酵产生,SCFAs逐渐作为调节饮食、肠道微生物和宿主的信号分子而被人熟知,在肠道中,SCFAs对人肠道健康十分有益,可以改善身体组成、葡萄糖稳态、血脂谱、降低体重和结肠癌风险。SCFAs作为主要的能量底物也可以起到抗炎、抗癌作用。SCFAs会通过各种机制影响慢性疾病,并在维持结肠上皮细胞代谢稳态方面起着重要作用,可以保护结肠免于外部伤害并对结肠疾病有着潜在的积极影响。 服务介绍 技术优势 采用严格的质量控制体系保证数据的可靠性; 专业的数据预处理,差异化合物筛选和PCA模式识别。 技术路线

技术参数 样本要求 生物学重复 样本数量:植物和微生物n≥6,动物样本n≥10,临床样本n≥30,所有重复样本独立分析。 其他种类的样品在收集之前请联系公司销售工程师。 检测平台 GC-MS (Agilent 7890B-5977B) 常规项目周期

实验检测:30个工作日(从收到客户预付款并收到样品之日起)数据分析:5个工作日 应用方向 1、药物或保健品的开发研究 2、疾病的早期诊断标志物发现研究 案例分析 短链脂肪酸(SCFAs),是细菌代谢产生的可以调节饮食、微生物群和宿主之间互作关系的一类物质。本研究对SCFAs以及它们参与的生物学过程进行了定量分析。将已知数量的13C标记的乙酸、丙酸和丁酸通过结肠释放胶囊引入到12名健康受试者结肠中,同时测量血浆中13C标记的SCFAs、Glucose、Cholesterol和Fatty Acids 含量,并定量肠道细菌丁酸的产出能力。研究表明,结肠中乙酸、丙酸、丁酸的系统利用率分别是36%、9%和2%。其中,少于1%的乙酸参与合成胆固醇,少于15%乙酸参与合成脂肪酸。大约6%的丙酸参与合成葡萄糖。不到0.05%的SCFAs通过尿液排出,余下的大部分被氧化成CO2后通过肺部释放出去。这些结果表明可以通过对血液中SCFA浓度的测量来对结肠中由纤维类物质降解产生的SCFAs进行评价和定量分析。研究结果对于理解SCFAs的生理功能(葡萄糖、脂类代谢以及免疫功能)至关重要。

不饱和脂肪酸

不饱和脂肪酸 缺乏脂肪,和缺乏其它任何一种营养一样,都会造成身体的不适。脂肪经消化后,分解成甘油及各种脂肪酸。 根据结构不同,脂肪酸分为饱和脂肪酸和不饱和脂肪酸,其中不饱和脂肪酸根据双健个数的不同,分为单不饱和脂肪酸和多不饱和脂肪酸(PUSA)两种。单不饱和脂肪酸有油酸,多不饱和脂肪酸按照从甲基端开始第1个双键的位置及功能不同,又分为ω-6系列和ω-3系列。亚油酸和花生四烯酸属ω-6系列,亚麻酸、DAH、EPA属ω-3系列,ω-3同维生素、矿物质一样是人体的必需品,不足容易导致心脏和大脑等重要器官障碍。人体不能合成亚油酸和亚麻酸,必须从膳食中补充。 ω-3不饱和脂肪酸中对人体最重要的两种不饱和脂肪酸是DHA和EPA。EPA是二十碳五烯酸的英文缩写,具有清理血管中的垃圾(胆固醇和甘油三酯)的功能,俗称"血管清道夫"。DHA是二十二碳六烯酸的英文缩写,具有软化血管、健脑益智、改善视力的功效,俗称"脑黄金"。 ω-3 多不饱和脂肪酸,是由寒冷地区的水生浮游植物合成,以食此类植物为生的深海鱼类(野鳕鱼、鲱鱼、鲑鱼等)的内脏中富含该类脂肪酸。1970年,两位丹麦的医学家霍巴哥和洁地伯哥经过研究确信:格陵兰岛上的居民患有心脑血管疾病的人要比丹麦本土上的居民少得多。格陵兰岛位于北冰洋,岛上居住的爱斯基摩人以捕鱼为主,他们喜欢吃鱼类食品。由于天气寒冷,他们极难吃到新鲜的蔬菜和水果。就医学常识来说,常吃动物脂肪而少食蔬菜和水果易患心脑血管疾病,寿命会缩短。但是事实恰恰相反,爱斯基摩人不但身体健康,而且在他们之中很难发现高血压、冠心病、脑中风、脑血栓、风湿性关节炎等疾病。无独有偶,这种不可思议的现象同样也发生在日本的北海道岛上。当地渔民的心脑血管疾病发病率明显低于其它区域,北海道人心脑血管疾病发病率只有欧美发达国家的1/10。在我国,也有研究发现浙江舟山地区渔民血压水平较低。其实问题就在于上述这些人的膳食中以鱼类为主,鱼类富含长链的不饱和脂肪酸,这就是他们保持心血管健康的原因之一。 但是日常生活中大多数人不能像爱斯基摩人那样天天吃深海鱼,同时由于生产和加工方面的技术原因,使人对一些食品中含有的不饱和脂肪酸吸收利用率很低,因此导致体内多不饱和脂肪酸严重缺乏,而饱和脂肪酸却大量积累。 主要功效 一、不饱和脂肪酸的生理功能 1、保持细胞膜的相对流动性,以保正细胞的正常生理功能。 2、使胆固醇细化,降低血中胆固醇和甘油三酯。 3、是合成人体内前列腺素和凝血恶烷的前躯物质。 4、降低血液粘稠度,该善血液微循环。 5、提高脑细胞的活性,增强记忆力和思维能力。 二、膳食中不饱和脂肪酸盈缺和健康 1、血中低密度脂蛋白和低密度胆固醇增加,产生动脉粥样硬化,诱发心脑血管病。 2、ω-3不饱和脂肪酸是大脑和脑神经的重要营养成份,摄入不足将影响记忆力和思维力,对婴幼儿将影响智力发育,对老年人将产生老年痴呆症。 膳食中过多时,干扰人体对生长因子、细胞质、脂蛋白的合成,特别是ω-6系列不饱和脂肪酸过多将干扰人体对ω-3不饱和脂肪酸的利用,易诱发肿瘤。 三、推荐的日摄入量 多不饱和脂肪酸含量是评价食用油营养水平的重要依据。豆油、玉米油、葵花籽油中,ω-6系列不饱和脂肪酸较高,而亚麻油、苏紫油中ω-3不饱和脂肪酸含量较高。由于不饱和脂肪酸极易氧化,食用它们时应适量增加维生素E的摄入量。一般ω-6:ω-3应在4 -10:1,摄入量为摄入脂肪总量的50% -60% 。 四、食物来源 1、脂肪的热量密度(1克= 9卡路里)是碳水化合物或蛋白质(1克=4卡路里)的两倍。尽管橄榄油和菜籽油对健康有益,但它们的热量也很高(1汤匙=120卡路里)。此外,许多加工食品和快餐食品的脂肪含量也较高,尤其是饱和脂肪。 2、多不饱和脂肪存在于红花籽油、印加果油、茶油、橄榄油、阿甘油、芥花籽油、葵花籽油、玉米油和大豆油中。而饱和脂肪存在于畜产品中,例如黄油、干酪、全脂奶、冰淇淋、奶油和肥肉,以及某些植物油(椰油、棕榈油和棕榈仁油)中。经科学家最新研究发现:来自南美洲亚马逊流域天然无污染的肥沃土壤中的印加果堪称世界植物营养“果王”,由此,印加果荣获巴黎世界博览会金奖。印加果油是目前世界上发现唯一含α-亚麻酸ω- 3、ω-6、ω-9三种不饱和脂肪酸高达92%的纯天然植物,独一无二,高含量亚麻酸被誉为“21世纪人类健康的加油站”,是不可忽视的生命活力素和消除亚健康的理想产品。 五、含其的植物油 可滋泉巴马火麻油是大自然中唯一能溶解于水的油料,在所有植物油中不饱和脂肪酸含量最高,同时含有大量延缓衰老的维生素E、硒、锌、锰、锗,还含有被誉为“植物脑黄金”的α-亚麻酸(ALA)。巴马火麻对自然生长环境要求极为苛刻,目前只产于巴马北部的石山,产量稀少且价格昂贵。 巴马火麻是迄今为止发现最有效的抗衰老和抗辐射植物,当地称之为“长寿麻”或“不老油”。鉴于在美容养颜和抗衰老方面的潜在价值,1999年联合国粮油调查署考察巴马火麻后向全世界特别推荐巴马火麻油为“最有开发价值的植物油”。 沙棘籽油也是典型的不饱和酸植物油,在所有植物油中不饱酸种类及含量都相当高,同时富含天然稳定剂维生素E,天

短链脂肪酸的代谢及其在肠道外科中的应用

短链脂肪酸的代谢及其在肠道外科中的应用 肠外与肠内营养 1999年第4期第6卷综述 作者:许勤 单位:南京医科大学第一附属医院普外科,南京 210029 关键词:短链脂肪酸;肠道外科 许勤综述,吴文溪审校 摘要:短链脂肪酸(SCFA)是碳链为1~6的有机脂肪酸,由饮食中不消化淀粉、纤维多糖等在结肠腔内经厌氧菌酵解生成,主要包括乙酸、丙酸、丁酸等,是结肠腔内重要的有机酸阴离子,通过离子与非离子形式由肠上皮细胞吸收,同时促进水电解质吸收。作为结肠粘膜首选的能源底物,SCFA增进钠吸收,促进结肠上皮细胞增殖与粘膜生长,提供代谢能源,增加肠血流,刺激胃肠激素生成,是结肠粘膜重要的营养素。在肠道外科的实验和临床研究中,通过灌肠法、回肠末端置管灌注、提供可酵解底物及静脉输入等途径补充SCFA,可增加肠吻合口强度,促进肠吻合,缓解和治疗旷置性结肠炎、短肠综合征、TPN所致肠失用、溃疡性结肠炎以及结直肠切除术后的储袋炎等,可望有广泛的应用前景。 中图分类号:R459.3 文献标识码:A 文章编号:1007-810X(1999)-04-0218-06* 短链脂肪酸(short chain fatty acid,SCFA)是碳链为1~6的有机脂肪酸,其中对人体代谢作用最为重要的有直链乙酸、丙酸和丁酸[1]。大肠中的厌氧菌将胃肠道未消化吸收的碳水化合物、纤维多糖等分解成SCFA,并很快被吸收。SCFA是结肠粘膜重要的营养素,其生理作用及在临床上的应用日益受到重视。 1SCFA的体内代谢 1.1SCFA的生成SCFA是结肠内重要的有机酸阴离子,由饮食中碳水化合物经肠道细菌酵解生成。其底物主要是非淀粉多糖、不消化淀粉,其他如不吸收寡糖、少量蛋白及胃肠道分泌物、粘膜细胞碎屑也与SCFA的生成有关。盲肠、结肠是细菌酵解的主要部位。大肠内容物每克含菌量高达1011~1012,结肠的无氧状态为厌氧菌酵解提供了理想的环境与场所。肠菌酵解不需要氧分子或其他无机离子作为最终电子受体,酵解反应自行平衡。大多数糖分解菌经由Embden-Meyerof通路形成丙酮酸,自丙酮酸起不同的细菌可形成不同生成物(图1)。肠菌对碳水化合物代谢的主要终末产物是乙酸、丙酸、丁酸、二氧化碳、甲烷、氢气和水。其中乙、丙、丁酸所占比例高达85%。不同酵解底物生成的SCFA总量、比例不尽相同,但乙酸盐所占比例最高,可溶性纤维果胶生成乙酸、丙酸、丁酸的比例为80∶12∶8,淀粉

脂类代谢考试试题及答案

第九章脂类代谢 一、选择题(请将选择的正确答案的字母填写在题号前面的括号内) ()1合成甘油酯最强的器官是 A 肝; B 肾; C 脑; D 小肠。 ()2、小肠粘膜细胞再合成脂肪的原料主要来源于 A 小肠粘膜吸收来的脂肪水解产物; B 肝细胞合成的脂肪到达小肠后被消化的产物 C 小肠粘膜细胞吸收来的胆固醇水解产物; D 脂肪组织的水解产物; E 以上都对。 ()3、线粒体外脂肪酸合成的限速酶是 A 酰基转移酶; B 乙酰辅酶A羧化酶; C 肉毒碱脂酰辅酶A转移酶Ⅰ; D 肉毒碱脂酰辅酶A转移酶Ⅱ; E β—酮脂酰还原酶。 ()4、酮体肝外氧化,原因是肝脏内缺乏 A 乙酰乙酰辅酶A硫解酶; B 琥珀酰辅酶A转移酶; C β—羟丁酸脱氢酶; D β—羟—β—甲戊二酸单酰辅酶A合成酶; E 羟甲基戊二酸单酰辅酶A裂解酶。 ()5、卵磷脂含有的成分是 A 脂肪酸、甘油、磷酸和乙醇胺; B 脂肪酸、甘油、磷酸和胆碱; C 脂肪酸、甘油、磷酸和丝氨酸; D 脂肪酸、磷酸和胆碱; E 脂肪酸、甘油、磷酸。 ()6、脂酰辅酶A的β—氧化过程顺序是 A 脱氢、加水、再脱氢、加水; B 脱氢、脱水、再脱氢、硫解; C 脱氢、加水、再脱氢、硫解; D 水合、加水、再脱氢、硫解。 ()7、人体内的多不饱和脂肪酸是指 A 油酸、软脂肪酸; B 油酸、亚油酸; C 亚油酸、亚麻酸; D 软脂肪酸、亚油酸。 ()8、可由呼吸道呼出的酮体是 A 乙酰乙酸; B β—羟丁酸; C 乙酰乙酰辅酶A; D 丙酮。 ()9、与脂肪酸的合成原料和部位无关的是

A 乙酰辅酶A; B NADPH+H+; C 线粒体外; D 肉毒碱;E、HCO3- ()10、并非以FAD为辅助因子的脱氢酶有 A 琥珀酸脱氢酶; B 脂酰辅酶A脱氢酶; C 二氢硫辛酸脱氢酶; D β—羟脂酰辅酶A脱氢酶。 ()11、不能产生乙酰辅酶A的是 A 酮体; B 脂肪酸; C 胆固醇; D 磷脂; E 葡萄糖。 ()12、甘油磷酸合成过程中需哪一种核苷酸参与 A ATP; B CTP; C TTP; D UDP; E GTP。 ()13、脂肪酸分解产生的乙酰辅酶A的去路 A 合成脂肪酸; B 氧化供能; C 合成酮体; D 合成胆固醇; E 以上都是。()14、胆固醇合成的限速酶是 A HMGCoA合成酶; B 乙酰辅酶A羧化酶; C HMGCoA还原酶; D 乙酰乙酰辅酶A硫解酶。 ()15、胆汁酸来源于 A 胆色素; B 胆红素; C 胆绿素; D 胆固醇。 ()16、脂肪酸β—氧化的限速酶是 A 肉毒碱脂酰转移酶Ⅰ; B 肉毒碱脂酰转移酶Ⅱ C 脂酰辅酶A脱氢酶; D β—羟脂酰辅酶A脱氢酶; E β—酮脂酰辅酶A硫解酶。 ()17、β—氧化过程的逆反应可见于 A 胞液中脂肪酸的合成; B 胞液中胆固醇的合成; C 线粒体中脂肪酸的延长; D 内质网中脂肪酸的合成。 ()18、并非类脂的是 A 胆固醇; B 鞘脂; C 甘油磷脂; D 神经节苷脂; E 甘油二脂。 ()19、缺乏维生素B2时,β—氧化过程中哪一个中间产物合成受到障碍? A 脂酰辅酶A; B β—酮脂酰辅酶A; C α,β—烯脂酰辅酶A ; D L—β—羟脂酰辅酶A; E 都不受影响。 ()20、合成胆固醇的原料不需要 A 乙酰辅酶A; B NADPH; C A TP ; D O2。 ()21、由胆固醇转变而来的是

短链脂肪酸对糖尿病的调节机制及应用

Hans Journal of Food and Nutrition Science 食品与营养科学, 2018, 7(4), 350-356 Published Online November 2018 in Hans. https://www.wendangku.net/doc/7510180236.html,/journal/hjfns https://https://www.wendangku.net/doc/7510180236.html,/10.12677/hjfns.2018.74043 The Mechanism and Application of Short-Chain Fatty Acids in Diabetes Mellitus Bo Pang, Junli Ren, Xiuli Yang, Yujuan Shan Harbin Institute of Technology, Harbin Heilongjiang Received: Nov. 3rd, 2018; accepted: Nov. 15th, 2018; published: Nov. 22nd, 2018 Abstract Prebiotics, such as dietary fiber (DF) and resistant starch, are fermented into SCFAs in the colon by certain communal bacterial species. The main product of fermentation is short-chain fatty acids. SCFAs can have a beneficial impact on diabetes in many ways. Gut microbiota is strongly asso-ciated with diabetes development. Gut bacteria play a crucial role in the host immune system, ex-traction of energy from the host diet and alterations of human gene expression. The review aims at the role of total colon microbiota and short-chain fatty acids in diabetes to promote the use of prebiotics and probiotics to prevent and treat the development of comprehensive strategies for these metabolic disorders. Keywords Short-Chain Fatty Acid, Diabetes, Microbiota, Immune, Prebiotics 短链脂肪酸对糖尿病的调节机制及应用 庞博,任军丽,杨修利,单毓娟 哈尔滨工业大学,黑龙江哈尔滨 收稿日期:2018年11月3日;录用日期:2018年11月15日;发布日期:2018年11月22日 摘要 膳食纤维(dietary fiber, DF)或抗性淀粉(resistant starch, RS)等益生元在肠道中被肠道细菌发酵,主要

n-3多不饱和脂肪酸与恶性肿瘤

中华普通外科学文献 渊电子版冤 圆园员员 年 员圆 月第 缘 卷第 远 期 悦 澡蚤 灶 粤 则 糟 澡 郧 藻 灶 杂怎则 早渊耘 造 藻 糟 贼 则 燥 灶蚤 糟耘 凿蚤 贼 蚤 燥 灶冤袁 阅 藻 糟 藻 皂 遭藻 则圆园员员袁 灾 燥 造 缘 晕 燥 援 远 窑讲座与综述窑 DOI:10.3877/cma.j.issn.1674-0793.2011.06.016 作者单位:510080 广州,中山大学附属第一医院东山院区外科 n-3 多不饱和脂肪酸主要来源于多脂的深海冷水鱼,人类很难完整地合成 n-3 多不饱和脂肪酸,主要 通过食物摄取遥流行病学调查显示,增加 n-3 多不饱和脂肪酸摄取量可以抑制多种肿瘤的发生尧发展,减轻 进展期恶性肿瘤患者恶病质症状, 减少体重丢失甚至增加体重遥 但近年来也有学者对这一观点提出了异 议遥 人类约有 2/3 以上疾病的发生与膳食不当有关遥 越来越多的科研证据表明,危害人类健康的心血管疾 病尧糖尿病尧肥胖症以及癌症等与膳食有着不解之缘遥 根据美国的一项统计,超过 80%的患者的死亡原因 与上述几种疾病密不可分遥 血脂的含量与这些疾病的发生密切相关, 而血脂的高低又受到膳食中脂类物 质的成分及人们摄入脂类物质量的影响遥 如今西化的膳食习惯,导致人们脂肪总摄入量大大增加,此外,膳 食中 n-6 多不饱和脂肪酸(n-6 PUFAs)过量,n-3 PUFAs 严重不足,n-6/n-3 比例的失衡也是多种疾病发生 的潜在危险因素遥 目前,有关 n-3 PUFAs 对心血管疾病尧癌症尧肥胖尧糖尿病等疾病的预防作用的研究广泛 而深入,但环境对基因的作用如何,尤其是对于人体健康而言,膳食与基因存在怎样的相关性,彼此之间是 如何相互作用,相关的研究报道较少遥 现有的动物实验结果提示,膳食中脂肪的量和成份严重影响着动物 的健康,对于具有不同遗传背景以及遗传易感性的人群而言,膳食可能对基因发生的影响力,但目前尚无 明确定论遥 本文主要综述了 n-3 PUFAs 的膳食来源,在人体的代谢情况,及 n-3 PUFAs 在肿瘤防治尧临床 试验和治疗中的作用遥 一尧n-3尧n-6 PUFAs 的膳食来源 人体可以从头合成或从食物中摄取多种饱和及单不饱和脂肪酸遥 但哺乳动物缺乏合成 n-3尧n-6 PU鄄 FAs 的脱氢酶,因此这些必需脂肪酸只能从食物中摄取遥 陆生植物可以合成 n-6 系列 PUFAs 的第 1 个成员要要 要亚油酸(LA;18颐 2n-6)遥 几乎所有食用植物油如 玉米油尧 葵花油尧 红花油尧 橄榄油中 LA 的含量都很丰富遥 植物也能合成 n-3 系列 PUFAs 的第一个成 员要要 要琢 -亚麻酸(琢 -LNA,18颐 3 n-3),富含 琢 -LNA 的植物包括大豆尧核桃尧深绿色叶蔬菜如甘蓝尧菠菜尧椰 菜尧抱子甘蓝的种子等,一些油类如亚麻子油尧芥菜籽油尧菜籽油中,琢 -LNA 的含量也很丰富,同时也富含大 量 LA遥 膳食中的长链 n-3 PUFAs 主要以二十碳五烯酸(EPA,20颐 5 n-3)和二十二碳六烯酸(DHA,22颐 6 n-3) 的形式储存于冷水鱼体内遥 鱼类可以从浮游植物和浮游动物中摄取 EPA 和 DHA,不同种类尧栖息在不同 水域的鱼类,体内总脂肪及 n-3 PUFAs 的含量变化很大即便同一种类的鱼,生活在大西洋和太平洋,体内 n-3 PUFAs 含量的差异也很大遥 总之,深海冷水鱼如鲭鱼尧金枪鱼尧鲑鱼等,含 DHA 和 EPA 的量最高遥 人工 饲养的鱼类,喂食不同的饲料,其体内脂肪酸的组成也有显著区别遥 二尧n-3尧n-6 PUFAs 在人体内的代谢 虽然哺乳动物不能从头合成 n-3尧n-6 PUFAs,但哺乳动物细胞可以通过碳链的延长尧去饱和作用和逆 转等方式使 PUFAs 之间发生转化 [1] 遥 摄食后,LA 通过一系列氧化去饱和及碳链延长的交替作用被代谢,生 成花生四烯酸(AA,20颐 4 n-6)遥PUFAs 转化的主要代谢途径见图 1遥驻 6 途径负责 LA 转化为 AA,琢 -LNA 转化 为 EPA,这个步骤主要在肝脏细胞的内质网中进行遥驻 8 途径主要存在于植物中,可以生成 AA 与 EPA,但是 灶-猿 多不饱和脂肪酸与恶性肿瘤 杨婷 余红兰 石汉平 530 窑 窑

不饱和脂肪酸

EPA 二十碳五烯酸,是鱼油的主要成分。虽然亚麻酸在人体内可以转化为EPA,但此反应在人体中的速度很慢且转化量很少,远远不能满足人体对EPA的需要,因此必须从食物中直接补充。 作用 1、治疗自身免疫缺陷。 2、促进循环系统的健康。Ω-3脂肪酸已经被证实能促进循环系统的健康和防止胆固醇和脂肪在动脉壁上积聚 3、有助于生长发育。保持身体里的Ω-3脂肪酸含量处于一个适当平衡的位置对正常的生长和发育是十分必要的。营养专家建议婴儿应从日常饮食和补充剂中吸收各种类型的Ω-3脂肪酸。根据这些建议的要求,婴儿在日常饮食中吸收的EPA应少于 0.1%。 4、其他的情况。Ω-3脂肪酸,包括EPA在内,对肺病、肾病、2型糖尿病、大肠溃疡和节段性回肠炎的治疗都会起到积极的作用。 5、EPA具有帮助降低胆固醇和甘油三酯的含量,促进体内饱和脂肪酸代谢。从而起到降低血液粘稠度,增进血液循环,提高组织供氧而消除疲劳。防止脂肪在血管壁的沉积,预防动脉粥样硬化的形成和发展、预防脑血栓、脑溢血、高血压等心血管疾病。 6、DHA与EPA组合具有保护眼睛,提高视网膜的发射机能作用。国家卫生部要求:DHA与EPA的配比必须在二点五比一以上。 参考摄入量 中国营养学会副理事长苏宜香教授表示,“相关研究已证实了DHA和EPA对人类的健康有更多益处”。 据联合国粮农组织专家委员会联合会商提出的报告显示,每日摄取250—2000毫克的EPA与DHA是构成人类健康饮食的重要组成部分。报告还指出,“成年男性和非孕期或哺乳期女性每天食用250毫克DHA+EPA; 目前中国成年人人均每天DHA+EPA摄入量仅有37.6毫克,不到美国医学研究院建议值(160mg/天)的四分之一,据国家权威调查数据分析显示,属严重缺乏状态。就是这样一个身体状况,对迎接宝宝的身体准备是不足的,据联合国粮农组织专家委员会联合会商提出的报告显示,孕期和哺乳期女性每日摄取DHA+EPA300毫克,是保证母亲和婴儿最佳健康发育水平的最低标准”。[3] 母乳中DHA:AA的配比均衡,帮助DHA和AA共同吸收,对0-6个月宝宝的头脑智力发育至关重要: 根据研究,中国妈妈母乳中DHA:AA的平均比例约为1:1.7,过多的DHA会抑制AA的吸收 实验证明-相比单独作用,DHA和AA共同作用更有利于支持宝宝脑部发育。 DHA/AA配比(1:1-1:2)亲和人体:帮助DHA和AA的有效利用;

22 脂肪酸的分解代谢

第28章、脂肪酸的分解代谢(p230) 本章重点:1、脂肪酸分解代谢过程,2、脂肪酸代谢的能量产生,3、脂肪酸分解脱氢,4脂肪酸分解代谢和糖酵解的关系。 本章主要内容: 一、脂肪的水解——脂酶的水解作用(细胞质中) 生物体内脂肪是由脂肪酶水解,在脂肪酶的催化下生成一分子甘油和三分子脂肪酸,脂肪酶的特点:主要作用于有酯键的化合物,不论脂肪来源于什么组织,不论脂肪酸碳链的长短,只要是酯键,脂肪酶就可以使其断裂,这就是酶的专一性即键专一性。 事实上,脂肪的水解不是一步完成的,而是分步完成,分步进行水解。第一步脂肪酶水解第一或第三全酯键,即α或α′酯键,如果第一步水解α-酯键,第二水解α′酯键,生成α和α′脂肪酸和甘油-酯,最后,β-位的脂肪酸在转移酶的催化下β-的脂肪酸转到α或α′位上,再在脂肪酶的作用下,脂肪酸水解下来,共生成三分子脂肪酸和一分子甘油,水解过程为: 脂肪(甘油三酯)水解的产物:一分子甘油和三分子脂肪酸。 二、甘油的转化 脂肪的水解产物甘油是联系脂肪代谢和糖代谢的重要化合物,它可以轩化成磷酸甘油醛进入糖代谢,其代谢过程为: 生成的磷酸2羟丙酮有两种去路: 1、DHAP可以进入EMP途径生成pyr,再经脱氢、脱羟生成乙酰COA,经TCA循环氧化 成CO2和H2O。 2、G-3-P可以与DHAP逆EMP途径在醛缩酶催化下生成F-1.6-P,继续转化成糖类。 甘油被彻底氧化以后可以生成多少molATP呢?首先总结氧化的部位: ①α-磷酸甘油脱氢,生成1molNADH·H+ ②G-3-P生成1,3-DPG 1molNADH·H+ ③Pyr脱氢 1molNADH·H+ ④异柠檬酸脱氢1molNADH·H+ ⑤α-酮戊二酸脱氢 1molNADH·H+ ⑥平果酸脱氢 1molNADH·H+ ⑦琥珀酸脱氢 1molFADH2 琥珀酰COA→琥珀酸 另外,甘油还可在代谢的过程中转化到蛋白质中去,如进入TCA后生成Pyr、OAA、α-Kg等可经转氨基作用生成Ala、Asp和Glu参与到蛋白质的合成中去。 三、脂肪酸的降解 脂肪酸的降解(分解)即氧化分解有几种形式,最重要的是β-氧化,其次是α-氧化和ω-氧化。 (一)β-氧化(线粒体内进行) 1、概念:脂肪酸的β-氧化作用是脂肪酸经一系列酶的作用,从α、β碳位之间断裂生 成1mol乙酰COA和比原来脂肪酸少两个碳原子的脂酰COA。 2、β-氧化过程:脂肪酸β-氧化的合成过程包括下列几个主要步骤: 1)活化或叫做脂酰COA的形成:脂肪酸首先与辅酶A缩合同时消耗一分子ATP,形成活化的脂酰COA,这步反应要消耗ATP的两个高能磷酸键。 第一步反应是在脂酰 COA合成酶的催化下进行的,活化了的脂酰COA借线粒体内膜两侧的肉毒碱脂酰COA转移酶的作用,进入线粒体内。 肉毒碱脂酰COA转移酶 脂酰COA++COA 肉毒碱的结构: 肉毒碱起携带脂肪酸酰基通过线粒体内膜的作用。

DHA+与+EPA+合成超长链多不饱和脂肪酸的效率比较

【通讯作者】吴峥峥 DHA与EPA合成超长链多不饱和脂肪酸的效率比较 余 曼,陈 波,张瑞帆,吴峥峥 (四川省医学科学院?四川省人民医院眼科,四川成都610072) 【摘要】 目的 比较在ELOVL4蛋白酶催化作用下,DHA和EPA合成超长链多不饱和脂肪酸VLC-PUFA的效率。方法 构建携带ELOVL4基因和绿色荧光蛋白的重组腺病毒,转入培养的PC12细胞,通过qRT-PCR定量分析ELOVL4基因的表达量,WB检测ELOVL4蛋白的表达;1∶1加入DHA和EPA,孵育48h之后进行脂肪酸提取,通过气相质谱GC-MS分析超长链脂肪酸的成分。结果 GC-MS检测到分别用DHA及EPA处理后的PC12+Ad-ELOVL4的细胞中有n3VLC-PUFA的表达,34:5n3和36:5n3分别为0畅85%和1畅11%;34:6n3和36:6n3分别为0畅16%和0畅29%;EPA所产生的五烯酸总和是DHA所产生的六烯酸总和的4倍。结论 EPA合成VLC-PUFA的效率远远高于DHA,为患者提供更高比例的EPA,而非DHA,可能是治疗STGD3疾病的方式之一。 【关键词】 二十二碳六烯酸;二十碳五烯酸;ELOVL4基因;Stargardt病;超长链多不和脂肪酸【中图分类号】R77 【文献标志码】A 【文章编号】1672-6170(2014)05-0024-04 ComparisonofelongationefficiencybetweenDHAandEPAinsynthesisofverylongchainpolyunsaturatedfattyacids YUMan,CHENBo,ZHANGRui-fan,WUZheng-zheng (DepartmentofOph- thalmology,SichuanAcademyofMedicalSciences&SichuanProvincialPeople摧sHospital,Chengdu610072,China) 【Correspondingauthor】 WUZheng-zheng 【Abstract】 Objective TocomparetheelongationefficiencybetweenDHAandEPAforsynthesisofverylongchainpolyunsat-uratedfattyacid(VLC-PUFAs)undercatalyticactionofELOVL4protease.Methods PC12cellsweretransducedwithrecombinantadenovirustype5carryingmouseElovl4andgreenfluorescentprotein(GFP).GFP-expressingandnon-transducedcellswereusedascontrols.ELOVL4geneexpressionwasquantifiedbyqRT-PCRs.ELOVL4proteinwasanalyzedbyWestern-Blot(WB).ThetransducedcellsweretreatedwithDHAorEPA(1:1).After48hofincubation,cellswerecollected,andfattyacidmethylesterswerepreparedfollowingtotallipidsextraction.Thefattyacidwasanalyzedbyusingagaschromatography-massspectrometry(GC-MS).Results GC- MSanalysisshowedthattheDHAandEPAtreatedPC12+ Ad-ELOVL4hadn3VLC-PUFAsinwhich34:5n3and36:5n3were0畅85%and1畅11%,respectively;34:6n3and36:6n3were0畅16%and0畅29%,respectively.TotalamountofpentaenoicssynthesizedfromEPAwasalmostfourtimesthanthatofhexaenoicssynthesizedfromDHA.Conclusion ElongationefficiencyofVLC-PUFAsfromEPAismuchhigherthanthatfromDHA.Therefore,dietarysupplementationofmoreEPAratherthanDHAmayprovidesometherapeuticbenefitsforpatientswithStargardts摧disease(STGD3). 【Keywords】 Docosahexaenoicacid(DHA),Eicosapentaenoicacid(EPA),ELOVL4gene,Stargardts摧disease,Verylongchainpolyunsaturatedfattyacid(VLC-PUFA) 以DHA和EPA为代表的n3PUFAs(polyunsat-uratedfattyacids,PUFAs)是指含有两个或两个以上双键的一类脂肪酸,通常按照第一个双键的位置把多不饱和脂肪酸分类,其中n3PUFAs,即从甲基端数第1个双键的位置在第3碳位的多不饱和脂肪酸,如二十二碳六烯酸(22:6n3,DHA)和二十碳五烯酸(20:5n3,EPA)。在哺乳动物神经系统中,n3PUFAs不但是重要的结构组分,而且是重要的营养 因子[1] 。DHA被认为是功能最强的n3PUFAs, DHA与人类多种神经性疾病,例如阿尔默茨症[2] 。 Stargardt病(Stargardt-likemaculardystrophy,STGD)是一种发生于青少年期的遗传性黄斑营养不良,目前尚无有效的治疗方法。近年来的研究又发现,ELOVL4基因第VI外显子上突变导致了人类的 常染色体显性遗传STGD3的发病[3] 。ELOVL4属 于超长链脂肪酸延伸酶(elongaseofELOngationofverylongchainfattyacids,ELOVL)家族,已被证实参与多不饱和脂肪酸(verylongchainPUFA,VLC-PU- FA)的C28-C38碳链延长的生化过程[4] 。McMahon等发现,ELOVL4基因突变的STGD3小鼠模型的视 网膜中的C32-C36酰基磷脂酰胆碱的水平下降[5] ,VLC-PUFA水平减少还会导师ERG波幅的下降,因此,治疗STGD3的策略之一可能是通过食物供给方式将VLC-PUFA送到视网膜组织。然而,由于VLC-PUFA结构的不稳定性,使得其很能被大量生产,那么另外一种方式就是通过提供VLC-PUFA的前体物质,体内合成VLC-PUFA。图1显示n3PUFAs的合成通路,我们看到DHA和EPA均为VLC-PUFA的前体脂肪酸,尤其是DHA占有在感光体外部节段磷 脂中大约50%的脂肪酸[6] ,它在神经系统以及视网膜中的作用曾受到广泛的关注。本研究将转基因ELOVL4蛋白在PC12细胞中过量表达,等浓度加入 4 2 实用医院临床杂志2014年9月第11卷第5期

短链脂肪酸对结肠功能有重要影响

中国食品报/2009年/7月/31日/第008版 微生态健康 ●影响结肠防御屏障的组分●影响肠上皮细胞通透性●影响肠道上部的运动和饱腹感 短链脂肪酸对结肠功能有重要影响 复旦大学附属华东医院营养科徐丹凤孙建琴 短链脂肪酸(SCFAs) 是膳食纤维在结肠腔内经细菌发酵的产物,不仅是肠上皮细胞重要的能量来源,还可影响影响肠黏膜屏障和肠上皮细胞的通透性、氧化应激反应等,对结肠功能和健康具有重要的作用。但是也有一些动物和体外研究表明,较高浓度的短链脂肪酸对结肠的渗透性和敏感性有负面影响。 ■肠内短链脂肪酸的生成 短链脂肪酸由1-6个碳原子组成,乙酸、丙酸和丁酸是肠内主要的短链脂肪酸,大多由膳食纤维在结肠腔内经细菌酵解生成,也有少量来自于膳食蛋白和内源性蛋白。 肠内短链脂肪酸产生的速率和数量取决于膳食纤维的溶解度、聚合度等化学特性。不溶性膳食纤维的可发酵性低,但可增加粪便的体积,减少结肠转运时间;可溶性膳食纤维的可发酵性很高,能在结肠内生成大量的短链脂肪酸。聚合度高的膳食纤维对糖化菌的发酵作用有更高的抵抗力,导致发酵的时间延长,远端结肠逐渐膨胀。在体内外均可生成大量短链脂肪酸的可发酵膳食纤维和化学改性膳食纤维包括低聚果糖、菊粉、发芽大麦食品、水解瓜尔胶、燕麦麸、玉米淀粉、异麦芽酮糖醇、葡萄糖酸等。 除了膳食纤维,其他物质通过不同的机制也可增加结肠内短链脂肪酸的浓度。例如:低聚糖——阿卡波糖可以增加进入结肠的淀粉数量;三丁酸甘油酯经胰腺和胃脂肪酶的水解后,也可增加丁酸的浓度;丁酸片剂可在回肠末端和近端结肠释放丁酸;还有一些是产丁酸的益生菌株,如溶纤维丁酸弧菌和丁酸梭菌。 由于近端结肠中碳水化合物含量较高,因此,分解糖类细菌的发酵作用主要发生在近端结肠,短链脂肪酸的浓度也高。远端结肠中可发酵的碳水化合物非常少,以蛋白发酵为主,短链脂肪酸的浓度亦下降。远端结肠还是潜在毒性代谢产物,如氨、含硫化合物、吲哚和苯酚的形成场所。由于远端结肠是溃疡性结肠炎、结肠癌等胃肠道病症的好发位置,因此,可以假设有毒代谢产物的产生和短链脂肪酸的缺乏是结肠发病的病因之一。 ■短链脂肪酸对结肠功能的影响 1.丁酸与结肠防御屏障 除了对癌变、炎症和氧化应激起作用外,丁酸还可通过影响结肠防御屏障的组分,加强屏障的保护作用,防御肠道内抗原。 丁酸对结肠防御屏障组分的影响主要有促进上皮细胞迁移,诱导黏蛋白、三叶因子(TFFs)、活性转谷氨酰胺酶、抗菌肽和热休克蛋白(HSPs)。结肠防御屏障的一个重要组分是覆盖上皮的黏膜层,主要由黏蛋白和三叶因子组成。三叶因子有助于改善黏膜层的黏弹特性,减少炎症细胞的补充,并参与维护和修复肠道黏膜。转谷氨酰胺酶积极参与肠黏膜愈合,和溃疡性结肠炎炎症的严重程度相关。抗菌肽(如LL-37和防御素)可以保护胃肠黏膜,防御细菌的入侵和黏附,防止感染。热休克蛋白通过抑制炎症调制剂的产生,防御炎症,发挥保护作用。 此外,体外人结肠癌细胞株研究表明,丁酸通过增加细胞迁移率,在胃黏膜损伤后参与修复。而高效修复表面损伤和黏膜溃疡对于维护和重建上皮屏障十分重要。

转基因植物生产超长链多不饱和脂肪酸研究进展

植物学通报 Chinese Bulletin of Botany 2007, 24 (5): 659?666, https://www.wendangku.net/doc/7510180236.html,
.专题介绍.
转基因植物生产超长链多不饱和脂肪酸研究进展
石娟, 朱葆华, 潘克厚 *
中国海洋大学海水养殖教育部重点实验室, 青岛 266003
摘要
超长链多不饱和脂肪酸(VLCPUFAs)对人类健康非常重要。日常摄入一定量的VLCPUFAs能够补充人体自身合成的
不足, 并对某些疾病起到明显的预防和治疗作用。VLCPUFAs主要源自深海鱼油, 但由于市场需求的迅速增长和海洋可捕捞 鱼类资源的日益减少, 该途径已经远远不能满足市场的需要, 寻找更为持续且稳定的VLCPUFAs来源已经成为当务之急。最 近, 人们已经克隆了VLCPUFAs生物合成相关的去饱和酶和延伸酶基因, 并希望在植物特别是油料作物中共表达这些基因, 使 其成为生产VLCPUFAs的 “绿色细胞工厂” 。目前已有多个研究小组在进行转基因植物合成VLCPUFAs的探索, 并取得了突 破性的研究成果。本文综述了相关的研究进展, 并对存在的问题和解决策略进行了探讨。
关键词 DHA, EPA, 转基因植物, 超长链多不饱和脂肪酸
石娟, 朱葆华, 潘克厚 (2007). 转基因植物生产超长链多不饱和脂肪酸研究进展. 植物学通报 24, 659?666.
超长链多不饱和脂肪酸(VLCPUFAs)是指含有 20 或 22个碳原子及4-6个亚甲基间隔的顺式双键的脂肪 酸链(Abbadi et al., 2004), 包括花生四烯酸(AA, 20: 4n6)、 二十碳五烯酸(EPA, 20:5n3)和二十二碳六烯酸 (DHA, 22:6n3)。 多不饱和脂肪酸(PUFAs)可分为n6系 列和 n3 系列。AA 属于 n6 PUFAs; EPA 和 DHA 属于 n3 PUFAs。 研究表明, VLCPUFAs 对人类健康非常重 要。AA 和 EPA 是哺乳动物细胞膜的组分, 也是生成前 列腺素、白三烯和血栓素等激素的前体(Funk, 2001)。 EPA 在凝血、免疫和抗炎症等各种生理反应中起重要 作用(Simopoulos, 2002)。DHA 对胎儿神经系统的形 成至关重要(Uauy et al., 2001), 还影响着视网膜视紫 红质的活性(Giusto et al., 2000), 并与某些疾病如关节 炎、动脉硬化、抑郁症的预防和治疗有关(Horrocks and Yeo, 1999; Marszalek and Lodish, 2005)。 人体合成 EPA 和 DHA 的效率极低, 在日常饮食中
补充足够的 EPA 和 DHA 对维持身体健康极为重要。 目 前该类脂肪酸的主要来源是深海鱼油, 但是鱼类自身并 不能合成 VLCPUFAs, 而是通过摄食富含 VLCPUFAs 的海藻等进行有限的积累; 另外, 过度捕捞使海洋鱼类资 源日益减少, 该途径已经远远不能满足迅速增加的市场 需求。 此外, 由于环境污染等原因导致鱼油中的重金属 含量越来越高, 寻找更为持续、稳定、安全的 EPA 和 DHA来源成为当务之急(Tonon et al., 2002; Domergue et al., 2005a)。已知某些微生物如真菌和海洋微藻能 够从头合成 VLCPUFAs 且含量丰富(Sayanova and Napier, 2004); 然而现已开发出的商业化的海藻油和真 菌油, 由于其产量低和提取成本高限制了这类资源的大 规模应用。 鉴于植物油的提取工艺非常成熟, 许多研究 者已经将目光转向油料作物的代谢工程, 探索如何利用 转基因植物作为 “绿色细胞工厂 ”生产 V LC PU FA s (Truksa et al., 2006)。近年来国外一些研究小组已在
收稿日期: 2006-10-24; 接受日期: 2007-04-09 基金项目: 973 重大基础研究前期研究专项(No. 2005CCA02400) * 通讯作者。E-mail: khpan@https://www.wendangku.net/doc/7510180236.html, 缩写词: AA: arachidonic acid; ALA: α-linolenic acid; DGLA: dihomo-γ-linolenic acid; DHA: docosapentaenoic acid; EDA: eicosadienoic acid; EPA: eicosapentaenoic acid; ER: endoplasmic reticulum; ETA: eicosatetraenoic acid; GLA: γ-linolenic acid; LA: linoleic acid; LPCAT: lyso-phosphatidycholine acyltransferase; OA: oleic acid; PC: phosphatidycholine; PDAT: phospholipid diacylglycerol acyltransferase; PUFAs: polyunsaturated fatty acids; SDA: stearidonic acid; TAG: triacylglycerol; TPA: tetracosapentaenoic acid; VLCPUFAs: very long-chain polyunsaturated fatty acids

反式脂肪酸在体内如何代谢

反式脂肪酸在体内如何代谢 1、反式脂肪酸同顺式脂肪酸一样能作为能源同样会被氧化而供能; 2、反式脂肪酸的确会导致VDL(极低密度脂蛋白)/LDL(低密度脂蛋白)的水平,它在体内的积累是因为不能通过脂合成途径合成体内其他脂质。 什么是反式脂肪酸? 反式脂肪酸是一类不饱和脂肪酸,包含至少一个反式结构的双键。 反式脂肪酸的来源于食品工业加工产生“氢化油”中以及反刍动物体内。 在食品工业中,由于天然植物油的双键是“顺式”结构,这种油抗氧化能力差,不稳定,工业上将植物油氢化,在这个过程中,部分油脂异构化产生了“反式”双键。以rans 9-Elaidic Acid(t9一C18:1)为主。 反刍动物的油脂以及牛奶中也存在反式脂肪酸,这是由于反刍动物瘤胃中的微生物将脂肪酸氢化而产生。以trans 11.Vaccenic Acid(t11一C18:1)为主,也还有顺9,反11一共轭亚油酸(c9, t11一CLA)和反10,顺12一共轭亚油酸(t10,c12一CLA)。 反式脂肪酸会增加体内VDL/LDL的水平,易导致心血管疾病、肥胖、胰岛素抗性、糖尿病等。 共轭亚油酸也是一种反式脂肪酸,但共轭亚油酸却与其他反式脂肪酸不同,它具有抗癌、降脂、抗动脉粥样硬化等功能。 反式脂肪酸在体内如何被氧化?

饱和脂肪酸的β-氧化过程大致经过4个步骤,既脱氢、加水、再脱氢和硫解这四个步骤。 由于反式脂肪酸为不饱和脂肪酸,因此先讲单不饱和脂肪酸的β-氧化过程。 体内正常的不饱和脂肪酸的双键都是顺式的,它们活化后进入β-氧化时,生成3-顺烯脂酰CoA, 此时需要顺-3反-2异构酶催化使其生成2-反烯脂酰CoA以便进一步反应。2-反烯脂酰CoA加水 后生成D-β-羟脂酰CoA,需要β-羟脂酰CoA差向异构酶催化,使其由D-构型转变成L-构型,以 便再进行脱氧反应(只有L-β-羟脂酰CoA才能作为β-羟脂酰CoA脱氢酶的底物)。 下图为多不饱和脂肪酸氧化示意图: 从不饱和脂肪酸的β-氧化过程可以看出,其“顺式”双键需要首先经过异构酶的催化变成“反式”双键才能进行 下一步氧化反应,而反式脂肪酸的氧化过程则不需要经过顺-3反-2异构酶的催化,直接完成加水、脱氢和硫解过程。 反式脂肪酸在体内的积累和对VDL/LDL水平的影响 体内的脂质作为前体能合成其他多不饱和脂肪酸,该过程需要脂肪酸去饱和酶的参与,但是该类酶 的底物为顺式双键,含有反式双键的脂肪酸则不能被延长或去饱和而被积累下来。

相关文档