文档库 最新最全的文档下载
当前位置:文档库 › 消弧线圈容量的选择

消弧线圈容量的选择

消弧线圈容量的选择
消弧线圈容量的选择

消弧线圈容量的选择

消弧线圈容量应主要根据系统单相接地故障时电容电流的大小来确定,并应留一定裕度,以适应系统今后的发展和满足设备裕度的要求等。消

弧线圈的容量可按式(6)确定:

式中Q——消弧线圈的容量, kV·A;

Un——系统标称电压,kV;

Ic——对地电容电流,A。对于改造工程,Ic应以实测值为依据;对于新建工程,则应根据配电网络的规划、设计资料进行计算。

消弧线圈接地装置的选择首先是由配电网的电容电流确定,主要有2种

方法:

a. 进行实际测量利用中性点外加电容法、增量法等,可以比较有效地

将电容电流测出来,且对系统没有任何影响。

b. 根据配电网参数估算估算电容电流主要包括有电气连接的所有架空

线路、电缆线路、变压器以及母线和电气的电容电流。

架空线路的电容电流近似估算公式为:

无架空地线:Ic=2.7×Ue×L×10-3(7)

有架空地线:Ic=3.3×Ue×L×10-3(8)

以上2式中,L为线路的长度,km;Ic为线路的电容电流,A;Ue为

额定电压,kV。

同杆双回线路的电容电流为单回路的1.3~1.6倍。

电缆线路的电容电流近似估算公式:

以上2式中,S为电缆截面,mm2;Ic为线路的电容电流,A;Ue为

额定电压,kV。

上述公式主要适用于油浸纸电力电缆,对于目前采用较多的交联聚乙烯电缆,其每km的对地电容电流根据制造厂提供的参数比油浸纸电力电

缆的大20%左右。

2.2 实际应用

石家庄钢铁厂220 kV 中央变电站为比较典型的用户站,该站规模为:2台220 kV/35 kV/6 k V,90 MV·A变压器;220 kV部分为桥型接线;35 kV、6 kV部分均为单母线分段接线;6 kV部分由于进线额定电流较大,故采用了双开关进线。35 kV出线7回,均为架空线,且线路非常短;6 kV出线15回,分别接在2段母线上。在6 kV 2段母线上分别装1套接地变压器加消弧线圈,出线均采用电缆,业主提供每段母线所接的电缆长度资料为:VLV22--240,15 km;VLV22--35,10

km。根据电缆的长度选择消弧线圈的容量。

根据计算公式(10),计算VLV22-240电缆的单位电容电流:

采用相同的计算方法,得到VLV22-120电缆的单位电容电流为1.124

59 A/km;VLV22-35电缆的单位电容电流为0.482 9 A/km。

根据业主提供的电缆长度,可以得出1段母线上所接电缆的电容电流:

根据上述计算,消弧线圈的容量选择为200 kV·A。

接地变压器的选择

使用Z型接线变压器作为接地变压器

消弧线圈接入系统必须要有电源中性点,在其中性点上接入消弧线圈,当发生单相接地时,流过变压器的三相同方向的零序磁通,经过油箱壁绝缘油及空气等介质形成闭合的回路,在油箱铁芯等处产生附加的损耗,这种损耗是不均匀的,必然要形成局部过热,影响变压器的正常运行和使用寿命。所以接入此类接地变压器的消弧线圈的容量不应超过

变压器容量的20%;为满足消弧线圈接地补偿的需要,同时也满足动力与照明混合负载的需要,可采用Z型接线的变压器ZN,yn11连接的变压器。由于变压器高压侧采用Z型接线,每相绕组由2段组成,并分别位于不同相的铁芯柱上,2段线圈反极性相连,零序阻抗非常小。它的空载损耗低;变压器容量可以95%被利用;并能够调节电网的不对称电压。由此可见,Z型接线的变压器作为接地变压器是一种比较好的

选择。

消弧线圈工作原理及应用

消弧线圈工作原理及应用 目录 摘要 (2) 一、引言 (3) 二、消弧线圈作用原理与特征 (4) 三、消弧线圈自动补偿的应用 (7) 四、消弧线圈接地系统小电流接地选线 (8) 五、消弧线圈的故障处理方法与技术 (11) 六、结束语 (13) 参考文献 (14) 谢辞 (15)

摘要 本文通过对配电系统中性点接地方式和配电网中正常及发生故障时电容电流的分析,阐述了中性点经消弧线圈接地方式在目前配电网系统中应用的必要性,并从消弧线圈的工作原理,使用条件,容量选择,注意事项和故障处理等方面进行了探讨,同时也对目前国内消弧线圈装置进行了简单介绍。 关键词:接地;中性点;消弧线圈;电弧;补偿;

一、引言 目前,在我国目前配电网系统中,单相接地故障是出现概率最大的一种,并且大部分是可恢复性的故障,6~35 kV电力系统大多为非有效接地系统,由于非有效接地系统的中性点不接地,即使发生单相接地故障,但是三相线电压依然处于对称状态,所以仍能保持不间断供电,这是中性点不接地系统电网的一大优点,但当供电线路较长时,单相接地电流容易超过规范规定值,造成接地故障处出现持续电弧,一旦不能及时熄灭,可能发展成相间短路;其次,当发生间歇性弧光接地时,易产生弧光接地过电压,从而波及整个电网。为了解决这些问题,选择在系统中性点装设消弧线圈接地已经被证实是一项有效的措施,对电网的安全运行至关重要。 二、消弧线圈作用原理与特征 2.1各类中性点接地方式及优缺点介绍 我国目前中性点的运行方式主要有两种: a)中性点直接接地系统 直接接地系统主要用在110KV及以上的供电系统和低压380V系统。直接接地系统发生单相接地故障时由于故障电流较大会使继电保护马上动做切除电源与故障点回路。中性点直接接地系统的优点是发生单相接地时,其它非故障相对地电压不升高,因此可节省一部分绝缘费用,供电方式相对安全。其缺点是发生单相接地故障时,故障电流一般较大,要迅速切除故障回路,影响供电的连续性,从而供电可靠性较差。 b)中性点不接地或经消弧线圈接地

对消弧线圈使用的国家相关规定

对消弧线圈使用的国家相关规定 一、DL/T620-1997《交流电气装置的过电压保护和绝缘配合》 电力行业标准《交流电气装置的过电压保护和绝缘配合》中规定:10 kV架空线路系统单相接地故障电流大于20 A或10 kV电缆线路系统单相接地故障电流大于30 A时应装设消弧线圈。其理由是在此电流下电弧能自行熄灭。 本标准是根据原水利电力部1979年1月颁发的SDJ7—79《电力设备过电压保护设计技术规程》和1984年3月颁发的SD 119—84《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》经合并、修订之后提出的。中华人民共和国电力工业部1997-04-21批准,1997-10-01实施。 3 系统接地方式和运行中出现的各种电压: 3.1 系统接地方式 3.1.1 110kV~500kV系统应该采用有效接地方式,即系统在各种条件下应该使零序与正序电抗之比(X0/X1)为正值并且不大于3,而其零序电阻与正序电抗之比(R0/X1)为正值并且不大于1。 110kV及220kV系统中变压器中性点直接或经低阻抗接地,部分变压器中性点也可不接地。 330kV及500kV系统中不允许变压器中性点不接地运行。 3.1.2 3kV~10kV不直接连接发电机的系统和35kV、66kV系统,当单相接地故障电容电流不超过下列数值时,应采用不接地方式;当超过下列数值又需在接地故障条件下运行时,应采用消弧线圈接地方式: a)3kV~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,10A。 b)3kV~10kV非钢筋混凝土或非金属杆塔的架空线路构成的系统,当电压为: 1)3kV和6kV时,30A; 2)10kV时,20A。 c)3kV~10kV电缆线路构成的系统,30A。 3.1.6 消弧线圈的应用 a)消弧线圈接地系统,在正常运行情况下,中性点的长时间电压位移不应超过系统标称相电压的15%。 b)消弧线圈接地系统故障点的残余电流不宜超过10A,必要时可将系统分区运行。消弧线圈宜采用过补 偿运行方式。 c)消弧线圈的容量应根据系统5~10年的发展规划确定,并应按公式计算:w=1.35Ic Un /1.732 式中:W——消弧线圈的容量,kV A; IC——接地电容电流,A; Un——系统标称电压,kV。 d)系统中消弧线圈装设地点应符合下列要求: 1)应保证系统在任何运行方式下,断开一、二回线路时,大部分不致失去补偿。 2)不宜将多台消弧线圈集中安装在系统中的一处。 3)消弧线圈宜接于YN,d或YN,yn,d接线的变压器中性点上,也可接在ZN,yn接线的变压器中性点 上。接于YN,d接线的双绕组或YN,yn,d接线的三绕组变压器中性点上的消弧线圈容量,不应超过变压器三相总容量的50%,并不得大于三绕组变压器的任一绕组的容量。 如需将消弧线圈接于YN,yn接线的变压器中性点,消弧线圈的容量不应超过变压器三相总容量的20%,但不应将消弧圈接于零序磁通经铁芯闭路的YN,yn接线的变压器,如外铁型变压器或三台单相变压器组成的变压器组。 4)如变压器无中性点或中性点未引出,应装设专用接地变压器,其容量应与消弧线圈的容量相配合。 二、《城市电网规划设计导则》第59条中规定 “35KV、10KV城网,当电缆线路较长、系统电容电流较大时,也可以采用电阻方式”。而根据国内最新的研究观点,当系统电容电流大于5A时,电弧就可能不会自熄,因此,对电网单相接地的保护问题显得十分重要。 三、《电力设备过电压保护设计技术规程》 从50年代至80年代中期,我国6~66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的《电力设备过电压保护设计技术规程SDJ7-79》中规定得很明确。 90年代对过电压保护设计规范(SDJ7-79)进行了修订,并已颁布执行,在新规程中,有关配电网中性点接

消弧线圈接地选线原理

1 选线原理 ⑴绝缘监察装置。绝缘监察装置利用接于公用母线的三相五柱式电压互感器,其一次线圈均接成星形,附加二次线圈接成开口三角形。接成星形的二次线圈供给绝缘监察用的电压表、保护及测量仪表。接成开口三角形的二次线圈供给绝缘监察继电器。系统正常时,三相电压正常,三相电压之和为零,开口三角形的二次线圈电压为零,绝缘监察继电器不动作。当发生单相接地故障时,开口三角形的二次端出现零序电压,电压继电器动作,发出系统接地故障的预告信号。其优点是投资小,接线简单、操作及维护方便。其缺点是只发出系统接地的无选择预告信号,不能准确判断发生接地的故障线路,运行人员需要通过推拉分割电网的试验方法才能进一步判定故障线路,影响了非故障线路的连续供电。 ⑵零序电流原理。在中性点不接地的电网中发生单相接地故障时,非故障线路零序电流的大小等于本线路的接地电容电流。故障线路零序电流的大小等于所有非故障线路的零序电流之和,也就是所有非故障线路的接地电容电流之和。通常故障线路的零序电流比非故障线路零序电流大得多,利用这一原则,可以采用电流元件区分出接地故障线路。 ⑶零序功率原理。在中性点不接地的电网中发生单相接地故障时,非故障线路的零序电流超前零序电压90°,故障线路的零序电流滞后零序电压90°,故障线路的零序电流与非故障线路的零序电流相位相差180°。根据这一原则,可以利用零序方向元件区分出接地故障线路。 2 消弧线圈接地系统的特点 随着国民经济的不断发展,配网规模日渐扩大,电缆出线日渐增多,系统对地电容电流急剧增加,接地弧光不易自动熄灭,容易产生间隙弧光过电压,进而造成相间短路,使事故扩大。为了防止这种事故,电力行业标准DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》规定;3~10 kV架空线路构成的系统和所有35 kV、66 kV电网,当单相接地故障电流大于10 A时,中性点应装设消弧线圈,3~10 kV电缆线路构成的系统,当单相接地故障电流大于30 A时,中性点应装设消弧线圈。根据这一规定,潮州供电分公司对系统进行改造,采取中性点经消弧线圈接地的运行方式,但是造成了采用零序电流原理、零序功率方向原理的接地选线装置的选线正确率急剧下降。其原因是中性点经消弧线圈接地系统单相接地时,电容电流分布的情况与中性点不接地系统不一样了,如图1所示。

消弧线圈工作原理分析

、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、 可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消弧线圈接地。两种接地方式各自优缺点:中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的V 3倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为 3 倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要 配电网中主要采用第二种中性点接地方式。但是以前以架空线路为主的配电网采

消弧线圈的整定原则、容量和安装地点的选择

专题一: 消弧线圈的整定原则、容量和安装地点的选择 一.整定原则 消弧线圈整定时,主要考虑的原则有: 1. 故障点流过的残余电流应该尽量的小。因为残流越小,接地电弧的危害也越小,电弧的最后熄灭也越容易。有的要求60kV 及以下的电力网,故障点的残余电流不超过10A 。 要使残流小,则应将消弧线圈调整到谐振补偿附近。此时如果系统三相电容不对称,在正常运行情况下,就可能发生串联谐振,使中性点具有较高的电压,这是不允许的。所以消弧线圈整定时还应考虑第二个原则。 2. 在正常和事故情况下,中性点对地电压应不致危害网络的正常绝缘。有的要求系统在正常运行时,中性点的位移电压应不超过相电压的15%,发生事故时应不超过相电压的100%。因此为避免产生较大的谐振过电压,消弧线圈不宜整定在谐振补偿,而须整定在过补偿或欠补偿的位置。实际证明,在同时满足故障点残流和中性点位移电压规定的条件下,过补偿和欠补偿对灭弧的影响是差不多的。但在欠补偿运行时,当网络因故障或其它原因,使某些线路断开后,可能构成串联谐振,产生危险的过电压。所以正常情况下,不宜采用欠补偿的运行方式,而应采用过补偿的运行方式。如果消弧线圈容量不足,可以允许在一定的时间内采用欠补偿的方式允许,但要对可能产生的过电压进行校验。 二.消弧线圈的容量 选择消弧线圈的容量,应考虑电网的发展,并按过补偿进行设计。其容量按下式计算:;式中: 千伏安)(35.1X DC XH U I S =XH S ——消弧线圈的容量,千伏安; DC I ——电网接地电容电流,安倍;它包括变电所母线及其它设备和线路中个别地段(增大对地电容的因素)的附加电容电流,并考虑电网在近几年内的发展; X U ——电力网的相电压,千伏; 1.35——系数;它考虑到计算误差系数1.1,气候影响系数1.05和过补

消弧线圈、接地变压器、有载开关的介绍

消弧线圈、接地变压器、有载开关的介绍 作者:琦琦 2007-11-05 08:18:14 标签:科学 接地变压器 接地变 消弧线圈 消弧 有载开关 培训 讲义 介绍 讲义(周琦) 给部门里其他员工的培训讲义,刚到公司里给没新老员工的一次知识培训的讲义 . 一、接地变压器 1、接地变压器型号说明如下 D K S C □—□ / □ 电压等级(kV) 二次容量(kVA) 总容量(kVA) C表示固体类型,表示干式,无表示油式 三相 接地变压器 2、接地变压器的作用及其结构 在系统中,如果变压器绕组为Y接法,有中性点引出,不需要使用接地变压器;如果变压器绕组为△接法,无中性点引出,在选用消弧接地装置时,就必须用接地变压器引出中性点。接地变压器的作用就是人为的为系统提供一个中性点。 接地变压器的联结组别一般为ZN、ZNYn11、ZnyN1三种,其中ZN表示一次接法为Z形,无二次线圈;ZNYn11表示一次接法为Z形,二次为Y形,11表示二次时钟关系超前一次30度,1表示二次时钟滞后一次30度。

结构原理图(Znyn11) 实物照片: 3、系统电压 一次系统电压包括标称电压、额定电压和最高电压;一般一次系统的额定电压就是接地变压器的额定电压,一般由用户提出。 注:二次额定电压一般为0.4kV 4、绝缘水平 绝缘水平包括耐压等级、爬电距离、耐热等级等; ?/P> 爬电距离=爬电比距×额定线电压,不同污秽等级对应不同爬电距离; ?/P> 耐热等级表示绝缘介质耐受温升水平。介质温度=环境温度+温升;一般油浸式采用A级,干式环氧浇注型采用F级; ?/P>

冷却方式:变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF),油浸自然冷却(ONAN)和油浸强油风冷(ONAF)等 变压器油:25#表示在-25℃以上条件可以使用,用于全国大部分地区;45#表示在-45℃以上条件可以使用,用于北方地区。 允许通流时间:设备在最大的额定电流下可以运行的时间。 5、接地变其他技术参数和要求 电压调节范围:一般不带所用变的为额定电压±2.5%,带所用变的额定电压±2×2.5%;另外A相线圈带+1%或+0.5%不对称(目前暂定)。 绕组温升:干式100K,油式65K; 中性点额定电流:接地变总容量/系统相电压 零序阻抗:主绕组各连接在一起与中性点之间的阻抗值,通常以欧姆为单位,并且指一相的。 空载损耗:就是变压器在空载状态(一次侧加额定电压,二次侧开路)时产生的损耗。 空载电流:当变压器空载运行时,一次侧线圈中通过的电流。 负载损耗:带所用变的才有,就是当二次侧线圈流过额定电流、不发生接地情况时,一、二次线圈产生的损耗。 短路阻抗:带所用变才有,当一个线圈短路,在另一个线圈中流有额定电流时,所施加的电压。一般以额定电压的百分数表示 局放水平:在GB6450规定的试验条件下,局放≤5PC. 噪声水平:在额定运行情况下,距变压器本体水平2m处,离地高度为变压器的1/2处,所测得的噪音水平≤55dB。 二、调匝式消弧线圈 1、调匝式消弧线圈具体型号说明如下 X H D C □—□ / □ 电压等级(kV) 容量(kVA) 类型Z是有载调压,或无表示手动调节

消弧线圈运行注意事项实用版

YF-ED-J6888 可按资料类型定义编号 消弧线圈运行注意事项实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

消弧线圈运行注意事项实用版 提示:该管理制度文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1消弧线圈应采用过补偿运行方式,当消弧线圈容量不足时,允许在一定时间内以欠补偿方式运行,但脱谐度不宜超过10%. 2单相接地时,通过故障点的电流不宜超过5A. 3系统正常清况下,35KV系统中性点长期位移电压不得超过正常相电压的15%(即 3000V),否则,应立即汇报调度。 4消弧线圈的倒闸操作,只有确知网络无接地故障存在时方可进行。 5中性点位移电压超过正常相电压的20%

(即4000V)时或通过消弧线圈的电流大于5A 时,禁止拉合消弧线圈闸刀。 6消弧线圈动作后,应监视消弧线圈的电流值,不超过使用分接头位置的铭牌电流值,并检查油温、油面温度最高不得超过95℃,温度发出告警时,应及时汇报调度。 7消弧线圈从一台变压器切换到另厂一台变压器时,首先应将消弧线圈与系统隔离,即按“先拉后合”的顺序操作,不可同时将二台或二台以上的变压器的中性点并联起来经消弧线圈接地。 8调整消弧线圈分接头时,应将消弧线圈与系统隔离,严禁消弧线圈在带电状态下调整分接头。 9运行方式改变时,应同时考虑消弧线圈的

消弧线圈原理及 (2)

自动控制消弧线圈 继电保护所保护四班 范永德

消弧线圈的作用 消弧线圈的作用主要是将系统的电容电流加以补偿,使接地点电 流补偿到较小的数值,防止弧光短路,保证安全供电。降低弧隙电压恢复速度,提高弧隙绝缘强度,防止电弧重燃,造成间歇性接地过电压。中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3、系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: (1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。

消弧线圈的作用

消弧线圈的作用 一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电 容!我们知道,我们采用的是50Hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地. 三相点他们对大地的距离不一样也就是对大地的电容也不一样! 既然电容不一样,那么漏电流也不一样.漏掉的电流跑到那里去了呢? 这要取决于那条线路距离大地最近.因为漏掉的电流要跑到另外的 线路中!假如A失去电流,那么B或者C就得到电流!容性电流=A- B|A-C 线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光 就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5A就可以消灭接地弧光!当然:引入消弧线圈后,变电站的系 统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!

消弧线圈容量选择

消弧线圈容量应主要根据系统单相接地故障时电容电流的大小来确定,并应留一定裕度,以适应系统今后的发展和满足设备裕度的要求等。消 弧线圈的容量可按式(6)确定: 式中q——消弧线圈的容量, kv·a; un——系统标称电压, kv; ic——对地电容电流,a。对于改造工程,ic应以实测值为依据;对于新建工程,则应根据配电网络的规划、设计资料进行计算。 消弧线圈接地装置的选择首先是由配电网的电容电流确定,主要有2种方法: a. 进行实际测量利用中性点外加电容法、增量法等,可以比较有效地将电容电流测出来,且对系统没有任何影响。 b. 根据配电网参数估算估算电容电流主要包括有电气连接的所有架空线路、电缆线路、变压器以及母线和电气的电容电流。 架空线路的电容电流近似估算公式为: 无架空地线:ic=2.7×ue×l×10-3(7) 有架空地线:ic=3.3×ue×l×10-3(8) 以上2式中,l为线路的长度,km;ic为线路的电容电流,a;ue为额

定电压, kv。 同杆双回线路的电容电流为单回路的1.3~1.6倍。 电缆线路的电容电流近似估算公式: 以上2式中,s为电缆截面,mm2;ic为线路的电容电流,a;ue为额定电压,kv。 上述公式主要适用于油浸纸电力电缆,对于目前采用较多的交联聚乙烯电缆,其每km的对地电容电流根据制造厂提供的参数比油浸纸电力电缆的大20%左右。 2.2 实际应用 石家庄钢铁厂220 kv 中央变电站为比较典型的用户站,该站规模为:2台220 kv/35 kv/6 k v,90 mv·a变压器;220 kv部分为桥型接线; 35 kv、6 kv部分均为单母线分段接线;6 kv部分由于进线额定电流较大,故采用了双开关进线。35 kv出线7回,均为架空线,且线路非常短;6 kv出线15回,分别接在2段母线上。在6 kv 2段母线上分别

消弧线圈接地方式

长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。 现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。 一、相接地电容电流的危害 中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面: 1.弧光接地过电压的危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。 2.造成接地点热破坏及接地网电压升高 单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。 3.交流杂散电流危害 电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。 4.接地电弧引起瓦斯煤尘爆炸 二、消弧线圈的作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的发生概率。 三、消弧线圈接地方式存在的一些问题:

消弧线圈运行注意事项(2020年)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 消弧线圈运行注意事项(2020 年) Safety management is an important part of production management. Safety and production are in the implementation process

消弧线圈运行注意事项(2020年) 1消弧线圈应采用过补偿运行方式,当消弧线圈容量不足时,允许在一定时间内以欠补偿方式运行,但脱谐度不宜超过10%. 2单相接地时,通过故障点的电流不宜超过5A. 3系统正常清况下,35KV系统中性点长期位移电压不得超过正常相电压的15%(即3000V),否则,应立即汇报调度。 4消弧线圈的倒闸操作,只有确知网络无接地故障存在时方可进行。 5中性点位移电压超过正常相电压的20%(即4000V)时或通过消弧线圈的电流大于5A时,禁止拉合消弧线圈闸刀。 6消弧线圈动作后,应监视消弧线圈的电流值,不超过使用分接头位置的铭牌电流值,并检查油温、油面温度最高不得超过95℃,温度发出告警时,应及时汇报调度。 7消弧线圈从一台变压器切换到另厂一台变压器时,首先应将消

弧线圈与系统隔离,即按“先拉后合”的顺序操作,不可同时将二台或二台以上的变压器的中性点并联起来经消弧线圈接地。 8调整消弧线圈分接头时,应将消弧线圈与系统隔离,严禁消弧线圈在带电状态下调整分接头。 9运行方式改变时,应同时考虑消弧线圈的调整。 10消弧线圈巡视检查参照变压器设备。 云博创意设计 MzYunBo Creative Design Co., Ltd.

电容电流的估算及消弧线圈容量的选择计算书

110kV 望山变电站工程 接地变容量计算书 一、工程名称:110kV 望山变电站工程 二、计算内容:10kV 、35kV 电容电流的估算及消弧线圈容量的选择 三、计算依据:《电力工程电气设计手册电气一次部分》第六章《高压电气选择》 四、已知数据 1、10kV 终期出线:架空20回,线路长度为20km ;电缆长2km. 2、10kV 本期出线:架空12回;电缆2km. 3、10kV 线路长度: 电缆每回线平均长度0.2km. 4、10kV 出线电缆截面:按三芯截面300mm 2计算 5、35kV 终期出线:架空10回,每回线路长度为30km ;电缆8回,1.2km. 6、35kV 本期出线:架空6回;电缆1.2km. 7、35kV 出线电缆截面:按三芯截面150mm 2计算 8、变电站附加10kV 电容电流数量:16% 9、变电站附加35kV 电容电流数量:13% 五、计算公式 10kV 侧: 1、每千米电容电流 km UA S S Ic /23.0220044.195++==2.44A 2、消弧线圈容量补偿 Q=kIcU N /√3=20+0.025×20×12×1.35×10.5/√3=69 0.0256*20*20*1.35*10.5/√3=83.8 式中:k-系数,过补偿取1.35 Ic-电网电容电流A 35kV 侧: 1、每千米电容电流 km A Ic /15.3= 2、消弧线圈容量补偿 Q=kIcU N /√3=1.35*3.15*1.2*35/√3=103.2 103.2+0.078*30*6*1.35*35/√3=103.2+338=486.2

式中:k-系数,过补偿取1.35 Ic-电网电容电流A 六、结论 10kV侧:选用2台单台容量为600kVA的接地变兼站用变,接地变容量为315kVA,站用变容量为200kVA,每台主变带1台接地变兼站用变. 35kV侧:选用2台单台容量为550kVA的消弧线圈.

10kV~66kV消弧线圈装置运行规范标准

目录 第一章总则 1 第二章引用标准 1 第三章设备的验收 2 第四章设备运行维护管理8 第五章运行巡视检查项目及要求12 第六章缺陷管理及异常处理15 第七章培训要求18 第八章设备技术管理20 第九章备品备件管理22 第十章更新改造22 第一章总则 第一条为完善消弧线圈装置设备管理机制,使其达到制度化、规化,保证设备安全、可靠和经济运行,特制定本规。 第二条本规是依据国家和行业有关标准、规程、制度及《国家电网公司变电站管理规》,并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备运行经验而制定。 第三条本规提出了对10kV~66kV消弧线圈装置在设备投产、验收、检修、运行巡视和维护、缺陷和事故处理、运行和检修评估分析、改造和更新、培训以及技术资料档案的建立与管理等提出了具体规定。 第四条本规适用于国家电网公司所属围10kV~66kV消弧线圈装置的运行管理工作。

第二章引用标准 第五条以下为本规引用的标准、规程和导则,但不限于此。 GB10229-1988 电抗器 GB1094.1-1996 电力变压器第1部分总则 GB1094.2-1996 电力变压器第2部分温升 GB1094.3-2003 电力变压器第3部分绝缘水平、绝缘试验和外绝缘空气间隙GB1094.5-2003 电力变压器第5部分承受短路的能力 GB1094.10-2003 电力变压器第10部分声级测定 GB6451-1999 三相油浸电力变压器技术参数和要求 GB6450-1986 干式电力变压器 CEEIA104-2003 电力变压器质量评价导则 GB/T14549-1993 电能质量公用电网谐波 GB/T17626-1998 电磁兼容试验和测量技术 GB50150-1991 电气装置安装工程电气设备交接试验标准 GBJ148-1990 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规 DL/T 572-1995 电力变压器运行规程 DL/T 573-1995 电力变压器检修导则 DL/T 574-1995 有载分接开关运行维修导则 DL/T 596-1996 电力设备预防性试验规程 GB/T 16435.1—1996 远动设备及系统接口 (电气特性) 国家电网公司变电站管理规 第三章设备的验收

35kV、10kV系统消弧线圈、小电阻接地、接地变压器的选择及计算

35kV、10kV系统消弧线圈、小电阻接地、接地变压器的 选择及计算 我国电力系统中, 10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A《一次设计手册》P81页)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。由于该运行方式简单、投资少,所以在我国电网初期阶段一直采用这种运行方式,并起到了很好的作用。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果: 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U 为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)持续电弧造成空气的离解,拨坏了周围空气的绝缘,容易发生相间短路; 3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。为了解决这样的办法。接地变压器(简称接地变)就这样的情况下产生了。接地变压器就是人为制造了一个中性点接地电阻,它的接地电阻一般很小。另外接地变压器有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。接地变压器的工作状态,由于很多接地变压器只提供中性点接地小电阻,而不需带负载。所以很多接地变压器就是属于无二次的。接地变压器在电网正常运行时,接地变压器相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流,中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变

消弧线圈工作原理分析

一、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消 弧线圈接地。两种接地方式各自优缺点: 中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的√3 倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为3倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要

国家电网公司变电运维通用管理规定 第15分册 消弧线圈运维细则

国家电网公司变电运维通用管理规定第15分册消弧线圈运维细则 国家电网公司 二〇一六年十二月

目录 前言.............................................................................................................................................. II 1 运行规定 (1) 1.1 一般规定 (1) 1.2 紧急停运规定 (1) 2 巡视及操作 (1) 2.1 巡视 (1) 2.2 操作 (3) 3 维护 (3) 3.1 红外检测 (3) 3.2 吸湿器维护 (4) 3.3 更换消弧线圈成套柜外交流空开 (4) 4 典型故障和异常处理 (4) 4.1 消弧线圈保护动作处理 (4) 4.2 消弧线圈、接地变压器着火处理 (4) 4.3 接地告警处理 (5) 4.4 有载拒动告警处理 (5) 4.5 位移过限告警处理 (6) 4.6 并联电阻异常处理 (6) 4.7 频繁调档处理 (6)

前言 为进一步提升公司变电运检管理水平,实现变电管理全公司、全过程、全方位标准化,国网运检部组织26家省公司及中国电科院全面总结公司系统多年来变电设备运维检修管理经验,对现行各项管理规定进行提炼、整合、优化和标准化,以各环节工作和专业分工为对象,编制了国家电网公司变电验收、运维、检测、评价、检修管理通用细则和反事故措施(以下简称“五通一措”)。经反复征求意见,于2017年1月正式发布,用于替代国网总部及省、市公司原有相关变电运检管理规定,适用于公司系统各级单位。 本细则是依据《国家电网公司变电运维通用管理规定》编制的第15分册《消弧线圈运维细则》,适用于35kV及以上变电站消弧线圈。 本细则由国家电网公司运维检修部负责归口管理和解释。 本细则起草单位:国网福建电力。 本细则主要起草人:陈余航、张丰、苏祖礼、梁宏池、纪锡亮、涂恩来、吴勇昊、陈晔。

关于消弧线圈的容量和选型案例计算

关于五中央消弧线圈的容量和选型计算 一。五中央的电缆长度和电容电流计算 1.所有电缆出线为: A. 电缆单芯电缆,最大直径为400平方, 其它的为185、240、300等规格 B.一期的电缆长度105030米(105km) C.二期27900米(27.9Km) D. 电缆总长度为133km的单芯电缆 本方案考虑系统配置两台主变, 2.电容电流计算(按照交联聚乙烯电缆计算): A.按照电缆的平均直径为240平方计算 系统电容电流=L×Ue×ω×C =133×22228×314.2×0.18×10-6=167A (电缆按照240平方计算,0.18微法/km) B。假设电缆平均400平方计算 系统电容电流=L×Ue×ω×C=195A (电缆按照400平方计算,0.21微法/km) C。本期电缆系统电容电流计算 一期的电缆只有105km,电容电流大约为132A左右,每段大约为66A左右。 二。消弧线圈容量计算 1。本次方案要求: A。35kV系统是三角形接法,需要配置接地变 B。接地变二次带有400kvA的所用变 C。接地变和消弧线圈拟采用干式 2.选型依据:我们按照电力系统的规程《交流电气装置的过电压保护和绝缘配合》(DL/T 620—1997)上规定:一般裕度取为35%左右即可

综上所述,正常每段母线的电容电流为本期为66A 左右,远期为83.5A 左右,按照公式计算, 335.1n C U I W =1.35*83.5*22228=2500kvA 三。消弧线圈容量选型 1.方案一:消弧线圈我们2500kVA 进行选型,是考虑到二期工程和以后发 展裕度,我 们考虑一定的裕度,消弧线圈安装两台,每段母线补偿最大电流112A 。消弧线圈设计为XHDCZ-2500/35,电流范围为38-112A ,接地变为DKSC-2900/35-400/0.4。这样系统最大补偿电流为224A ,而系统估算最大电容电流为167A (极端情况为195A ),假设容量选择大一些,我们可以选择2700kvA (40-120A ),3000kvA (50-135A ),3300kvA(50-150A) 方案一 序号 设备名称 型号规格 单位 数量 备注 1 干式接地变压器 DKSC-2900/35-400/0.4 台 2 配温湿控制器 2 干式消弧线圈 XHDCZ-2500/35 台 2 3 真空有载开关 BPKI200-35/85 台 2 4 控制器及专用软件 XHK-Ⅱ 套 2 5 控制屏 PK-10 面 1 6 隔离开关 GN19-40.5/630 只 2 单极 7 阻尼电阻控制器 RNK-35 台 2 内附CT 8 电压互感器 JDZX9-35 只 2 9 氧化锌避雷器 HY5WZ2-51/134 只 2 10 故障录波功能 XHK-Ⅱ-LB 套 2 11 小电流接地选线 XHK-ⅡX 套 2 12 并联中电阻 BLX-35 套 2 推荐使用 13 零序电流互感器 18

变电站无功补偿及消弧线圈计算

变电站无功补偿及消弧线圈计算 无功补偿容量 根据无功就地平衡的原则以及变电站容量规模情况,补偿容量应满足变压器在最大负荷时所需的无功功率。 1)变压器所需补偿容量 按50MVA 变压器参数:空载电流Io%为0.73%,高低压阻抗= 16%,变压器安全运行负载80%,功率因数0.98计算,变压器本身所需补偿容量为: Q=Se 2Ie 1002Ud(%)Im +Se 100I0% Q :主变压器需要补偿的最大容性无功量(kVar ) Ud(%):需要进行补偿的变压器一侧的阻抗电压百分值 Ie:变压器需要补偿一侧的额定电流值(A ) Im:母线装设补偿装置后,通过变压器需要补偿一侧的最大负荷电流值(A ) I0%:变压器空载电流百分值(%) Se :变压器需要补偿一侧的额定容量(kVA ) 将数值代入上式经计算可得 Q=5485kVar 2)负载所需补偿容量 参照电网实际运行数据,在变电站电容器退出运行时,平均负荷功率因数约为0.94,经计算按阻抗补偿后功率因数为0.964。根据电网要求,按设计补偿系统功率因数达到0.98计算,从0.964补偿到0.98,根据《设计手册》P.477表9-8查得:每kW 有功功率所需的补偿容量为0.085 kVar/kW ,故所需补偿的容性无功量为Qcf,m= Se ×0.98×80%×0.085=3332 kVar 。 合计变压器和负载所需的补偿容量为8817kVar 。 故10kV 电容器按每台变压器配2×5000kVar 考虑,终期共配6×5000kVar ,可以满足需求。

在并联电容器装置的各组电容器中按通常情况选择串接6%的串联电抗器。 结论:每台变压器配置2×5000kVar补偿电容(分2组)可以满足要求。消弧线圈 本工程采用10kV自动跟踪补偿装置。 按照公式Q=K*IC*Ue/√3计算消弧线圈的容量。 K:系数,过补偿取1.35 Ue:电网的额定电压。 IC:电网的电容电流。 按10kV出线全都是电缆出线,终期共有3×12回出线,如以单台主变压器计算:按每回电缆型号YJV22-8.7/15-3*240,供电半径3公里考虑,同时考虑用户侧电缆长度,预计建成后单台主变的10kV出线电缆长度约为60公里,电缆线路的电容电流可按下式估算: IC=(95+1.44*S)/(2200+0.23*S)* Ue*L S:电缆截面 L:电缆线路长度 (其它符号含义与上同) 经计算:IC=(95+1.44*240)/(2200+0.23*240)* 10kV*60km =117.2A 再考虑变电站增加的接地电容电流,10kV部分查表得:附加16% 最终的接地电容电流为IC*(1+16%)=136.0A ∴Q=1.35*136.0A*10kV/√3 =1060kVA 再考虑变电站接地变容量160kVA,因此单台主变压器的自动跟踪补偿装置容量宜选择1250kVA(其中包括160kVA的所用变)。 结论:变电站10kV出线全部为电缆线路,每台变压器宜选择总容量为1250kVA 的自动跟踪补偿装置,其中包含所用变容量160kVA,消弧线圈容量1100kVA,可以满足变电站运行的需要。

相关文档
相关文档 最新文档