文档库 最新最全的文档下载
当前位置:文档库 › 新浙江鸭高考物理二轮复习提升训练12带电粒子在复合场中的运动问题

新浙江鸭高考物理二轮复习提升训练12带电粒子在复合场中的运动问题

新浙江鸭高考物理二轮复习提升训练12带电粒子在复合场中的运动问题
新浙江鸭高考物理二轮复习提升训练12带电粒子在复合场中的运动问题

新浙江鸭高考物理二轮复习提升训练12带电粒子在复合场中的运动问题12 带电粒子在复合场中的运动问题

1.如图所示,在xOy平面内有磁感应强度为B的匀强磁场,其中0a内有方向垂直xOy平面向外的磁场,在x<0内无磁场。一个带正电q、质量为m的粒子(粒子重力不计)在x=0处以速度v0沿x轴正方向射入磁场。

(1)若v0未知,但粒子做圆周运动的轨道半径为r=a,求粒子与x轴的交点坐标;

(2)若无(1)中r=a的条件限制,粒子的初速度仍为v0(已知),问粒子回到原点O需要使a为何值?

2.(2017浙江杭州四校联考高三期中)如图所示,一带电微粒质量为m=2.0×10-11 kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100 V的电场加速后,水平进入两平行金属板间的偏转

电场中,微粒射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度为D=20 cm的匀强磁场区域。已知偏转电场中金属板长L=20 cm,两板间距d=10 cm,重力忽略不计。求:

(1)带电微粒进入偏转电场时的速率v1;

(2)偏转电场中两金属板间的电压U2;

(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大? 3.

(2016浙江名校协作体试题)如图,质量m=1×10-3 kg、电荷量q=1×10-2 C的带电粒子从竖直放置的两电容器极板AB之间贴着A极板以速度v x=4 m/s平行极板飞入两极板间,恰从极板B 上边缘O点飞出,已知极板长L=0.4 m,极板间距d=0.15 m。电容器极板上方有宽度为x=0.3 m 的区域被平均分为区域Ⅰ、Ⅱ、Ⅲ,其中Ⅰ、Ⅲ有匀强磁场,它们的磁感强度大小相等,均垂直纸面且方向相反, O为DC边中点,P为DC边中垂线上一点,带电粒子从O点离开电场,之后进入磁场,运动轨迹刚好与区域Ⅲ的右边界相切,不计粒子的重力。求:

(1)该电容器极板AB所加电压U大小;

(2)匀强磁场的磁感应强度大小B;

(3)若现在Ⅰ、Ⅲ区域所加磁感应强度大小B'=2 T,粒子射入O点后经过3次偏转打到P点,

则OP的距离为多少?

4.(2017浙江绍兴高三模拟,3)如图所示,两块水平放置、相距为d的长金属板C1D1、C2D2接在电压可调的电源上。长为L的两板中点为O1、O2,O1O2连线的右侧区域存在着方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面C1处,从喷口连续不断喷出质量为m、水平速度为v0、带相等电荷量的墨滴。调节电源电压至U0,墨滴在电场区域恰能沿水平方向向右做匀速直线运动,进入电场、磁场共存区域后,最终垂直打在下板的M点。

(1)判断墨滴所带电荷是正电还是负电,并求其电荷量q;

(2)求磁感应强度B的大小;

(3)现保持喷口方向不变,使入射速度减小到v0的一半,墨滴将能经过磁场后又回到O1O2左侧电场区域,当墨滴经过磁场刚回到中线O1O2时,将电压U调至多大,可以让墨滴从两金属板左侧C1C2之间离开电场?

5.如图所示为一种核反应研究设备的示意图。密闭容器中为钚的放射性同位素Pu,可衰变为铀核U和α粒子,并放出能量为E0的γ光子Pu可视为静止,衰变放出的光子动量可

忽略)。衰变产生的质量为m、电荷量为q的α粒子,从坐标为(0,L)的A点以速度v0沿+x方向射入第一象限的匀强电场(电场强度方向沿y轴负方向),再从x轴上坐标(2L,0)的C处射入x轴下方垂直纸面向外的匀强磁场,经过匀强磁场偏转后回到坐标原点O。若粒子重力可忽略不计,求:

(1)电场强度E的大小;

(2)磁感应强度B的大小;

(3)钚在核反应中亏损的质量。

6.如图所示,y轴上M点的坐标为(0,L),MN与x轴平行,MN与x轴之间有匀强磁场区域,磁场垂直纸面向里。在y>L的区域存在沿-y方向的匀强电场,电场强度为E,在坐标原点O点有一正粒子以速率v0沿+x方向射入磁场,粒子穿出磁场进入电场,速度减小到0后又返回磁场。已知

粒子的比荷为,粒子重力不计。

(1)求匀强磁场的磁感应强度的大小;

(2)从原点出发后带电粒子第一次经过x轴,求洛伦兹力的冲量;

(3)经过多长时间,带电粒子经过x轴。

7.如图所示,正方形绝缘光滑水平台面WXYZ边长l=1.8 m,距地面h=0.8 m。平行板电容器的极板CD间距d=0.1 m且垂直放置于台面,C板位于边界WX上,D板与边界WZ相交处有一小孔。电容器外的台面区域内有磁感应强度B=1 T、方向竖直向上的匀强磁场。电荷量q=5×10-13 C 的微粒静止于W处,在CD间加上恒定电压U=2.5 V,板间微粒经电场加速后由D板所开小孔进入磁场(微粒始终不与极板接触),然后由XY边界离开台面。在微粒离开台面瞬时,静止于X正下方水平地面上A点的滑块获得一水平速度,在微粒落地时恰好与之相遇。假定微粒在真空中运动、极板间电场视为匀强电场,滑块视为质点,滑块与地面间的动摩擦因数μ=0.2,g取10 m/s2。

(1)求微粒在极板间所受电场力的大小并说明两板的极性;

(2)求由XY边界离开台面的微粒的质量范围;

(3)若微粒质量m0=1×10-13 kg,求滑块开始运动时所获得的速度。

8.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L、宽为d、高为h,上、下两面是绝缘板.前、后两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连。整个管道置于磁感应强度大小为B、方向沿z轴正方向的匀强磁场中。管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动。

(1)求开关闭合前,M、N两板间的电势差大小U0;

(2)调整矩形管道的宽和高,但保持其他量和矩形管道的横截面积为S不变,求电阻R可获得的最大功率P m及相应的宽高比的值。

9.

(2016浙江嘉兴二模)如图为一除尘装置的截面图,其原理是通过板间的电场或磁场使带电尘埃偏转并吸附到极板上,达到除尘的目的。已知金属极板M、N长为d,间距也为d。大量均匀分布的尘埃以相同的水平速度v0进入除尘装置,设每个尘埃颗粒质量为m、电荷量为-q。当板间区域同时加入匀强电场和垂直于纸面向外的匀强磁场并逐步增强至合适大小时,尘埃恰好沿直线通过该区域;且只撤去电场时,恰好无尘埃从极板间射出,收集效率(打在极板上的尘埃占尘埃总数的百分比)为100%,不计尘埃的重力、尘埃之间的相互作用及尘埃对板间电场、磁场的影响。

(1)判断M板所带电荷的电性;

(2)求极板区域磁感应强度B的大小;

(3)若撤去极板区域磁场,只保留原来的电场,则除尘装置的收集效率是多少?

10.(2016浙江杭州五校联盟)某研究性学习小组用如图所示的装置来选择密度相同、大小不同的球状纳米粒子。密度相同的粒子在电离室中被电离后带正电,电荷量与其表面积成正比。电离后粒子缓慢通过小孔O1进入极板间电压为U的水平加速电场区域Ⅰ,再通过小孔O2射入相互正交的恒定匀强电场和匀强磁场区域Ⅱ,其中磁场的磁感应强度大小为B,方向垂直纸面向外。收集室的小孔O3与O1、O2在同一条水平线上。实验发现:半径为r0的粒子质量为m0、电荷量为q0,刚好能沿O1O3直线射入收集室。不计纳米粒子重力和粒子之间的相互作用力。(球体积和球

表面积公式分别为V球=πr3,S球=4πr2)求:

(1)图中区域Ⅱ的电场强度E的大小;

(2)半径为r的粒子通过O2时的速率v;

(3)试讨论半径r≠r0的粒子进入区域Ⅱ后将向哪个极板偏转。

11.(2016浙江杭州五校联盟诊断考试)如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为D,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势。现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔S1处射入电容器,穿过小孔S2后从距

三角形A点a的P处垂直AB进入磁场。

(1)求粒子到达小孔S2时的速度大小;

(2)若粒子从P点进入磁场后经时间t从A、P间离开磁场,求粒子的运动半径和磁感应强度的大小;

(3)若粒子能从A、C间离开磁场,则磁感应强度应满足什么条件?

12.图甲为某种速度选择器示意图(图乙是该装置的俯视图),加速电场右侧是一半径为R的接地竖直金属圆筒,它与加速电场靠得很近,圆筒可绕竖直中心轴以某一角速度逆时针匀速转动。O1、O2为加速电场两极板上的小孔,O3、O4为圆筒直径两端的小孔,竖直荧光屏abcd与直线O1O2平行,且到圆筒的竖直中心轴的距离OP=3R。粒子源发出同种粒子经电场加速进入圆筒(筒内加一竖直向下的匀强磁场,磁感应强度的大小为B),经磁场偏转后,通过圆筒的小孔打到光屏上产生亮斑,即被选中。整个装置处于真空室中,不计粒子重力及粒子间相互作用。

(1)若开始时圆筒静止且圆筒内不加磁场,同时让O1、O2、O3、O、O4在同一直线上。初速度不计的带电粒子从小孔O1进入加速电场,再从小孔O3打入圆筒从O4射出。当加速电压调为U0时,测

出粒子在圆筒中运动的时间为t0,请求出此粒子的比荷。

(2)仅调整加速电场的电压,可以使粒子以不同的速度射入圆筒,若在光屏上形成的亮斑范围为Q1P=PQ2=R,求打到光屏的粒子所对应的速率v的范围,以及圆筒转动的角速度ω。

答案:

1.答案 (1)2(1+)a (2)

解析 (1)带电粒子在匀强磁场中做匀速圆周运动,设其轨道半径为R,其在第一象限的运动轨迹如图所示。此轨迹由两段圆弧组成,圆心分别在C和C'处,轨迹与x轴交点为P。由对称性可知C'在x=2a直线上。设此直线与x轴交点为D,P点的x坐标为x P=2a+DP。过两段圆弧的连接点作平行于x轴的直线EF,则

DF=r-,C'F=,C'D=C'F-DF,DP=

由此可得P点的x坐标为

x P=2a+2,

代入题给条件得x P=2(1+)a

(2)若要求带电粒子能够返回原点,由对称性,其运动轨迹如图所示,这时C'在x轴上。设∠CC'O=α,粒子做圆周运动的轨道半径为r,由几何关系得α=

轨道半径r=a

由牛顿第二定律和洛伦兹力公式得qv0B=m,

解得a=

2.答案 (1)1.0×104 m/s(2)100 V(3)0.1 T

解析 (1)带电微粒经加速电场加速后速度为v',根据动能定理得U1q=,解得v1==1.0×104 m/s

(2)带电微粒在偏转电场中只受电场力作用,做类平抛运动。在水平方向微粒做匀速直线运动。

水平方向:v1=

带电微粒在竖直方向做匀加速直线运动,加速度为a,出电场时竖直方向速度为v2

竖直方向:a=

v2=at=

由几何关系得tanθ=

U2=tanθ

得U2=100 V

(3)电微粒进入磁场做匀速圆周运动,洛伦兹力提供向心力,设微粒轨道半径为R,由几何关系知

R+=D,解得R=D

设微粒进入磁场时的速度为v',则v'=

由牛顿运动定律及运动学规律qv'B=

得B=,

代入数据得B=0.1 T,即若带电粒子不射出磁场,磁感应强度B至少为0.1 T。

3.答案 (1)0.45 V(2)1 T(3)1.3 m

解析 (1)带电粒子在AB极板间做类平抛运动,L=v x t

d=at2=)2

代入数据有U=0.45 V

(2)设粒子出极板后速度大小为v,与水平方向夹角为α

因为tanα=,所以v==5 m/s

进入右边磁场恰与右边界相切,设在磁场中圆运动半径为r

故有sinα=,解得r=0.5 m

因为Bqv=m,所以B==1 T

(3)当B'=2 T时,r'==0.25 m

粒子射入O点后经过3次偏转打到P点故有

=3×2r'cosα+3×·tanα=1.3 m

4.答案 (1)负(2)(3) U0≤U≤

解析 (1)墨滴在电场区域做匀速直线运动,有q=mg,得q=

由于电场方向向下,电荷所受电场力向上,可知,墨滴带负电荷。

(2)进入电场、磁场共存区域后,重力与电场力平衡,洛伦兹力提供墨滴做匀速圆周运动的向心力,有qv0B=

考虑墨滴进入磁场和挡板的几何关系,可知墨滴在该区域恰完成四分之一圆周运动,则半

径R=d,由此可知B=

(3)根据题设,墨滴速度减小到v=v0时,设圆周运动半径为R'

有qvB=,得R'=R=d

则墨滴恰好经过半圆回到O2。

要使墨滴从两金属板左侧的C1C2之间离开电场,则墨滴应在电场力和重力作用下做匀速直线运动,从C2离开,即U1=U0

或做类平抛运动,最大偏向位移的墨滴从C1离开,则有L=vt,d=?t2,得U2=

所以电压的调节范围是U0≤U≤

5.答案 (1)(2)(3)

解析 (1)带电粒子在匀强电场中做类平抛运动。

水平方向做匀速直线运动:2L=v0t

竖直方向做匀变速直线运动:L=)2

求得E=

(2)带电粒子在C点竖直分速度为v y=t==v0

粒子进入磁场的速度v=v0

方向与x轴正向成45°

粒子进入磁场区域做匀速圆周运动,由几何知识可得R1=L

由洛伦兹力充当向心力时,有Bqv=m

可解得B=

(3)放射性同位素Pu的衰变方程为Pu He+γ,α粒子的质量为m,则U 的质量为m

衰变过程动量守恒,Mv U=mv0

由动能E U=,Eα=,

质量亏损放出的能量ΔE=Δmc2,ΔE=E U+Eα+E0

所以Δm=

6.答案 (1)(2)2mv0(3)n(n=1,2,3,…)

解析 (1)由题意如图,粒子在磁场中圆周运动的半径r=L

根据qvB=,解得B=

(2)匀强电场中,由动量定理得

I=-mv0-mv0=-2mv0

从原点出发后第一次经过x轴,由I+I'=mv0-mv0

得洛伦兹力的冲量I'=2mv0

(3)粒子返回磁场后,再做匀速圆周运动,在磁场中运动的时间t1=

电场中运动的时间为t2=

考虑周期性,带电粒子经过x轴的时间t'=nt=n(n=1,2,3,…)

7.答案 (1)1.25×10-11 N C板带正电,D板带负电(2)8.1×10-14 kg

解析 (1)微粒在极板间所受电场力为F=

代入数据得F=1.25×10-11 N

由于微粒带正电且在两板间做加速运动,故C板带正电,D板带负电。

(2)若微粒的质量为m,进入磁场时的速度为v,由动能定理得qU=mv2

微粒在磁场中做匀速圆周运动,洛仑兹力提供向心力,若圆周运动的半径为R,有

qvB=m

微粒要从XY边界离开台面,则圆周运动的边缘轨迹如图所示,半径的极小值与极大值分别

为R1=,R2=l-d

联立以上各式得8.1×10-14 kg

(3)如图,微粒在台面以速度v做以O为圆心,R为半径的圆周运动,从台面边缘P点沿与XY边界成θ角飞出做平抛运动,落地点为Q,水平距离为s,下落时间为t。设滑块质量为M,

获得速度v0后在t内沿与平台前侧面成φ角方向,以加速度a做匀减速运动到Q点,经过位移为k。

由qU=mv2得v==5 m/s

由qvB=m得R==1 m

由几何关系可得cosθ==0.8,即θ=37°

由平抛运动得t==0.4 s

s=vt=2 m

由余弦定理得

k2=s2+(d+R sinθ)2-2s(d+R sinθ)cosθ

解得k=1.5 m

对滑块有μMg=Ma,即a=μg=2 m/s

由运动学方程有k=v0t-at2

解得v0=4.15 m/s

由正弦定理得

解得φ=arcsin0.8(或φ=53°)

8.答案 (1)Bdv0(2)

解析 (1)以导电液体中带正电离子为研究对象,受力平衡时,

qv0B=qE=q,解得U0=Bdv0。

(2)两导体板间液体的电阻r=ρ

I=

电阻R获得的功率为P=I2R,即P=R,当时,电阻R获得最大功率,为P m=。

9.答案 (1)负(2)(3)50%

解析 (1)负电荷进入垂直纸面向外的匀强磁场,根据左手定则,受到的洛伦兹力的方向向上,尘埃恰好沿直线通过该区域,说明电场力大小和洛伦兹力大小相等,方向竖直向下,因此M 板是负极。

(2)从紧挨N极板处射入板间的尘埃恰好不从极板射出,则尘埃在磁场中运动的半径r=d,磁场中洛伦兹力提供向心力,有

qv0B=m

解得B=。

(3)电场、磁场同时存在时,尘埃做匀速直线运动,满足

qE=qv0B

撤去磁场以后尘埃在电场力作用下做类平抛运动,假设距离N极板y的尘埃恰好离开电场,则

d=v0t

y=at2

其中a=

解得y=0.5d

当y>0.5d时,时间更长,水平位移x>d,即0.5d到d这段距离的尘埃会射出电场,则不从平

行金属板出射的尘埃占总数的百分比η=×100%=50%。

10.答案 (1)B(2)

(3)当r>r0时,粒子会向上极板偏转;

2020届浙江省高考物理 选择题专练(一)

选择题专练(一) 一、选择题Ⅰ(本题共13小题,每小题3分,共39分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分) 1.下列说法中正确的是() A.电流有大小、有方向,电流是矢量B.温度有正值、有负值,温度是矢量 C.磁感应强度有大小、有方向,磁感应强度是矢量D.重力势能有正值、有负值,重力势能是矢量答案 C 解析电流、温度、重力势能都是标量,磁感应强度是矢量,故C正确,A、B、D错误. 2.2017年11月24日,某中学举行运动会,高一新生在各个比赛项目中展现了较高的竞技水平.下列有关校运会的各种说法中正确的是() A.跳远冠军张小杰的成绩是5.30 m,这是他跳跃过程中的路程 B.在200 m决赛中,李凯同学在第一道,他跑完全程的位移为零 C.研究俞小辉同学跳过1.55 m横杆的跨越式动作时,能把他看做质点 D.在100 m决赛中,小史同学获得冠军,决赛选手中他的平均速度最大 答案 D 3.(2018·温州市3月选考)图1四幅图中包含的物理思想方法叙述错误的是() 图1 A.图甲:观察桌面微小形变的实验,利用了放大法 B.图乙:探究影响电荷间相互作用力的因素时,运用了控制变量法 C.图丙:利用红蜡块的运动探究合运动和分运动的实验,体现了类比的思想 D.图丁:伽利略研究力和运动关系时,运用了理想实验方法 答案 C 4.(2018·新高考研究联盟联考)2016年8月12日,在里约奥运会乒乓球男子单打决赛 中,中国名将马龙4-0战胜对手,夺得冠军,首次拿下大满贯.如图2所示,马龙快 速扣杀的乒乓球在飞行中受到的力有() A.重力B.重力、击打力 C.重力、空气阻力D.重力、空气阻力、击打力图2 答案 C

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

2016年浙江省高考理综物理试题和答案

绝密★启封并使用完毕前 试题类型: 2016年浙江省普通高等学校招生统一考试 理科综合试题(物理) 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3.全部答案在答题卡上完成,答在本试题上无效。 4.考试结束后,将本试题和答题卡一并交回。 选择题部分(共120分) 选择题部分共20小题,每小题6分,共120分。 可能用到的相对原子质量: 一、选择题(本大题共17小题。在每小题给出的四个选项中,只有一项是符合题目要求的。) 14.以下说法正确的是 A.在静电场中,沿着电场线方向电势逐渐降低 B.外力对物体所做的功越多,对应的功率越大 C.电容器电容C与电容器所带电荷量Q成正比 D.在超重和失重现象中,地球对物体的实际作用力发生了变化 15.如图所示,两个不带电的导体A和B,用一对绝缘柱支持使它们彼此接触。把一带正电荷的物体C置于

A 附近,贴在A 、 B 下部的金属箔都张开, A.此时A 带正电,B 带负电 B.此时A 电势低,B 电势高 C.移去C ,贴在A 、B 下部的金属箔都闭合 D.先把A 和B 分开,然后移去C ,贴在A 、B 下部的金属箔都闭合 16.如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为 10匝,边长l a =3l b ,图示区域内有垂直纸面向里的均强磁场,且磁感应强 度随时间均匀增大,不考虑线圈之间的相互影响,学.科.网则 A .两线圈内产生顺时针方向的感应电流 B .a 、b 线圈中感应电动势之比为9:1 C .a 、b 线圈中感应电流之比为3:4 D .a 、b 线圈中电功率之比为3:1 17.如图所示为一种常见的身高体重测量仪。测量仪顶部向下发射波速为v 的超声波,超声波经反射后返回,被测量仪接收,测量仪记录发射和接收的时间间隔。质量为M 0的测重台置于压力传感器上,传感器输出电压与作用在其上的压力成正比。当测重台没有站人时,测量仪记录的时间间隔为t 0,输出电压为U 0,某同学站上测重台,测量仪记录的时间间隔为t ,输出电压为U ,则该同学的身高和质量分别为 A.v (t 0-t ),00M U U B.12 v (t 0-t ),00M U U C. v (t 0-t ), 000()M U U U - D. 12v (t 0-t ),000()M U U U -

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。 维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 11核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2 R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

浙江高考物理试卷

2017年4月浙江省普通高校招生选考科目考试 物理试题 姓名:___________ 准考证号:__________ 本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟.其中加试题部分为30分,用【加试题】标出. 考生注意: 1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上. 2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效. 3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B铅笔,确定后必须使用黑色字迹签字笔或钢笔描黑. 4.可能用到的相关公式或参数:重力加速度g均取10m/s2. 选择题部分 一、选择题 I(本题共13小题,每小题3分,共39分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分) 1.下列物理量及对应的国际单位制位符号,正确的是 A.力,kg B.功率,J C.电场强度,C/N D.电压,V 2.下列各组物理量中均为矢量的是 A.路程和位移B.速度和加速度 C.力和功D.电场强度和电势 3.下列描述正确的是 A.开普勒提出所有行星绕太阳运动的轨道都是椭圆 B.牛顿通过实验测出了万有引力常数 C.库仑通过扭秤实验测定了电子的电荷量 D.法拉第发现了电流的磁效应 4.拿一个长约1.5m的玻璃筒,一端封闭,另一端有开关,把金属片和小羽毛放到玻璃筒里。把玻璃筒倒立过来,观察它们下落的情况。然后把玻璃筒里的空气抽出,再把玻璃筒倒立过来,再次观察它们下落的情况。下列说法正确的是 A.玻璃筒充满空气时,金属片和小羽毛下落一样快 B.玻璃筒充满空气时,金属片和小羽毛均做自由落体运动 C.玻璃筒抽出空气后,金属片和小羽毛下落—样快 D.玻璃筒抽出空气后,金属片比小羽毛下落快

---2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M = 6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u = 2.0m/s匀速运动.传送带的右边是一半径R = 1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m = 2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ= 0.1,传送带两轴之间的距离l = 4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g = 10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m = 2 × 104kg,每节动车提供的最大功率P = 600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a = 0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2 = 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

2020年浙江高考物理试题及答案

C . D . 4.在抗击新冠病毒的过程中,广泛使用了红外体温计测量体温,如图所示。下列说法正确的是( ) A .当体温超过37.3 ℃时人体才辐射红外线 B .当体温超过周围空气温度时人体才辐射红外线 C .红外体温计是依据体温计发射红外线来测体温的 D .红外体温计是依据人体温度越高,辐射的红外线强度越大来测体温的 5.下列说法正确的是( ) A .质子的德布罗意波长与其动能成正比 B .天然放射的三种射线,穿透能力最强的是α射线 C .光电效应实验中的截止频率与入射光的频率有关 D .电子束穿过铝箔后的衍射图样说明电子具有波动性 6.如图所示,一质量为m 、电荷量为()0q q >的粒子以速度0v 从MN 连线上的P 点水平向右射入大小为E 、方向竖直向下的匀强电场中。已知MN 与水平方向成45°角,粒子的重力可以忽略,则粒子到达MN 连线上的某点时( ) A .所用时间为 mv qE B .速度大小为03v

C .与P 点的距离为2 22mv qE D .速度方向与竖直方向的夹角为30° 7.火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( ) A .轨道周长之比为2∶3 B .线速度大小之比为3:2 C .角速度大小之比为22:33 D .向心加速度大小之比为9∶4 8.空间P 、Q 两点处固定电荷量绝对值相等的点电荷,其中Q 点处为正电荷,P 、Q 两点附近电场的等势线分布如图所示,a 、b 、c 、d 、e 为电场中的5个点,设无穷远处电势为0,则( ) A .e 点的电势大于0 B .a 点和b 点的电场强度相同 C .b 点的电势低于d 点的电势 D .负电荷从a 点移动到c 点时电势能增加 9.特高压直流输电是国家重点能源工程。如图所示,两根等高、相互平行的水平长直导线分别通有方向相同的电流1I 和2I ,12I I 。a 、b 、c 三点连线与两根导线等高并垂直,b 点位于两根导线间的中点,a 、 c 两点与b 点距离相等, d 点位于b 点正下方。不考虑地磁场的影响,则( )

高考物理电磁综合压轴大题汇编

2016年高考押题 1.(18分)在竖直平面内,以虚线为界分布着如图所示足够大的匀强电场和匀强磁场,其中匀强电场方向竖直向下,大小为E ;匀强磁场垂直纸面向里,磁感应强度大小为B 。虚线与水平线之间的夹角为θ=45°,一带负电粒子从O 点以速度v 0水平射入匀强磁场,已知带负电粒子电荷量为q ,质量为m ,(粒子重力忽略不计)。 (1)带电粒子从O 点开始到第1次通过虚线时所用的时间; (2)带电粒子第3次通过虚线时,粒子距O 点的距离; (3)粒子从O 点开始到第4次通过虚线时,所用的时间。 1.(18分)解:如图所示: (1)根据题意可得粒子运动轨迹如图所示。 2πm T Bq = ……………………………………(2分) 因为θ=45°,根据几何关系,带电粒子从O 运动到A 为3/4圆周……(1分) 则带电粒子在磁场中运动时间为: 3π2m t Bq = ………………………………………………………………………………………(1分) (2)由qvB=m 2 v r ………………………………………………………(2分) 得带电粒子在磁场中运动半径为:0 mv r Bq = ,…………………………(1分) 带电粒子从O 运动到A 为3/4圆周,解得0 22OA mv x r Bq ==…………………(1分) 带电粒子从第2次通过虚线到第3次通过虚线运动轨迹为1 4圆周,OA AC x x =所以粒子距O 点的距离0 2222OC mv x r Bq ==………………………………(1 分) (3)粒子从A 点进入电场,受到电场力F=qE ,则在电场中从A 到B 匀减速,再从B 到A 匀加速进入磁场。在电场中加速度大小为:

备战高考物理临界状态的假设解决物理试题-经典压轴题

备战高考物理临界状态的假设解决物理试题-经典压轴题 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。 【答案】(1)3Bqr ;(2) (332) v m ≤ + 或 (332) v m ≥ - 【解析】 【分析】 【详解】 (1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示: 由几何知识可得: OO R '= ()222 (3)6sin OO R r rRθ '=+- 解得 3 R r = 根据牛顿第二定律可得 2 v Bqv m R = 解得 3Bqr v= (2)若速度较小,如图甲所示:

最新2018年浙江省物理高考题第20题赏析

2018年浙江省物理高考题第20题赏析 20. (12分)如图所示,一轨道由半径为2m 的四分之一竖直圆弧轨道AB 和长度可调的水平直轨道BC 在B 点平滑连接而成。现有一质量为0.2kg 的小球从A 点无初速释放,经过圆弧上B 点时,传感器测得轨道所受压力大小为3.6N ,小球经过BC 段所受的阻力为其重力的0.2倍,然后从C 点水平飞离轨道,落到水平地面上的P 点,P 、C 两点间的高度差为3.2m 。小球运动过程中可视为质点,且不计空气阻力。 (1)求小球运动至B 点时的速度大小; (2)求小球在圆弧轨道上克服摩擦力所做的功; (3)为使小球落点P 与B 点的水平距离最大,求BC 段的长度; (4)小球落到P 点后弹起,与地面多次碰撞后静止。假设小球每次碰撞机械能损失75%、碰撞前后速度方向与地面的夹角相等,求小球从C 点飞出到最后静止所需时间。 答案:(1)4 m/s (2)2.4J (3)3.36m (4)2.4 s 本考题是一道动力学与功能关系的综合题,难度中等偏上。考查的知识点有向心力、向心加速度、线速度、动能定理、功能关系、平抛运动、竖直上抛运动等。考核的数学方法有极值法、等比数列法等。 第(1)问可由牛顿第三定律、牛顿第二定律、向心加速度与线速度的关系式求解,得到B 点速度大小为4 m/s ; 第(2)问可由动能定理求解,得出小球在圆弧轨道上克服摩擦力所做的功2.4J ; 第(3)问可由动能定理列式,得到以C 点速度为自变量的函数,通过数学方法求极值,得到小球落点P 与B 点的水平距离最大值,并求BC 段的长度3.36m ; 第(4)可用平抛运动、自由落体运动、竖直上抛运动的规律求解,涉及到等比数列,计算较为灵活 本题物理情景清晰明了,设问由浅及深,既突出基础性,又凸显学科特点,强化关键能力 物理学科考试大纲规定了高考物理考查的五种能力目标:理解能力、推理能力、分析 地面 第20题图

浙江省2019届高三上学期11月选考科目考试物理试题(带解析)

浙江省2019届高三11月选考科目考试物理试卷 一、选择题 1.下列物理量属于标量的是() A. 速度 B. 加速度 C. 电流 D. 电场强度 【答案】C 【解析】 【详解】加速度、速度、电场强度既有大小又有方向,为矢量,虽然电流有方向,但只有一个,没有正负之分,所以为标量,C正确. 2.发现电流磁效应的物理学家是() A. 法拉第 B. 奥斯特 C. 库仑 D. 安培 【答案】B 【解析】 【详解】奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象,库仑发现了库仑定律,安培发现了分子电流假说,B正确. 3.用国际单位制的基本单位表示电场强度的单位,下列正确的是() A. N/C B. V/m C. kg?m/(C?s2) D. kg?m/(A?s3) 【答案】D 【解析】

【详解】电场强度,电场力的单位为N,电量的单位为C,所以电场强度的单位是N/C,而 ,D正确. 4.一辆汽车沿平直道路行驶,其v-t图象如图所示。在t=0到t=40s这段时间内,汽车的位移是() A. 0 B. 30m C. 750m D. 1200m 【答案】C 【解析】 【详解】在v-t图像中图线与时间轴围成的面积表示位移,故在40内的位移为,C正确. 【点睛】在速度时间图像中,需要掌握三点,一、速度的正负表示运动方向,看运动方向是否发生变化,只要考虑速度的正负是否发生变化,二、图像的斜率表示物体运动的加速度,三、图像与坐标轴围成的面积表示位移,在坐标轴上方表示正方向位移,在坐标轴下方表示负方向位移. 5.奥运会比赛项目撑杆跳高如图所示,下列说法不正确 ...的是() A. 加速助跑过程中,运动员的动能增加 B. 起跳上升过程中,杆的弹性势能一直增加 C. 起跳上升过程中,运动员的重力势能增加

最新2021年高考物理压轴题训练含答案 (5)

1.如图所示,质量为m 的小物块以水平速度v 0滑上原来静止在光滑水平面上质量为M 的小车上,物块与小车间的动摩擦因数为μ,小车足够长。求: (1) 小物块相对小车静止时的速度; (2) 从小物块滑上小车到相对小车静止所经历的时间; (3) 从小物块滑上小车到相对小车静止时,系统产生的热量和物块相对小车滑行的距离。 解:物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示。由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律。 (1) 由动量守恒定律,物块与小车系统: mv 0 = ( M + m )V 共 ∴0 mv V M m =+共 (2) 由动量定理,: (3) 由功能关系,物块与小车之间一对滑动摩擦力做功之和(摩擦力乘以相对位移)等于系统机械能的增量: 2201()21 - f l M+m V mv 2 = -共 ∴2 02()Mv l μM+m g = 2如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。槽内 放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“ ”形槽 的宽度略小。现有半径r(r<

2019.4月浙江省高考物理真题(word版)

2019年4月浙江选考卷 可能用到的相关参数;重力加速度g均取10m/s2 一、选择题(本题共13小题,每小题3分,共39分。每小题列出的四个备选项中只有一个是符合 题目要求的,不选、多选、错选均不得分) 1.下列物理量属于基本量且单位属于国际单位制中基本单位的是 A.功/焦耳B.质量/千克C.电荷量/库仑D.力/牛顿 2.下列器件中是电容器的是 3.下列式子属于比值定义物理量的是 A.t=B.a=C.C=D.I= 4.下列陈述与事实相符的是 A.牛顿测定了引力常量 B.法拉第发现了电流周围存在磁场 C.安培发现了静电荷间的相互作用规律 D.伽利略指出了力不是维持物体运动的原因 5.在磁场中的同一位置放置一条直导线,导线的方向与磁场方向垂直,则下列描述导线受到的安培力F的大小与通过导线的电流I的关系图象正确的是 6.如图所示,小明撑杆使船离岸,则下列说法正确的是 A.小明与船之间存在摩擦力 B.杆的弯曲是由于受到杆对小明的力 C.杆对岸的力大于岸对杆的力 D.小明对杆的力和岸对杆的力是一对相互作用力 7.某颗北斗导航卫星属于地球静止轨道卫星(即卫星相对于地面静止)则此卫星的A.线速度大于第一宇宙速度 B.周期小于同步卫星的周期 C.角速度大于月球绕地球运行的角速度 D.向心加速度大于地面的重力加速度 8.电动机与小电珠串联接入电路,电动机正常工作时,小电珠的电阻为R1,两端电压为U1,流过的电流为I1;电动机的内电阻为R2,两端电压为U2,流过的电流为I2。则 A.I1C.=D.<

9.甲、乙两物体零时刻开始从同一地点向同一方向做直线运动,位移一时间图象 如图所示,则在0~t1时间内 A.甲的速度总比乙大 B.甲、乙位移相同 C.甲经过的路程比乙小 D.甲、乙均做加速运动 10.当今医学上对某些脚痛采用质子疗法进行治疗,该疗法用一定能量的质子束照射肿瘤杀死癌细胞。现用一直线加速器来加速质子,使其从静止开始被加速到1.0?107m/s。已知加速电场的场强为1.3?105N/C,质子的质量为1.67?10-27kg,电荷量为1.6?10-19C,则下列说法正确的是 A.加速过程中质子电势能增加 B.质子所受到的电场力约为2?10-15N C.质子加速需要的时间约为8?10-6s D.加速器加速的直线长度约为4m 11.如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则 A.杆对A环的支持力变大 B.B环对杆的摩擦力变小 C.杆对A环的力不变 D.与B环相连的细绳对书本的拉力变大 12.如图所示,A、B、C为三个实心小球,A为铁球,B、C为木球。A、B两球分别连接在两根弹簧上,C球连接在细线一端,弹簧和细线的下端固定在装水的杯子底部,该水杯置于用绳 子悬挂的静止吊篮内。若将挂吊的绳子剪断,则剪断的瞬间相对于杯底(不计 空气阻力,ρ木<ρ水<ρ铁) A.A球将向上运动,B、C球将向下运动 B.A、B球将向上运动,C球不动 C.A球将向下运动,B球将向上运动,C球不动 D.A球将向上运动,B球将向下运动,C球不动 13.用长为1.4m的轻质柔软绝缘细线,拴一质量为1.0×10-2kg、电荷量为2.0?10-8C的小球,细线的上端固定于O点。现加一水平向右的匀强电场,平衡时细线与铅垂线成37?,如图所示。 现向左 ..拉小球使细线水平且拉直,静止释放,则(sin37?=0.6) A.该匀强电场的场强为3.75?107N/C B.平衡时细线的拉力为0.17N C.经过0.5s,小球的速度大小为6.25m/s D.小球第一次通过O点正下方时,速度大小为7m/s 二、选择题(本题共3小题,每小题2分,共6分。每小题列出的个备选项中至少有一个是将合题 目要求的。全部选对的得2分,选对但不全的得1分,有选错的得0分) 14.【加试题】波长为λ1和λ2的两束可见光入射到双缝,在光屏上观察到干涉条纹,其中波长为λ1的光的条纹间距大于波长为λ2的条纹间距。则(下列表述中.脚标“1”和“2”分别代表波

高考物理压轴大题

35.(18分)如图所示,一个质量为=2.0×10-11kg ,电荷量= +1.0×10-5C 的带电微粒 (重力忽略不计),从静止开始经U 1=100V 电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压U 2=100V 。金属板长L =20cm ,两板间距d =cm 。 求: (1)微粒进入偏转电场时的速度 的大小 (2)微粒射出偏转电场时的偏转角θ和速度v (3)若带电微粒离开偏转电场后进入磁感应强度 为B = T 的均强磁场,为使微粒不从磁场 右边界射出,该匀强磁场的宽度D 至少为多大 36.(18分)如图所示,质量为m A =2kg 的木板A 静止放在光滑水平面上,一质量为 m B =1kg 的小物块B 从固定在地面上的光滑弧形轨道距木板A 上表面某一高H 处由静止开始滑下,以某一初速度v 0滑上A 的左端,当A 向右运动的位移为L =0.5m 时,B 的速度为v B =4m/s ,此时A 的右端与固定竖直挡板相距x ,已知木板A 足够长(保证B 始终不从A 上滑出),A 与挡板碰撞无机械能损失,A 、B 之间动摩擦因数为μ=0.2,g 取10m/s 2 (1)求B 滑上A 的左端时的初速度值v 0及静止滑下时距木板A 上表面的高度H (2)当x 满足什么条件时,A 与竖直挡板只能发生一次碰撞 35.(18分)如图所示,一质量为m 、电量为+q 、重力不计的带电粒子,从A 板的S 点由 静止开始释放,经A 、B 加速电场加速后,穿过中间偏转电场,再进入右侧匀强磁场区域.已知AB 间的电压为U ,MN 极板间的电压为2U ,MN 两板间的距离和板长均为L ,磁场垂直纸面向里、磁感应强度为B 、有理想边界.求: (1)带电粒子离开B 板时速度v 0的大小; (2)带电粒子离开偏转电场时速度v 的大小与方向; (3)要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d 多大? 挡板 v 0 B A (第36题图) x L H (第35题图) U 2 B U 1 v 0 D θ v B B A - - - N + + + M S ●

2017浙江高考物理部分试题及解答

2017年普通高等学校招生全国统一考试(浙江卷) 理科综合能力测试(物理部分) 本试题卷分选择题和非选择题两部分。全卷共14页,选择题部分1至6页,非选择题部分7-14页。满分300分,考试时间150分钟。 请考生按规定用笔将所有试题的答案涂写在答题纸上。 选择题部分(共120分) 注意事项: 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或铅笔分别填写在试卷和答题约规定的位置上。 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。如需发动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 选择题部分共20小题,每小题6分,共120分。 一、选择题((本题共17小题。在每小题给出的四个选项中,只有一项是符合题目要求的。) 14.如图所示,与水平面夹角为30?的固定斜面上有一质 量m =1.0kg 的物体。细绳的一端与物体相连,另一端经摩擦不 计的定滑轮与固定的弹簧相连。物体静止在斜面上,弹簧秤的 示数为4.9N 。关于物体受力的判断(取g =9.8m/s 2),下列说法正确的是()A , (A )斜面对物体的摩擦力大小为零 (B )斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上 (C )斜面对物体的支持力大小为4.9N ,方向竖直向上 3(D )斜面对物体的支持力大小为4.9N ,方向垂直斜面向上 15.如图所示,在火星与木星轨道之间有一小行星带。假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。下列说法正确的是()C , (A )太阳对各小行星的引力相同 (B )各小行星绕太阳运动的周期均小于一年 (C )小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值 (D )小行星带内各小行星圆周运动的线速度值大于地球分转的线速度值 16.用手捏住较长软绳的一端连续上下抖动,形成一列简谐横波。某一时刻的波形如图所示,绳上a 、b 两质点均处于波峰位置。下列说法正确的是()D , (A )a 、b 两点之间的距离为半个波长 (B )a 、b 两点振动开始时刻相差半个周期 (C )b 点完成全振动次数比a 点多一次 (D )b 点完成全振动次数比a 点少一次 17.功率为10W 的发光二极管(LED 灯)的亮度与功率为60W 的白炽灯相当。根据国家节能战略,2016年前普通白炽灯应被淘汰。假设每户家庭有2只60W 的白炽灯,均用10W 的LED 灯替代,估算全国一年节省的电能最接近()B , (A )8?108kWh (B )8?1010kWh (C )8?1011kWh (D )8?1013kWh 二、选择题(本题共3小题。在每小题给出的四个选项中,至少有一个选项是符合题目要求的。全部选对的得6分,选对但不全的得3 18AB 段 30? 小行星带 太阳 地球

高考物理(法拉第电磁感应定律提高练习题)压轴题训练及详细答案(1)

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ?Φ =? B S t t ?Φ?=?? 根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

浙江省高考物理鸭单选专练单项选择题专练十

单项选择题专练(十) 1.有关物理学史与科学家的贡献的说法正确的是() A.库仑最早用实验测得了元电荷e的数值 B.牛顿用实验测出了引力常量 C.法拉第创造性地用“场线”形象地描述“场” D.安培发现了电流的磁效应 2.一质点做直线运动的v-t图象如图所示,下列关于质点运动的描述,正确的是() A.在0~1 s内做匀速直线运动 B.在0~1 s内做匀加速直线运动 C.在1~5 s内保持静止 D.在1~5 s内做匀加速直线运动 3.某小船船头垂直指向河岸渡河,若水流速度突然增大,其他条件不变,下 列判断正确的是() A.小船渡河的时间不变 B.渡河时间减少 C.小船渡河时间增加 D.小船到达对岸地点不变 4.从空中以40 m/s的初速度平抛一重为5 N的物体,物体在空中运动3 s落地,不计空气阻力,则物体落地前瞬间,重力的瞬时功率为( )(g取10 m/s2) A.100 W B.150 W C.200 W D.250 W 5.“托卡马克磁约束装置”是一种利用磁约束来实现受控核聚变的环形 容器。它的名字Tokamak来源于环形、真空室、磁、线圈。其主要原理(如 图甲)为粒子混合体被强电流线圈产生的磁场约束在“容器”中,通电线 圈产生的圆形磁场可看作匀强磁场,“容器”中有运动的粒子混合体, 有些粒子会运动到“容器”的边缘,它们的截面图(如图乙)所示。若有 运动方向与磁场垂直的带电粒子,在P点向上运动,观察其匀速圆周运 动轨迹。(不计粒子重力)下列说法正确的是() A.要产生图甲的磁场,线圈中强电流方向与图示电流方向相同。乙图中,带正电的粒子在P点向上运动后的轨迹是1轨迹 B.要产生图甲的磁场,线圈中强电流方向与图示电流方向相反。乙图中,带负电的粒子在P点向上运动后的轨迹是2轨迹 C.要产生图甲的磁场,线圈中强电流方向与图示电流方向相同。乙图中,带正电的粒子在P点向上运动后的轨迹是2轨迹 D.要产生图甲的磁场,线圈中强电流方向与图甲电流方向相反。乙图中,带负电的粒子在P点向上运动后的轨迹是1轨迹 6.“滑滑梯”是小朋友喜爱的游戏活动,可以将小朋友在室内“滑滑梯”的运动简化成小物体从静止出发,先沿斜板下滑,再进入室内水平木板的过程,如图所示,假设斜板长度一定,斜板与水平木板的倾角θ可调,且房间高度足够,斜板最高点在地板的垂点到房间右侧墙面的长度为斜板长度的2倍。一物块(可视为质点)从斜板顶端静止出发后在到达房间右侧墙面时刚好停下,已知物块 与斜板及水平木板间的动摩擦因数均为μ,不计物块从斜板进入水平木板时 的能量损失,则θ与μ间应满足() A.sinθ=μ B.sinθ=2μ C.sinθ=3μ D.sinθ=4μ 7.吊坠是日常生活中极为常见的饰品,深受人们喜爱,现将一“心形”金属吊坠穿在一根细线上,吊坠可沿细线自由滑动。在佩戴过程中,某人手持细线两端,让吊坠静止在空中,现保持其中一只手不动,另一只手捏住细线缓慢竖直下移,不计吊坠与细线间的摩擦,则在此过程中,细线中张力大小变化情况为() A.保持不变 B.逐渐减小 C.逐渐增大 D.无法确定

相关文档
相关文档 最新文档