文档库 最新最全的文档下载
当前位置:文档库 › 材力解答(压杆)

材力解答(压杆)

材力解答(压杆)
材力解答(压杆)

10-1. 某型柴油机的挺杆长为l =257mm ,圆形横截面的直径d=8mm 。钢材的

E=210GPa ,σp =240MPa 。挺杆承受的最大压力P=1.76kN 。规定n st =2~5。试校核挺杆的稳定性。 解:(1)求挺杆的柔度

挺杆的横截面为圆形,两端可简化为铰支座,μ=1,i=d/4 计算柔度

1

1 9.925

.1284

λ

λσ

π

λμμλ ∴=====

P

E d l i l

挺杆是细长压杆,用欧拉公式计算临界压力 (2)校核挺杆的稳定性

()

KN l EI

P d I cr 31.6 64

2

2

4

==

=

μππ

工作安全系数

58.3max

==

P P n cr

所以挺杆满足稳定性要求。

10-5. 三根圆截面压杆,直径均为d=160mm 材料为Q235钢,E=200GPa ,

σp =200MPa ,σs =240MPa 。三杆均为两端铰支,长度分别为l 1、l 2和l 3,且l 1=2l 2=4l 3=5m 。试求各杆的临界压力P cr 。 解:(1)求柔度极限值

查表得Q235钢:a = 304MPa, b = 1.12MPa

57

3

.992

1=-=

==b

a E S

P

σλ

σ

πλ

(2)求各杆的临界压力Pcr

1杆:

()

KN

l EI

P d I d l i

l cr l 2540 64

1254

/12

2

14

1

111

==

∴=

=?=

=

μππλμλ

2杆:

KN

A P MPa

b a i l cr

cr cr

l l 4705 2345.6221

2

2

2

2

===-=∴==

σ

λσ

λ

λ

λμλ

3杆:

KN

A P i

l S cr l 482525.3132

3

3

==∴==

σλ

μλ

10-7. 无缝钢管厂的穿孔顶杆如图所示。杆长l =4.5m ,横截面直径d=150mm ,材

料为低合金钢,E=210GPa ,σp =200MPa 。两端可简化为铰支座,规定n st =3.3。试求顶杆的许可压力。

解:(1

()

KN

l EI

P d I d l i l E cr P

5.254341204

/18.1012

2

4

1

1==

=

=?=

===μππλ

μλσπλ

(2)求顶杆的许可压力

kN n P P st

cr 8.770][==

10-9. 在图示铰接杆系中,AB 和BC 皆为细长压杆,且截面相同,材料一样。若

杆系因在ABC 平面内丧失稳定而同时失效,并规定0<θ<π/2,试确定P 为最大值时的角。

P

解:由铰B 的平衡可得

θtg P P 12=

由已知条件可知,

1

2

1212112=====μ

μβI I E E tg l l

AB 和BC 皆为细长压杆

2

2

2

221

2

1 l EI P l EI P cr cr ππ=

=

欲使P 为最大值,则两杆需同时达到临界值,即

)

()(

22

2

2

11

212βθβθθctg arctg ctg l l tg P P tg P P cr cr cr cr =∴====

10-12. 蒸汽机车的连杆如图所示。截面 为工字形,材料为Q235钢,λ1=100,

连杆承受的最大轴向压力为465 kN 。连杆在摆动平面(xy 平面)内发生弯曲时,两端可认为铰支;而在与摆动平面垂直的xz 平面内发生弯曲时,两端可认为是固定支座。试确定其工作安全系数。

解:(1)计算截面的几何性质

y

y

mm

A

I i mm A

I i mm

I mm I mm A z z y y z y 52 2517755479 4055040 64704

42==

==

===

xy 平面和xz 平面内的柔度值

62

025

.01.35.06

.59052

.01.312211=?=

=

=?==y

xz

z xy

i l i l μλ

μλ

连杆容易在xz 平面内失稳 对于Q235钢

1

2

2

s 6.61235 12.1 304λ

λ

λσλ

σ xz

s

b

a MPa

MPa b MPa a ∴=-=

===

连杆为中长杆,用直线公式计算临界压力

()KN

A b a A P xz

cr cr 6.1517=-==λ

σ

工作安全系数

26.3465

6.1517max

==

=

P P n cr

10-15. 某厂自制简易起重机如图所示。压杆BD 为20号槽钢,材料为Q235钢,

λ1=100,λ2=62。起重机的最大起重量P=40kN 。若规定n st =5,试校核BD 杆的稳定性。

解:(1)受力分析

以梁AC 为研究对象,由静力平衡方程可求得

kN N BD 7.106=

(2)BD 压杆的柔度

查型钢表,20号槽钢:

P

1

2

4

287

.82732.130cos /5.1 ,1144 09.2 837.32λ

λλ

μλμ ∴========y

y y i l m

l cm

I cm i cm A

BD 杆为中长杆 (3)计算临界压力

()KN A b a A P cr

cr 5.693=-==λσ

(4)稳定性校核

st BD

cr n N P n 5.6==

满足稳定要求。

轴承压装机压装力的计算

轴承压装机压装力的计算 摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。 关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术 一、前言 本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。 二、工艺参数计算 在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。 -4-4 δ=7×10D+0.06 (1) δ=7.6×10D+0.09 (2) 12 δ=0.5(δ+δ) (3) δ=δ-0.02 (4) 31243 δ=δ+0.01 (5) δ=δ,δ (6) 5345 P=(3.11D+66)+6 (7) P=4.88D+101 (8) 12 P=P,P (9) 12 δ—粗算轮轴配合过盈量下限值mm;δ—粗算轮轴配合过盈量上限值mm;δ—粗算轮轴配123合过盈量平均值mm;δ—精算轮轴配合过盈量下限值mm;δ—精算轮轴配合过盈量上限值45

mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P—轮轴冷压装吨位下限值kN;1 P—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。 2 三、计算应用实例 计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。解:(1)计算过盈量 -4-4 δ=7×10D+0.06=7×10×182+0.06=0.19(mm) 1 -4-4 δ=7.6×10D+0.09 =7.6×10×182+0.09=0.23(mm) 2 δ=0.5(δ+δ)=0.5(0.19+0.23)=0.21(mm) 312 δ=δ-0.02=0.21-0.02=0.19(mm) 43 δ=δ+0.01=0.21+0.01=0.22(mm) 53 δ=δ,δ =0.19~0.22(mm) 45 (2)计算冷压装吨位 P=(3.11D+66+6=(3.11×182+66)+6=683(kN) 1 P=4.88D+101=4.88×182+101=989(kN) 2 P=P,P=683,989(kN) 12 以上计算出来的δ值和P值,即为所求车辆轮轴冷压装时,所需的配合过盈量和冷压装吨位。根据δ值,即可量化出车轴配合座部位的精确尺寸和车轮配合孔部位的精确尺寸。四、轮轴机械加工 轮孔的配合表面是通过镗削加工来实现的,其表面粗糙度可按Ra3.2控制;轴座的配合表面是通过磨削加工来实现的,其表面粗糙度可按Ra1.6控制。为了保证轮轴配合面不被擦伤,轮孔两端应有R3,5mm的过渡圆弧,轴座的压装始端,应有10,13mm圆锥引入段。五、工艺与操作 1.清洁度、过盈量、轴长中心

过盈量与装配力计算公式

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则

F f=πdlpf

因需保证F f ≥F,故 [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生 周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩 擦阻力矩M f 应大于或等于转矩T。 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M f ≥T.故得 [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材料无润滑时f 有润滑时f 联接零件 材料 结合方式,润滑 f 钢—铸钢0.11 0.08 钢—钢油压扩孔,压力 油为矿物油 0.125 钢—结构钢0.10 0.07 油压扩孔,压力 油为甘油,结合 面排油干净 0.18 钢—优质结构钢0.11 0.08 在电炉中加热包 容件至300℃ 0.14 钢—青铜0.150.20 0.030.06 在电炉中加热包 容件至300℃以 后,结合面脱脂 0.2 钢—铸铁0.120.15 0.050.10 钢—铸铁油压扩孔,压力 油为矿物油 0.1 铸铁—铸钢0.150..25 0.150.10 钢—铝镁无润滑0.100.15

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式:?prlf P=2 应为“—”i2?1?p i2222??r2r?rr?r2231122??? 2222EE)(ErrE(r?r?)211321225?10?Mpa, u1=u2=0.3, l=150mm, =0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1f=0.15 带入公式得: Pi= 12.3954Mpa 510?(17.524t) P=1.7524=17874.48kgf N5?10?Mpa, u1=u2=0.3, l=190mm=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1, f=0.15 带入公式得: Pi= 12.3954Mpa 510?(22.196t) N=22639.92kgf P= 2.2196 B87C机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T——大值是按u1起作用算得 FT160A架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T——大值是按u1起作用算得

过盈联接p1;.确定压力F)传递轴向力12)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 受 : 图图: 变轴向力的过盈联接 转矩的过盈联接,则设配合的公称直径为人配合面间的摩擦系数为人配合长度为l=πdlpf F f≥F,故因需保证F f [7-8] 时,则应保证在此转矩作用下不产生T 当联接传递转矩2)传递转矩T 配合面间所能产生的摩的作用下,在转矩T周向滑移。亦即当径向压力为P时,。应大于或等于转矩T擦阻力矩M f①设配合面上的摩擦系数为f,配合尺寸同前,则 =πdlpf·d/2M f M≥T.故得因需保证f

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

过盈配合压入力计算

轴与轴套过盈配合压入力计算公式: P=2i p lf r 2π 应为“—” 2 2 112122221 22 2223122 23 2 )()(1 2E E r r E r r r r E r r r p i μμδ - +-++-+= δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=150mm , f=0.15 带入公式得: Pi= 12.3954Mpa P=1.75245 10?N =17874.48kgf (17.524t) δ=0.075mm, r1=70mm, r2=100mm, r3=135mm, E1=E2=2.1?510Mpa, u1=u2=0.3, l=190mm , f=0.15 带入公式得: Pi= 12.3954Mpa P= 2.21965 10?N =22639.92kgf (22.196t) B87C 机头衬套压入力: δ=0.078,r1=14.415,r2=25.38,r3=44.5,L=115,f=0.15 代入公式得:22.6T/26.7T ——大值是按u1起作用算得 FT160A 架体横臂压入力: δ=0.05,r1=0,r2=17,r3=25,L=37,f=0.15 代入公式得:4.9T/5.8T ——大值是按u1起作用算得

过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

过盈量与装配力计算公式

过盈量与装配力计算公式 过盈联接 1.确定压力p; 1)传递轴向力F 2)传递转矩T 3)承受轴向力F和转矩T的联合作用 2.确定最小有效过盈量,选定配合种类; 3.计算过盈联接的强度; 4.计算所需压入力;(采用压入法装配时) 5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。

1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。1)传递轴向力F 当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受转矩的过盈联接. 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F =πdlpf f因需保证F≥F,故f [7-8] 2)传递转矩T 当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。f①,配合尺寸同前,则设配合面上的摩擦系 数为f M =πdlpf·d/2f因需保证M ≥T.故得f [7-9] ①实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值 压入法胀缩法 联接零件材有润滑时联接零件材无润滑时f 结合方式,润滑 f 料 f 料 油压扩孔,压力油钢—铸钢 0.11 0.08 0.125 为矿物油 油压扩孔,压力油钢—结构钢 0.10 0.07 为甘油,结合面排0.18 油干净钢—钢钢—优质结在电炉中加热包0.11 0.08 0.14 构钢 容件至300℃ 在电炉中加热包钢—青铜 0.15?0.20 0.03?0.06 容件至300℃以0.2 后,结合面脱脂 油压扩孔,压力油钢—铸铁 0.12?0.15 0.05?0.10 钢—铸铁 0.1 为矿物油 钢—铝镁合铸铁—铸钢 0.15?0..25 0.15?0.10 无润滑 0.10?0.15 金 3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为

压装力的计算

摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。 关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术 一、前言 本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。 二、工艺参数计算 在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。 δ1=7×10-4D+0.06 (1)δ2=7.6×10-4D+0.09 (2) δ3=0.5(δ1+δ2)(3)δ4=δ3-0.02 (4) δ5=δ3+0.01 (5)δ=δ4~δ5(6) P1=(3.11D+66)+6 (7) P2=4.88D+101 (8) P=P1~P2(9) δ1—粗算轮轴配合过盈量下限值mm;δ2—粗算轮轴配合过盈量上限值mm;δ3—粗算轮轴配合过盈量平均值mm;δ4—精算轮轴配合过盈量下限值mm;δ5—精算轮轴配合过盈量上限值mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P1—轮轴冷压装吨位下限值kN;P2—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。 三、计算应用实例 计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。 解:(1)计算过盈量 δ1=7×10-4D+0.06=7×10-4×182+0.06=0.19(mm) δ2=7.6×10-4D+0.09 =7.6×10-4×182+0.09=0.23(mm) δ3=0.5(δ1+δ2)=0.5(0.19+0.23)=0.21(mm) δ4=δ3-0.02=0.21-0.02=0.19(mm)

压入力计算

8 计算与校核 [21] 8.1过盈配合装配压入力的计算 在立式轴承压装机邀标文件的技术要求中明确指出锥轴承外圈与轴承孔配合为过渡配合,故采用过盈配合装配压入力的计算方法。方法如下: 过盈配合装配压入力的计算方法 μπf f f L d p P max = 其中:P —压入力,N max f p —结合表面承受的最大单位压力,2/mm N f d —结合直径,mm f L —结合长度,mm μ—摩擦系数 结合表面最大单位压力计算公式: ) (max max i i a a f f E C E C d p += δ 其中: max δ —最大过盈量,mm a C 、i C —系数; a E 、i E —包容件和被包容件的材料弹性模量,2/mm N 系数a C 、i C 计算方法如下: ν+-+= 2222f a f a a d d d d C ν--+= 2222i f i f i d d d d C a d 、i d 分别为包容件外径和被包容件内径(实心轴i d =0),mm

ν—泊松系数 压装机所需的压力一般为压入力的3~3.5倍 表8.1常用材料的摩擦系数表 摩擦系数μ 材料 无润滑有润滑 钢-钢0.07~0.16 0.05~0.13 钢-铸钢0.11 0.07 钢-结构钢0.10 0.08 钢-优质结构钢0.11 0.07 钢-青铜0.15~0.20 0.03~0.06 钢-铸铁0.12~0.15 0.05~0.10 铸铁-铸铁0.15~0.25 0.05~0.10 表8.2常用材料弹性模量、泊松系数 材料弹性模量E 泊松系数ν碳钢196~216 0.24~0.28 低合金钢、合金结构钢186~206 0.25~0.30 灰铸铁78.5~157 0.23~0.27 铜及其合金72.6~128 0.31~0.42 铝合金70 0.33 轴承为标准件,采用轴承钢GCr15;压头的材料选用高级优质碳素工具钢T10A,其密度是7.85g/cm3,特点是容易锻造、加工性能良好、价格便宜,能够承受冲击、硬度高,应用于不受剧烈冲击的高硬度耐磨工具,如车刀、刨刀、冲头、丝锥、钻头、手锯条。 依据公式分别计算八、九档箱中壳的中间轴、二轴轴承外圈的压入力。

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

轴承压装力计算式

轴承压装力计算式

————————————————————————————————作者:————————————————————————————————日期:

压装时的主要要求为: 1)压装时不得损伤零件 2)压入时应平稳,被压入件应准确到位。 3)压装的轴或套引入端应有适当导锥,但怠锥长度不得大于配合长度的15%,导向斜角一10°。 4)将实心轴压入盲孔,应在适当部位有排气孔或槽。 5)压装零件的配合表面除有特殊要求外,在压装时应涂以清洁的润滑剂。 6)用压力机压入时,压入前应根据零件的材料和配合尺寸,计算所需的压入力。压力机的为所需压入力的3~3.5倍,压入力的计算方法如下: 58-22 材料摩擦系数 村料摩擦因数μ(无润滑)摩擦因数μ(有润滑) 钢一钢0.07~0.16 0.05~0.13 钢—铸钢0.11 0.07 钢一结构钢0.10 0.08 钢一优质结构0.11 0.07 钢—青铜0.15~0.20 0.03~0.06 钢—铸铁0.12~0.15 0.05~0.10 铸铁—铸铁0.15~0.25 0.05~0.10

表58-23,常用材料的弹性模量,线胀系数 材料弹性模量E/(KN/mm2)泊松比v 线胀系数a/(10-6/℃加热冷却 碳钢、低合金钢、合金结 构钢 200~235 0.30~0.31 11 —8.5 灰铸铁(HT150、HT200)70~80 0.24~0.25 11 —9 灰铸铁(HT250、HT300)105~130 0.24~0.26 10 —8 可锻铸铁90~100 0.25 10 —8 非合金球墨铸铁160~180 0.28~0.29 10 —8 青铜85 0.35 17 —15 黄铜80 0.36~0.37 18 —16 铝合金69 0.32~0.36 21 —20 镁铝合金40 0.25~0.30 25.5 —25

最新(整理)压杆稳定计算.

第16章压杆稳定 1 2 16.1 压杆稳定性的概念 3 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对4 5 短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧6 失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然7 不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 8 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始9 终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根 10 11 与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小12 时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某13 —数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失14 了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此15 时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 16 - 363 -精品文档

17 18 图16-1 19 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下, 20 21 会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压 22 23 力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。 24 - 364 -精品文档

压杆稳定性计算

第16章压杆稳定 16、1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但就是,实践与理论证明,这个结论仅对短粗的压杆才就是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不就是因为强度不够,而就是由于出现了与强度问题截然不同的另一种破坏形式,这就就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但就是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲与绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性就是指杆件保持原有直线平衡形式的能力。实际上它就是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态就是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态就是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F 由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态就是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态就是不稳定平衡。

压杆稳定

1、( )材料相同的压杆,柔度越大,稳定性越差,故它所能承受的外压力就越小。 1、( )压杆的临界应力是压杆处于临界状态维持直线平衡形式时横截面上的正应力。 2、( )材料相同,柔度相等的压杆,空心杆比实心杆的稳定性好,即空心杆所能承受的压力大。 3、对于压杆稳定,下面错误的伦述是( )。 A 、压杆的临界压力是保持稳定直线平衡的最大载荷。 B 、压杆的柔度越大,压杆越不稳定。 C 、大柔度压杆可以使用欧拉公式计算临界压力。 D 、矩形截面细长压杆,已知Iz>Ir ,计算临界载荷时,应取值Iz 为妥。 5、临界应力是压杆失稳时横截面上的应力( ) 6、示Q235钢压杆,截面为矩形,面积为3.2*103mm 2, 已知E=200GPA ,σs =235MPA ,λp=100,λs=61.6,试计算其临界载荷。(15分) 7、( )压杆的稳定性主要与压杆的截面大小和压杆的长度有关。 一、是非判断题 9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。 ( × ) 9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其 临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度 条件。 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成 的细长压杆的临界压力。 ( × ) 二、填空题 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。 9.2 柔度越大的压杆,其临界应力越 小 ,越 容易 失稳。 9.3 影响细长压杆临界力大小的主要因素有 E , I , μ , l 。 长度(l ),约束(μ),横截 面的形状和大小(i ) 有应力集中时 2 2)(l EI F cr μπ=

过盈联接压入力计算

过盈联接压入力计算 1. 配合面间所需的径向压力p 过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。 1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力F,应大于或等于外载荷F。 图: 变轴向力的过盈联接图: 受 转矩的过盈联接 设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则 F f=πdlpf

因需保证F ≥F,故 f [7-8] 2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M 应大于或等于转矩T。 f 设配合面上的摩擦系数为f①,配合尺寸同前,则 M f=πdlpf·d/2 因需保证M ≥T.故得 f [7-9] ① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。 配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。表7-5给出了几种情况下摩擦系数值,以供计算时参考。 表: 摩擦系数f值

3)承受轴向力F和转矩T的联合作用 此时所需的径向压力为 [7-10] 2. 过盈联接的最小有效过盈量δmin 根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为 Δ=pd(C 1/E 1 +C 2 /E 2 ) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量 应为 [7-11]式中: p——配合W问的任向活力,由式(7~8)~(7~10)计算;MPa; d——配合的公称直径,mm; E 1、E 2 ——分别为被包容件与包容件材料的弹性模量,MPa; C 1 ——被包容件的刚性系数 C 2 ——包容件的刚性系数 d 1、d 2 ——分别为被包容件的内径和包容件的外径,mm;

前轮毂轴承压装力分析与计算

前轮毂轴承压装力分析与计算 简要分析计算了前轮毂轴承与转向节压装时所需的压装力,应用有限元分析软件对压装时前轮毂轴承、转向节进行了受力计算,为过盈量设计提供了理论支撑。 标签:轮毂轴承;转向节;压装力;有限元分析 1 概述 汽车前轮毂轴承的主要作用是承重和为轮毂的传动提供精确导向,前轮毂轴承与转向节采用过盈连接方式,通过过盈配合产生的摩擦力来平衡工作时承受的径向载荷和轴向载荷,其压装质量对整车的NVH、行驶安全性、舒适性等都有重要的影响。 2 前轮毂轴承压装力计算 售后市场反馈某车型底盘在行驶过程中出现异响,经NVH测试确定异响源为前转向节及轮毂总成,初步判断原因为前轮毂轴承与转向节发生窜动,轴承撞击卡簧产生异响,经核算转向节与前轮毂轴承配合过盈量为0.051~0.094mm,为解决异响问题,将转向节与前轮毂轴承配合过盈量调整为0.081~0.120mm,由于过盈量增加需对压装力进行计算,以确保现场压力机工作可靠。前轮毂轴承与转向节装配形式如图1所示。 轮毂轴承与转向节为圆柱面过盈连接,由厚壁圆筒理论可得压装力计算示意图,如图2。 依据弹性力学理论,前轮毂轴承与转向节结合面承受的最大压装力Pmax计算公式: 将以上数值带入公式计算可得,最大压装力P=39.88kN,经查阅生产现场C 型增加缸压床说明书,该压床满足装配过盈量增大后的使用要求。 3 压装时前轮毂轴承、转向节受力分析 由于前轮毂轴承与转向节配合过盈量增大,为避免压装过程中转向节或轴承出现失效,需对压装时轴承及转向节进行受力分析,本文通过有限元计算,定义单元类型为Solid185,应用接触分析,创建目标单元TARGE170、接触单元CONTA174,得出了在最大过盈量为0.12mm时,前轮毂轴承与转向节的受力情况,有限元计算结果如图3所示。 通过图3转向节与轴承等效应力可以看出转向节所受最大等效应力为108MPa,前轮毂轴承所受最大等效应力为263MPa,已知转向节材料为QT450,

相关文档