文档库 最新最全的文档下载
当前位置:文档库 › 解决线性互补问题的两种AOR迭代格式(IJITCS-V3-N2-6)

解决线性互补问题的两种AOR迭代格式(IJITCS-V3-N2-6)

解决线性互补问题的两种AOR迭代格式(IJITCS-V3-N2-6)
解决线性互补问题的两种AOR迭代格式(IJITCS-V3-N2-6)

迭代法求解线性方程组的研究

迭代法求解线性方程组的研究 【摘要】:本文总结了解线性方程组的三个迭代法,Jacobi 迭代法,Gauss-seidel 迭代法,SOR 迭代法,并且介绍了现代数值计算软件MATLAB 在这方面的应用,即分别给出三个迭代法的数值实验。 【关键字】:Jacobi 迭代法 Gauss-seidel 迭代法 SOR 迭代法 数值实验 一. 引言 迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,它是解高阶稀疏方程组的重 要方法。 迭代法的基本思想是用逐次逼近的方法求解线性方程组。 设有方程组 b Ax = …① 将其转化为等价的,便于迭代的形式 f Bx x += …② (这种转化总能实现,如令b f A I B =-=,), 并由此构造迭代公式 f Bx x k k +=+)() 1( …③ 式中B 称为迭代矩阵,f 称为迭代向量。对任意的初始向量) 0(x ,由式③可求得向量序列 ∞0)(}{k x ,若*) (lim x x k k =∞ →,则*x 就是方程①或方程②的解。此时迭代公式②是收敛的,否则称为发散的。构造的迭代公式③是否收敛,取决于迭代矩阵B 的性质。 本文介绍三种解线性方程组的最主要的三种迭代法:Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 迭代法。本文结构如下:第二部分介绍Jacobi 迭代法及其数值实验,第三部分介绍Gauss-Seidel 迭代法及其数值实验,第四部分介绍SOR 迭代法及其数值实验,第五部分总结。 二. 雅克比(Jacobi )迭代法 1. 雅克比迭代法的格式 设有方程组

),,3,2,1(1 n i b x a j j n j ij ==∑= …① 矩阵形式为b Ax =,设系数矩阵A 为非奇异矩阵,且),,3,2,1(,0n i a ii =≠ 从式①中第i 个方程中解出x ,得其等价形式 )(1 1 1j n j j ij ii i x a b a x ∑≠=-= …② 取初始向量),,,() 0()0(2)0(1) 0(n x x x x =,对式②应用迭代法,可建立相应的迭代公式: )(11 1)() 1(∑≠=++-=n j j i k j ij ii k i b x a a x …③ 也可记为矩阵形式: J x J k F B x k +==) () 1( …④ 若将系数矩阵A 分解为A=D-L-U ,式中 ???? ? ? ? ??=nn a a a D 2211, ?? ? ?? ?? ? ??=--00 00121323121nn n n a a a a a a L , ?? ? ??? ? ? ? ?=--00 00122311312n n n n a a a a a a D 。 则方程Ax=b 变为 b x U L D =--)( 得 b x U L Dx ++=)( 于是 b D x U L D x 1 1 )(--++=

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

线性方程组迭代解法

实验六:线性方程组迭代解法 1)实验目的 ? 熟悉Matlab 编程; ? 学习线性方程组迭代解法的程序设计算法 2)实验题目 1.研究解线性方程组Ax=b 迭代法收敛速度。A 为20阶五对角距阵 ??????????????? ?????????????????------------------=321 412132141412132141412132141 412132 141213 O O O O O A 要求: (1)选取不同的初始向量x 0 及右端向量b ,给定迭代误差要求,用雅可比迭代和高斯-赛 德尔迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。 (2)用SOR 迭代法求解上述方程组,松弛系数ω取1< ω <2的不同值,在 时停止迭代.记录迭代次数,分析计算结果并得出你的结论。 2.给出线性方程组b x H n =,其中系数矩阵n H 为希尔伯特矩阵: ()n n ij n h H ??∈=,.,,2,1,,1n j i j i i h ij Λ=-+= 假设().,1,,1,1*x H b x n n T =?∈=Λ若取,10,8,6=n 分别用雅可比迭代法及SOR 迭代 (5.1,25.1,1=ω)求解,比较计算结果。 3)实验原理与理论基础 1.雅克比(Jacobi )迭代法算法设计: ①输入矩阵a 与右端向量b 及初值x(1,i); ②按公式计算得 ),,2,1(1)(1)1(n i x a b a x k j n i j j ij i ii k i Λ=????? ??-=∑≠=+ 2.高斯――赛得尔迭代法算法设计: 1. 输入矩阵a 与右端向量b 及初值x(1,i).

第六章解线性方程组的迭代法

第五章 解线性方程组的迭代法 本章主要内容: 迭代法收敛定义,矩阵序列收敛定义,迭代法基本定理,雅可比迭代法,高斯-塞德尔迭代法,系数矩阵为严格对角占优阵的采用雅可比迭代、高斯-塞德尔迭代的收敛性。 教学目的及要求: 使学生了解迭代法收敛定义,迭代法基本定理,掌握雅可比迭代法、高斯-塞德尔迭代法。 教学重点: 雅可比迭代法,高斯-塞德尔迭代法。 教学难点: 迭代法基本定理的证明以及作用。 教学方法及手段: 应用严格的高等代数、数学分析知识,完整地证明迭代法基本定理,讲清雅可比迭代法与高斯-塞德尔迭代法的关系,介绍雅可比迭代法与高斯-塞德尔迭代法在编程中的具体实现方法。 在实验教学中,通过一个具体实例,让学生掌握雅可比迭代法与高斯-塞德尔迭代法的具体实现,并能通过数值计算实验,揭示高斯-塞德尔迭代法是对雅可比迭代法的一种改进这一事实。 教学时间: 本章的教学的讲授时间为6学时,实验学时4学时。 教学内容: 一 迭代法定义 对于给定的线性方程组x Bx f =+,设它有唯一解*x ,则 **x Bx f =+ (6.1) 又设(0)x 为任取的初始向量,按下述公式构造向量序列 (1)(),0,1,2,k k x Bx f k +=+=L (6.2) 这种逐步代入求近似解的方法称为迭代法(这里B 与f 与k 无关)。如果() lim k k x →∞ 存在 (记为*x ),称此迭代法收敛,显然*x 就是方程组的解,否则称此迭代法发散。 迭代法求方程近似解的关键是是讨论由(6.1)式所构造出来的向量序列() {} k x 是否收敛。为此,我们引入误差向量 (1)(1)*k k x x ε++=- 将(6.2)式与(6.1)式相减,我们可得 (1)*()*()k k x x B x x +-=- (1)(),0,1,2,k k B k εε+==L 递推下去,得 ()(1)2(2)(0)k k k k B B x B x εε--====L

线性代数第3章_线性方程组习题解答

习题3 3-1.求下列齐次线性方程组的通解: (1)?? ? ??=--=--=+-087305302z y x z y x z y x . 解 对系数矩阵施行行初等变换,得 ???? ? ??-----?→?????? ??-----=144072021 1873153211A )(000720211阶梯形矩阵B =???? ? ??-?→? ??? ?? ??-?→?0002720211)(000271021101行最简形矩阵C =????? ? ???→? , 与原方程组同解的齐次线性方程组为 ??? ??? ?=+=+02702 11 z y z x , 即 ??? ??? ?-=-=z y z x 272 11(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系 T )1,2 7,211(-- =ξ, 所以,方程组的通解为

,)1,2 7,211(T k k -- =ξk 为任意常数. (2)??? ??=+++=+++=++++0 86530543207224321 432154321x x x x x x x x x x x x x . 解 对系数矩阵施行行初等变换,得 ???? ? ??--?→?????? ??=21202014101072211086530543272211A )(7000014101072211阶梯形矩阵B =????? ??-?→? ???? ? ??-?→?70000141010211201 )(100000101001201行最简形矩阵C =???? ? ???→?, 与原方程组同解的齐次线性方程组为 ??? ??==+=++00 025 42431x x x x x x , 即 ??? ??=-=--=025 4 2431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T ,得到方程组的一个基础解系 T )0,0,1,0,2(1-=ξ,T )0,1,0,1,1(2--=ξ, 所以,方程组的通解为

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

线性方程组的迭代求解java

线性方程组的迭代求解 摘要 迭代法是一种逐次逼近方法,在使用迭代法解方程组时,其系数矩阵在计算过程中始终不变。它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行。迭代法具有循环的计算方法,方法简单,适宜解大型稀疏矩阵方程组 本文总结了解线性方程组的三个迭代法,Jacobi迭代法,Gauss-Seidel迭代法,SOR 迭代法,并且介绍了软件JA V A在这方面的应用。 关键词: Jacobi迭代法;Gauss-Seidel迭代法;SOR迭代法;计算

SOLUTION OF LINEAR EQUATIONS OF ITERATION WITH THE EXPERIMENTAL ABSTRACT Iteration is a kind of method to solve questions by step-by-step approximation. When we are getting the solution of linear equations by using iteration, the coefficient matrix is always staying the same in computation process. Computer could operate fastly so that it is suitable for operating again and again. Iteration is easy to operate to solve the large matrix equations by using a calculate method called circulation. This summary understanding of linear equations three kind of iteration, Jacobi iteration, Gauss-Seidel iteration, successive over relaxation method ,and introduce modern software JA V A in this respect. Key words:Jacobi iteration; Gauss-Seidel iteration; Successive Over Relaxation method ; calculating

线性方程组典型习题及解答

线性方程组 1. 用消元法解方程组?????? ?=- +-+=-- + - =-+-+ =- -+-5 2522220 21 22325 4 321 53 2 154321 5 4321x x x x x x x x x x x x x x x x x x x . 解: 方程组的增广矩阵 : ????? ???????---------→????????????---------→????????????---------420200110100112430211321312630202530112430211321512522110112121111211321? ??? ????? ???--------→60000 0110100112430211321,可知,系数矩阵的秩为3,增广矩阵的秩为4,系数矩阵的秩不等于增广矩阵的秩,从而方程组无解. 2. 讨论λ为何值时,方程组??? ??=++ = + +=++2 3 2 1 3 2 1 321 1 λλλλλx x x x x x x x x 有唯一解、无解和有无穷多解。 解:将方程组的增广矩阵进行初等行变换,变为行阶梯矩阵。 ()() ()()B A =??? ? ???? ? ?+------→→???? ????? ?→?? ??? ?????=22 2 2211210 1101 111 1 11111 1 1 1 111λλλλλλλ λλλ λλλλλλλ λλ λΛ于是,当2,1-≠λ时,系数矩阵的秩等于增广矩阵的秩,都等于3,等于未知量的个数,此 时方程组有唯一解;2 )1(,21,213 321++-=+=++- =λλλλλx x x 当2-=λ时,系数矩阵的秩为2,增广矩阵的秩为3,此时方程组无解; 当1=λ时,系数矩阵的秩等于增广矩阵的秩,都等于1,小于未知量的个数,此时方程组有无穷多解,即3211x x x --=,其中32,x x 为自由未知量。

SOR迭代法求解线性方程组

实验三:用SOR 迭代法求解线性方程组 ?????? ? ??=??????? ????????? ??----------74.012.018.168.072.012.006.016.012.001.103.014.006.003.088.001.016.014.001.076.04321x x x x 取初始点T x )0,0,0,0()0(=,松弛因子05.1=ω,精度要求610-=ε。 1,建立SOR.m 函数文件,此函数文件可调用,程序源码如下: function [x,n]=SOR(A,b,x0,w,eps,M) if nargin==4 eps= 1.0e-6;%精度要求 M = 200; elseif nargin<4 error; return elseif nargin ==5 M = 200; end if(w<=0 || w>=2) error; return; end D=diag(diag(A)); %求A 的对角矩阵 L=-tril(A,-1); %求A 的下三角阵 U=-triu(A,1); %求A 的上三角阵 B=inv(D-L*w)*((1-w)*D+w*U); f=w*inv((D-L*w))*b; x=B*x0+f; n=1; %迭代次数 while norm(x-x0)>=eps x0=x; x =B*x0+f; n=n+1; if(n>=M) disp('Warning: 迭代次数太多,可能不收敛!'); return; end end

2,输入矩阵。并根据要求调用函数,运行结果如下图所示: 即经过7次迭代算出结果,且求得: 1.27151.28440.48581.2843x ?? ? ?= ? ???

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

解线性方程组

课程设计阶段性报告 班级:学号:姓名:申报等级: 题目:线性方程组求解 1.题目要求:输入是N(N<256)元线性方程组Ax=B,输出是方程组的解,也可能无解或有多组解。可以用高斯消去法求解,也可以采用其它方法。 2.设计内容描述:将线性方程组做成增广矩阵,对增广矩阵进行变换然后采用高斯消元法消去元素,从而得到上三角矩阵,再对得到的上三角矩阵进行回代操作,即可以得到方程组的解。 3.编译环境及子函数介绍:我使用Dev-C++环境编译的,调用uptrbk() FindMax()和ExchangeRow(),uptrbk是上三角变换函数,FindMax()用于找出列向量中绝对值最大项的标号,ExchangeRow()用于交换两行 4. 程序源代码: #include #include #include //在列向量中寻找绝对值最大的项,并返回该项的标号 int FindMax(int p,int N,double *A) { int i=0,j=0; double max=0.0; for(i=p;imax) { j=i; max=fabs(A[i*(N+1)+p]); } } return j;

//交换矩阵中的两行 void ExchangeRow(int p,int j,double *A,int N) { int i=0; double C=0.0; for(i=0;i

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

3线性方程组典型习题解析

3 线性方程组 3、1 知识要点解析(关于线性方程组的常用表达形式) 3.1.1 基本概念 1、方程组1111221n 1211222 2n 2m11m22mn m x x b x x b x x b a a a a a a a a a +++=??+++=? *???++ +=? 称为含n 个未知量m 个方程的线性方程组, i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b = =b 0=,则该线性方程组就就是齐次线性方程组, 这时,我们也把该方程组称为1111221n 1211222 2n 2m11m22mn m x x x x x x a a a a a a a a a ++ +=??+++=? ???++ +=?c c c 的导出组, (其中12m c ,c ,...c 不全为零) 2、记1111 1221 n m x b x b ,x ,b x b n m mn a a A a a ???? ?? ? ? ? ? ?== ? ? ? ? ? ??? ???? = 则线性方程组(*)又可以表示为矩阵形式 x b A =** 3、又若记 1j 2j j mj ,j 1,2, n a a a α?? ? ? == ? ? ??? 则上述方程游客一写成向量形式 1122n n x x x b. ααα++ +=***。 同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。 3.1.2 线性方程组解的判断

1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它就是一定有解的(至少零就就是它的解), i)那么,当r n A =秩()=时,有唯一零解; ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r 、 2、非齐次线性方程组x b A = ()<() ()=()=n, ()=()()=()() A A A A A A A A A A A ?? ???????? ? ?秩秩无解;秩秩有唯一解, 秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能 3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间 (作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解 的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r , 其中A 就是方程组的系数矩阵。那么,当齐次线性方程组[(*)--ii)] 有 非零解时,它的每个基础解系所含解向量的数目都等于A n-秩()。 2、 非齐次线性方程组的解空间 我们已知线性方程组的解与非齐次线性方程组的解的关系,那么我们可 首先求出非齐次线性方程组的一个解γ0(称其为方程组特解);然后在求对应的导出组的解空间(设该解空间的基础解系为ηηη12n-r ,,...),则(*)解空间的维数为n-r,且非齐次线性方程组的每一个解都可以表示为: 2.................()k k k γηηη+?0112n-r n-r ++...+ 我们称其为该非齐次线性方程组(*)的通解、

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪 费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量) 1(+k i x 时, 用最新分量) 1(1 +k x ,???+) 1(2 k x ) 1(1 -+k i x 代替旧分量)(1k x ,???) (2 k x ) (1-k i x ,可以起到节省存储 空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 )()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=, 则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+)()1( 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(1111 1 )() 1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)() 1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

相关文档
相关文档 最新文档