文档库 最新最全的文档下载
当前位置:文档库 › SBDART与LIB辐射传输模式比较

SBDART与LIB辐射传输模式比较

SBDART与LIB辐射传输模式比较
SBDART与LIB辐射传输模式比较

大气辐射传输模型

[转载]大气辐射传输模型 已有 968 次阅读2010-11-6 14:31|个人分类:未分类|系统分类:科普集锦|关键词:辐射传输 转自https://www.wendangku.net/doc/7810397870.html,/s/blog_4b700c4c0100jgl7.html 相对辐射校正和绝对辐射校正 基于物理模型的绝对辐射校是利用一系列参数(例如,卫星过境时的地物反射率,大气的能见度,太阳天顶角和卫星传感器的标定参数等)将遥感图像进行校正的方法。仪器引起的误差畸变一般在数据生产过程中由生产单位根据传感器参数进行了校正。对于用户来所,绝对辐射校正的方法主要是辐射传输模型法,该方法校正精度较高,它是利用电磁波在大气中的辐射传输原理建立起来的模型对遥感图像进行大气校正的方法。由于有不同的不同的假设条件和适用的范围,因此产生很多可选择的大气较正模型,例如 6S模型、LOWTRAN模型、MODTRAN模型、ATCOR模型等。 基于统计模型的相对辐射校正,主要包括不变目标法、黑暗像元法与直方图匹配法等等。不变目标法假定图像上存在具有较稳定反射辐射特性的像元,并且可确定这些像元的地理意义,那么就称这些像元为不变目标,这些不变目标在不同时相的遥感图像上的反射率将存在一种线性关系。当确定了不变目标以及它们在不同时相遥感图像中反射率的这种线性关系,就可以对遥感图像进行大气校正。黑暗像元法的基本原理就是在假定待校正的遥感图像上存在黑暗像元区域、地表朗伯面反射、大气性质均一,忽略大气多次散射辐照作用和邻近像元漫反射作用的前提下,反射率很小的黑暗像元由于大气的影响,而使得这些像元的反射率相对增加,可以认为这部分增加的反射率是由于大气程辐射的影响产生的。利用黑暗像元值计算出程辐射,并代入适当的大气校正模型,获得相应的参数后,通过计算就得到了地物真实的反射率。直方图匹配法是指如果确定某个没有受到大气影响的区域和受到大气影响的区域的反射率是相同的,并且可以确定出不受影响的区域,就可以利用它的直方图对受影响地区的直方图进行匹配处理。此外,还有很多基于统计模型的方法,如有人提出利用小波变换的遥感图像相对辐射校正方法。该方法对源图像小波变换域的低频成分实施辐射变换,并保持高频成分不变,重构的图像具有保持高频信息的特性,因而能够较好地保留原图像中由于地物变化引起的辐射差异;也有人利用主成分分析法把遥感图像中有用的信息和大气影响噪音区分开来。 大气辐射传输模型6S 1986年,法国Université des Sciences et Technologies de Lille(里尔科技大学)大气光学实验室Tanré等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。1997年,Eric Vemote对5S进行了改进,发展到6S(SECOND SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。 这种模式是在假定无云大气的情况下,考虑了水汽、CO2、O3和O2的吸收、分子和气溶胶的散射以及非均一地面和双向反射率的问题。6S是对5S的改进,光谱积分的步长从5nm 改进到2.5nm,同5S 相比,它可以模拟机载观测、设置目标高程、解释BRDF作用和临近效应,增加了两种吸收气体的计

Fluent辐射传热模型理论以及相关设置

Flue nt辐射传热模型理论以及相关设置 目录 1概述..................................... 2基础理论................................... 2.1专业术语解释: ........................... 2.2FLUENT畐射模型介绍:......................... 2.3辐射模型适用范围总结 ........................ 3Flue nt实际案例操作............................ 3.1Casel-测试external emissivity 使用DC模型计算-2D 模型....... 3.2Case2-测试in ter nal emissivity- ........................... 使用DO模型计算-2D 模型 3.3仿真结论 ..............................

1概述 在传热的仿真中,有时候会不可避免的涉及到辐射传热,而我们对Fluent 中辐射模型的了解甚少,很难得到可靠的计算结果。因此,一直以来,Fluent 中的带辐射的传热仿真是我们的一个难点,本专题重点来学习辐射模型的理论,让我们对辐射计算模型有一个深入的了解,以帮助我们攻克这个仿真难点。 2基础理论 2.1 专业术语解释: 在Fluent 中开启辐射模型时,流体介质以及固体壁面会出现一些专业的参数需要用户来设置。 在Fluent help 中介绍辐射模型时会经常提到一些专业术语。 对这些专业参数以及术语,我们来一一解释: 1、Optical thickness (光学深度,无量纲量):介质层不透明性的量度。即介质吸收辐射的能力的量度,等于入射辐射强度与出射辐射强度之比。设入射到吸收物质层的入射辐射强度为I ,透射的辐射强度为e,则T = l/e,其中T为光学深度。按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射的辐射强度e= 入射辐射强度I,即光学深度为T=1,介质不参与辐射。一摘自百度百 科 而FLUENT中T=a L,其中L为介质的特征长度,a为辐射削弱系数(可理解为介质因吸收和散射引起的光强削弱系数)。如果T=0,说明介质不参与辐射,和百度百科中的定义有出入。但是所表达的意思是接近的,一个是前后辐射量的比值;一个是变化量和入射辐射量的比值(根据Fluent help 里的解释,经过介质的辐射损失量=I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。// Theory Guide :: 0 // 5. Heat Transfer // 5.3. Modeling Radiation // 5.3.2. Radiative Transfer Equation )。该问题的解释为:

遥感辐射传输模型

遥感辐射传输模型 姓名:张超 学院:地球科学与环境工程学院 专业:遥感科学与技术 班级:遥感一班 提交时间:2015年5月10日 大气订正是遥感技术的重要组成部分,主要包括大气参数估计和地表反射率反演两个方面。如果获得了大气特性参数,进行大气订正就变得相对容易,但是

获得准确的大气特性参数通常比较困难。通常有两类方法用辐射传输方程计算大气订正函数:一种是直接的方法,对于大气透过率函数和反射率函数,通过对模型的积分来得到;另一种是间接的方法,他不是直接计算所需要的大气订正函数,而是通过辐射传输模型输出的表观反射率,结合模型输入的参数来求解。大气订正方法有很多,比如:基于图像特征的相对订正法、基于地面线形回归模型法、大气辐射传输模型法和复合模型法等。它是利用电磁波在大气中的 辐射传输原理建立起来的模型对遥感图像进行大气订正的方法。 其中,大气辐射传输模型(Atmospheric Radiative Transfer Model)法是较常用的大气订正方法,它用于模拟大气与地表信息之间耦合作用的结果,其过程可以描述为地表光谱信息与大气耦合以后,在遥感器上所获得的信息,其中考虑了光子与大气相互作用机理,物理意义明确,具有很高的反演精度。 大气辐射传输原理 电磁辐射在介质中传输时,通常因其与物质的相互作用而减弱。辐射强度的减弱主要是由物质对辐射的吸收和物质散射所造成的,有时也会因相同波长上物质的发射以及多次散射而增强,多次散射使所有其它方向的一部分辐射进入所研究的辐射方向。当电磁辐射为太阳辐射,而且忽略多次散射产生的漫射辐射时,光谱辐射强度的变化规律可以表述为[1] (1)式中,IΛ是辐射强度, s是辐射通过物质的厚度,ρ是物质密度,KΛ表示对波长λ辐射的质量消光截面。令在s=0 处的入射强度为Iλ(0),则在经过一定距离s1后,其出射强度可由式(1)积分得到 (2)假定介质是均匀的,则kλ与距离s无关,因此定义路径长度 (3)则式(2)可表示为 (4)上式就是比尔定律,也称朗伯定律。它指出,通过均匀消光介质传输的辐射强度按简单的指数函数减 弱,该指数函数的自变量是质量消光截面和路径长度的乘积。它不仅适用于强度

大气辐射传输理论 第一章..

大气辐射传输理论 引言 学科定义: 1、大气辐射学研究辐射能在地球-大气系统内传输和转换的规律及其应用,属大气物理学的一个分支。大气辐射学是天气学、气候学、动力气象学、应用气象学、大气化学和大气遥感等学科的理论基础之一。 2、地球-大气系统的辐射差额是天气变化和气候形成及其演变的基本因素,可以说辐射过程与动力过程的作用共同决定了地球的气候环境。 学习、研究的意义 辐射是地气系统与宇宙空间能量交换的唯一方式 数值天气预报中需要定量化考察大气辐射过程 辐射传输规律是大气遥感的理论基础 气候问题——辐射强迫 近年来人类活动造成的地球大气气候变迁成为大气科学研究热点,其原因也在于人类活动所排放的某些物质会改变地球大气中的辐射过程所致。 大气辐射学主要研究内容: 一、地-气系统辐射传输的基本物理过程和规律,包括 1、太阳的辐射(97%E在0.3~3μm波段内,λ m=0.5μm附近); 2、地-气系统辐射(绝大部分E在4~80μm波段内,λ m=10μm附近); 3、不同地表状态云、气溶胶、水汽、臭氧、二氧化碳等对辐射传输的影响。 二、大气辐射学还要研究辐射传输方程的求解。 辐射传输方程:是描述辐射传播通过介质时与介质发生相互作用(吸收、散射、发射等)而使辐射能按一定规律传输的方程,在地球大气条件下,求解非常复杂,只能在一些假定下求得解析解,因此辐射传输方程的求解,一直是大气辐射学研究的重要内容。 三、另外,对辐射与天气、气候关系的研究也是大气辐射学的重要内容,它是从地-气系统辐射收支的角度,来研究天气和气候的形成以及气候变迁问题的。 相关内容: 许多复杂的物理动力气候学问题中,涉及到海洋、极冰、陆地表面的辐射和热状况,大气中的云、气溶胶、二氧化碳等因子在辐射过程中对气候所造成的影响,以及这些过程和大气辐射过程之间复杂的相互作用和反馈关系。 第一章用于大气辐射的基本知识 第一节辐射的基本概念 太阳辐射和地球大气辐射虽具有不同的特性,其本质是相同的,它们都是电磁辐射。电磁辐射是以波动和粒子形式表现出的一种能量传送形式。 1.1.1电磁波及其特性 一、波:波是振动在空间的传播。有横波和纵波的形式之分。 二、机械波:机械振动在媒质中的传播,如声波、水波和地震波。 三、电磁波(ElectroMagnetic Spectrum):变化电场和变化磁场在空间的传播。 四、电磁辐射: 电磁能量的传递过程(包括辐射、吸收、反射和投射)称为电磁辐射。 五、电磁波的特性: 1、电磁波是横波 2、在真空中以光速传播 3、电磁波具有波粒二相性: 波动性:表现在电磁辐射以波动方式在大气中传播,并发生反射、折射、衍射和偏振等效应。也就是说电

一维辐射传递方程的谱方法求解

分类号密级 UDC 学位论文 一维辐射传递方程的谱方法求解 作者姓名:张大伟 指导教师:李本文 教授 东北大学材料电磁过程研究教育部重点实验室 申请学位级别:硕士学科类别:工学 学科专业名称:工程热物理 论文提交日期:2008年2月22日论文答辩日期:2008年2月25日学位授予日期:2008年3月 答辩委员会主席:王恩刚 教授 评阅人:陈海耿(东北大学教授) 聂宇宏(江苏科技大学副教授) 东北大学 2008年2月

A Dissertation in Engineering Thermophysics SPECTRAL METHOD FOR SOLVING ONE-DIMENSIONAL RADIATIVE TRANSFER EQUATION by Zhang Dawei Supervisor: Professor Li Benwen Northeastern University February 2008

独创性声明 本人声明,所呈交的学位论文是在导师的指导下完成的。论文中取得的研究成果除加以标注和致谢的地方外,不包含其他人己经发表或撰写过的研究成果,也不包括本人为获得其他学位而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。 学位论文作者签名: 日期: 学位论文版权使用授权书 本学位论文作者和指导教师完全了解东北大学有关保留、使用学位论文的规定:即学校有权保留并向国家有关部门或机构送交论文的复印件和磁盘,允许论文被查阅和借阅。本人同意东北大学可以将学位论文的全部或部分内容编入有关数据库进行检索、交流。 (如作者和导师不同意网上交流,请在下方签名;否则视为同意。) 学位论文作者签名:导师签名: 签字日期:签字日期:

Fluent辐射传热模型理论以及相关设置

Fluent辐射传热模型理论以及相关设置 目录 1概述 (2) 2基础理论 (2) 2.1专业术语解释: (2) 2.2FLUENT辐射模型介绍: (3) 2.3辐射模型适用范围总结 (4) 3Fluent实际案例操作 (5) 3.1Case1-测试external emissivity 使用DO模型计算-2D模型 (5) 3.2Case2-测试internal emissivity-使用DO模型计算-2D模型 (6) 3.3仿真结论 (10)

1概述 在传热的仿真中,有时候会不可避免的涉及到辐射传热,而我们对Fluent中辐射模型的了解甚少,很难得到可靠的计算结果。因此,一直以来,Fluent中的带辐射的传热仿真是我们的一个难点,本专题重点来学习辐射模型的理论,让我们对辐射计算模型有一个深入的了解,以帮助我们攻克这个仿真难点。2基础理论 2.1专业术语解释: 在Fluent中开启辐射模型时,流体介质以及固体壁面会出现一些专业的参数需要用户来设置。 在Fluent help中介绍辐射模型时会经常提到一些专业术语。 对这些专业参数以及术语,我们来一一解释: 1、Optical thickness(光学深度,无量纲量):介质层不透明性的量度。即介质吸收辐射的能力的量度,等于入射辐射强度与出射辐射强度之比。设入射到吸收物质层的入射辐射强度为I ,透射的辐射强度为e,则T = I/e,其中T为光学深度。按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射的辐射强度e=入射辐射强度I,即光学深度为T=1,介质不参与辐射。—摘自百度百科而FLUENT中T=αL,其中L为介质的特征长度,α为辐射削弱系数(可理解为介质因吸收和散射引起的光强削弱系数)。如果T=0,说明介质不参与辐射,和百度百科中的定义有出入。但是所表达的意思是接近的,一个是前后辐射量的比值;一个是变化量和入射辐射量的比值(根据Fluent help里的解释,经过介质的辐射损失量=I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。// Theory Guide :: 0 // 5. Heat Transfer // 5.3. Modeling Radiation // 5.3.2. Radiative Transfer Equation)。该问题的解释为:其实一点也不矛盾,如果Optical thickness =1,就说明辐射在经过一定特征长度L的介质后被完全吸收。如果>1,就说明辐射根本穿透不了特征长度L的介质,而被早早吸收完了。打个比方,Optical thickness=10,说明辐射在经过L/10距离后已经被吸收(或散射)完。 其中α=αA+αS; 2、Absorption Coefficient(αA吸收系数,单位1/m,见图2-1):因为介质吸收而导致的辐射强度在经过每单位长度介质后改变的量。空气作为流体介质时,一般不吸收热辐射,该系数可近视设为0。而当气体中水蒸气和CO2含量较高时,那对辐射的系数就不能忽略了。 3、Scattering Coefficient(αS散射系数,单位1/m):因为介质散射而导致的辐射强度在经过每单位长度介质后改变的量。空气作为流体介质时,一般情况下,该系数可近视设为0。对于含颗粒物的流体,散射作用不容忽视。

大气辐射传输模型6S简介

大气辐射传输模型6S简介 1986年,法国Université des Sciences et Technologies de Lille(里尔科技大学)大气光学实验室Tanré等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。1997年,Eric Vemote对5S进行了改进,发展到6S(SECOND SIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。 这种模式是在假定无云大气的情况下,考虑了水汽、CO2、O3和O2的吸收、分子和气溶胶的散射以及非均一地面和双向反射率的问题。6S是对5S的改进,光谱积分的步长从5nm改进到2.5nm,同5S相比,它可以模拟机载观测、设置目标高程、解释BRDF作用和临近效应,增加了两种吸收气体的计算(CO、N2O)。采用SOS (successive order of scattering) 方法计算散射作用以提高精度。缺点是不能处理球形大气和limb (临边)观测。 它其中主要包括以下几个部分: (1)太阳、地物与传感器之间的几何关系:用太阳天顶角、太阳方位角、观测天顶角、观测方位角四个变量来描述; (2)大气模式:定义了大气的基本成分以及温湿度廓线,包括7种模式,还可以通过自定义的方式来输入由实测的探空数据,生成局地更为精确、实时的大气模式,此外,还可以改变水汽和臭氧含量的模式; (3)气溶胶模式:定义了全球主要的气溶胶参数,如气溶胶相函数、非对称因子和单次散射反照率等,6S中定义了7种缺省的标准气溶胶模式和一些自定义模式; (4)传感器的光谱特性:定义了传感器的通道的光谱响应函数,6S中自带了大部分主要传感器的可见光近红外波段的通道相应光谱响应函数,如TM,MSS,POLDER和MODIS等; (5)地表反射率:定义了地表的反射率模型,包括均一地表与非均一地表两种情况,在均一地表中又考虑了有无方向性反射问题,在考虑方向性时用了9种不同模型)。 这5个部分便构成了辐射传输模型,考虑了大气顶的太阳辐射能量通过大气传递到地表,以及地表的反射辐射通过大气到达传感器的整个辐射传输过程。 6S的输入参数主要有9个部分组成:

MODTRAN和HYDROLIGHT辐射传输模型的耦合研究

北京师范大学 硕士学位论文 论文题目:MODTRAN和HYDROLIGHT辐射 传输模型的耦合研究 作者:高永刚 导师:王锦地教授杜克平 系别、年级:地理学与遥感科学学院 2003级 学科、专业:地图学与地理信息系统 完成日期:2006年5月

北京师范大学研究生院 北京师范大学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学位论文作者签名:日期:年月日 关于论文使用授权的说明 学位论文作者完全了解北京师范大学有关保留和使用学位论文的规定,即:研究生在校攻读学位期间论文工作的知识产权单位属北京师范大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许学位论文被查阅和借阅;学校可以公布学位论文的全部或部分内容,可以允许采用影印、缩印或其它复制手段保存、汇编学位论文。(保密的学位论文在解密后遵守此规定) 本学位论文不属于保密范围,适用本授权书。 学位论文全文电子版同意提交后:□一年□二年在校园网上发布,供校内师生浏览。 本人签名:日期: 导师签名:日期:

摘要 MODTRAN和HYDROLIGHT辐射传输模型的耦合研究 摘要 海洋环境问题越来越受到人们的关注,而用水色遥感的手段检测海洋环境成为海洋研究中的一个重要课题。随着人们对水色遥感研究的深入,水色遥感模型的应用也越来越多,然而水色遥感与大气息息相关,所以水色遥感离不开对大气辐射传输理论的应用。本论文通过对海洋、大气辐射传输模型的各个模块分析,用当前发展最完善的大气辐射传输模型之一MODTRAN和水体辐射传输模型 HYDORLIGHT构建了一个考虑从太阳入射到传感器接收信号的辐射传输过程的海洋遥感模型,同时加入了一个简单而真实的云模型。 耦合以后的模型用MODTRAN和单独的云处理模块代替了原来的经验半经验模型来计算水面辐亮度,特别是云模型提供了云的位置和亮度信息,所以对水面辐亮度分布的计算更加准确。从耦合模型的计算结果中发现,各波段水面反射辐亮度与入射辐照度的比值在所有的方向上都是一条很规则的曲线。由此,通过指数函数拟合这条曲线而提出了一种遥感反射率的计算方法。由于水面辐亮度分布的不同必然导致耦合前后的模型在水面上行辐亮度计算上的差别,而在大气校正绝对准确的假设下,水面上行辐射的差别会引起水体参数反演的不同。用MODIS标准叶绿素算法分析云对一类水体叶绿素反演的影响后发现离太阳越近(不遮蔽太阳)的云对叶绿素反演的影响越小,云量的大小与叶绿素反演误差大于10%的面积比成正相关关系。 关键词:MODTRAN,HYDROLIGHT,水色遥感,模型耦合,遥感反射率 1

大气辐射传输校正模型(5S,modtran,acorn)

在遥感的实际应用中,常用很多简化的手段,如假设地面为朗伯面,排除云的存在,采用有关标准大气模式及大气气溶胶模式等,一次产生了许多不同类型的大气辐射传输模型,主要分为两类, 1)采用大气的光学参数 2)直接采用大气物理参数如lowtran、modtran等大气辐射近似计算模型,而且还增加了多次散射计算 1. 5s模型 该模型的代码模拟计算海平面上的均匀朗伯体目标的反射率,并假定大气吸收作用与散射作用可以耦合,就像吸收粒子位于散射层的上面一样,则大气上层测 量的目标反射率可以表示为, 海平面处朗伯体的反射率 大气透过率 分子、气溶胶层的内在反射率 有太阳到地表再到传感器的大气透过率 S为大气的反射率 大气传输辐射校正模型-3 modtran 该模型是由美国空军地球物理实验室研制的大气辐射模拟计算程序,在遥感领域被广泛应用于图像的大气校正。

lowtran7是一个光谱分辨率20cm-1,的大气辐射传输实用软件,它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。 lowtran7可以根据用户的需要,设置水平、倾斜、及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。 1)多次散射处理 lowtran 采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通量。再用得到的通量计算散射源函数,用二流近似解求辐射传输方程。 2)透过率计算 该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法 3)光线几何路径计算 考虑了地球曲率和大气折射效应,将大气看作球面分层,逐层考虑大气折射效应 由于lowtran直接使用大气物理参数,因而需要按照下列方法计算出与 lowtran使用的大气物理参数相对应的大气光学参数179页 4.modtran辐射传输模型 modtran可以计算0到50000cm-1的大气透过率和辐射亮度,它在440nm到无限大的波长范围精度是2cm-1,在22680到50000cm-1紫外波(200-440nm)范围的精度是20cm-1,在给定辐射传输驱动、气溶胶和云参数、光源与遥感器的几何立体对和地面光谱信息的基础上,根据辐射传输方程来计算大气的透过率以及辐射亮度。

大气辐射传输模型及其软件

大气辐射传输模型及其软件? 焦斌亮 高志强 李素静 白云 燕山大学信息科学与工程学院,河北 秦皇岛 066004 摘 要:本文主要阐述了大气辐射传输模型在大气订正中的应用,介绍了大气辐射传输原理,详细地叙述了6S 、LOWTRAN 、MODTRAN 和 FASCODE 等模型,同时提到了在以上模型基础上发展起来的其它辐射传输模型及软件,并对相应的模型及软件的共同特点和主要区别进行了比较,认为大气辐射传输模型在当前的大气订正模型中依然是比较可靠而常用的方法。 关键词:大气订正 辐射传输 6S MODTRAN 1 引 言 大气订正是遥感技术的重要组成部分,主要包括大气参数估计和地表反射率反演两个方面。如果获得了大气特性参数,进行大气订正就变得相对容易,但是获得准确的大气特性参数通常比较困难。通常有两类方法用辐射传输方程来计算大气订正函数:一种是直接的方法,对于大气透过率函数和反射率函数,通过对模型的积分来得到;另一种是间接的方法,它不是直接计算所需要的大气订正函数,而是通过辐射传输模型输出的表观反射率,结合模型输入的参数来求解。大气订正方法有很多,比如:基于图像特征的相对订正法、基于地面线形回归模型法、大气辐射传输模型法和复合模型法等。它是利用电磁波在大气中的辐射传输原理建立起来的模型对遥感图像进行大气订正的方法。 其中,大气辐射传输模型(Atmospheric Radiative Transfer Model)法是较常用的大气订正方法,它用于模拟大气与地表信息之间耦合作用的结果,其过程可以描述为地表光谱信息与大气耦合以后,在遥感器上所获得的信息,其中考虑了光子与大气相互作用机理,物理意义明确,具有很高的反演精度。 2 大气辐射传输原理 电磁辐射在介质中传输时,通常因其与物质的相互作用而减弱。辐射强度的减弱主要是由物质对辐射的吸收和物质散射所造成的,有时也会因相同波长上物质的发射以及多次散射而增强,多次散射使所有其它方向的一部分辐射进入所研究的辐射方向。当电磁辐射为太阳辐射,而且忽略多次散射产生的漫射辐射时,光谱辐射强度的变化规律可以表述为[1] λλλρI ds k dI ?= (1) 式中,I λ 是辐射强度,s 是辐射通过物质的厚度,ρ是物质密度,k λ表示对波长λ辐射的质量消光截面。 令在s=0处的入射强度为I λ(0) ,则在经过一定距离s 1后,其出射强度可由式(1)积分得到 ? 作者介绍:焦斌亮(1964—),男(汉族),陕西户县人,燕山大学教授,主要从事光学遥感与CCD 应用技术研究;高志强(1981—),男(汉族),河北鹿泉人,燕山大学硕士研究生,研究方向:大气辐射在光学遥感中的应用。

基于辐射传输模型的叶绿素含量定量反演(精)

生态学杂志ChineseJournalofEcology 2006,25(5):591~595 基于辐射传输模型的叶绿素含量定量反演*施润和1,2** 庄大方牛铮王汶 21343(1中国科学院地理科学与资源研究所,北京100101; 北京100101;4中国科学院研究生院,北京100049;中国科学院遥感应用研究所,中国人民大学环境学院,北京100872) 摘要利用基于叶片内部辐射传输机制的PROSPECT模型模拟大量不同生化含量和叶肉结构的叶片光谱,研究利用高光谱植被指数定量反演叶绿素含量的可行性和精度,并比较各指数的稳定性和抗干扰能力。结果显示,各指数在对叶绿素的敏感性方面相差不大,除三角植被指数(TVI)外,其它指数均随叶绿素含量的增加而减小。叶片水分含量的差异对各指数的影响很小,干物质次之,叶肉结构影响最大。在抵抗干物质影响和叶肉结构影响方面,结构无关色素指数(SIPI)明显优于其它四种指数,吸收中心波深归一化后的面积指数(ABNC)次之。通过使用叶片光学模型的模拟光谱来研究叶绿素含量变化的光谱响应及其影响因素和反演策略,具有较强的理论性和普适性。研究结果与实际观测相吻合,方法简单易行。 关键词辐射传输模型,叶绿素,高光谱,植被指数,反演 中图分类号 Q945 11 文献标识码 A 文章编号 1000-4890(2006)05-0591-05 Quantitativeinversionofchlorophyllcontentbasedonradiativetransfermodel.SHIRunhe,Z HUANGDafang1,NIUZheng3,WANGWen4(1InstituteofGeographicalSciencesandNatu ralResourcesResearch,ChineseAcademyofSciences,Beijing100101,China;2GraduateUni versityofChineseAcademyofSci ences,Beijing100049,China;3InstituteofRemoteSensingApplications,ChineseAcademyo fSciences,Bei jing100101,China;4SchoolofEnvironmentandNaturalResources,RenminUniversityofChi na,Beijing100872).ChineseJournalofEcology,2006,25(5):591~595. PROSPECTmodelisawell knownleafopticalmodelbasedontheradiativetransferprocesseswithinaleaf,whichwasusedi nthispapertosimulatetheleafreflectancespectraofchlorophyll,water,anddrymattercon tentsandmesophyllstructureparameters,aimedtoinvestigatethefeasibilityandprecisionofhy perspectralvegetationindices(VIs)inchlorophyllprediction,andtheirresistantperformances againstleafwater,drymatter,andmesophyllstructure.Atotalof5widely usedVIsforpredictingchlorophyllcontent,i.e.Chloro phyllAbsorptionRatioIndex(CARI),TriangularVegetationIndex(TVI),PhotochemicalRef lectanceIndex(PRI),Structured IndependentPigmentIndex(SIPI),andAreaofBandNormalizationtotheCenterofAb sorptionFeature(ABNC),wereconsidered.ThesimulationresultsshowedthatalltheVIsexce

Fluent辐射传热模型理论以及相关设置

Fluent辐射传热模型理论以及相关设置 目录 1?概述?2 2?基础理论 (2) 2、1专业术语解释:?2 2、2?FLUENT辐射模型介绍: (2) 2、3?辐射模型适用范围总结 (2) 3?Fluent实际案例操作?2 3、1?Case1-测试external emissivity使用DO模型计算-2D模型 (2) 3、2?Case2-测试internal emissivity-使用DO模型计算-2D模型................................................ 2 3、3?仿真结论?2

1概述 在传热得仿真中,有时候会不可避免得涉及到辐射传热,而我们对Fluent中辐射模型得了解甚少,很难得到可靠得计算结果。因此,一直以来,Fluent中得带辐射得传热仿真就是我们得一个难点,本专题重点来学习辐射模型得理论,让我们对辐射计算模型有一个深入得了解,以帮助我们攻克这个仿真难点。 2基础理论 2.1专业术语解释: 在Fluent中开启辐射模型时,流体介质以及固体壁面会出现一些专业得参数需要用户来设置。 在Fluenthelp中介绍辐射模型时会经常提到一些专业术语。 对这些专业参数以及术语,我们来一一解释: 1、Optical thickness(光学深度,无量纲量):介质层不透明性得量度。即介质吸收辐射得能力得量度,等于入射辐射强度与出射辐射强度之比。设入射到吸收物质层得入射辐射强度为I,透射得辐射强度为e,则T =I/e,其中T为光学深度。按照此定义,那介质完全透明,对辐射不吸收、也不散射,透射得辐射强度e=入射辐射强度I,即光学深度为T=1,介质不参与辐射。—摘自百度百科 而FLUENT中T=αL,其中L为介质得特征长度,α为辐射削弱系数(可理解为介质因吸收与散射引起得光强削弱系数)。如果T=0,说明介质不参与辐射,与百度百科中得定义有出入。但就是所表达得意思就是接近得,一个就是前后辐射量得比值;一个就是变化量与入射辐射量得比值(根据Fluenthelp 里得解释,经过介质得辐射损失量=I*T,个人理解,按照此定义,T不可能大于1啊,矛盾。//TheoryGuide ::0 // 5、HeatTransfer//5、3、Modeling Radiation// 5.3.2、Radiative Transfer Equation)。该问题得解释为:其实一点也不矛盾,如果Opticalthickness =1,就说明辐射在经过一定特征长度L得介质后被完全吸收。如果>1,就说明辐射根本穿透不了特征长度L得介质,而被早早吸收完了。打个比方,Opticalthickness=10,说明辐射在经过L/10距离后已经被吸收(或散射)完。 其中α=αA+αS; 2、AbsorptionCoefficient(αA吸收系数,单位1/m,见图2-1):因为介质吸收而导致得辐射强度在经过每单位长度介质后改变得量。空气作为流体介质时,一般不吸收热辐射,该系数可近视设为0。而当气体中水蒸气与CO2含量较高时,那对辐射得系数就不能忽略了。 3、Scattering Coefficient(αS散射系数,单位1/m):因为介质散射而导致得辐射强度在经过每单位长度介质后改变得量。空气作为流体介质时,一般情况下,该系数可近视设为0。对于含颗粒物得流体,

【珍藏】大气辐射传输校正模型(5S,modtran,acorn)

【珍藏】大气辐射传输校正模型(5S,modtran,acorn) 在遥感的实际应用中~常用很多简化的手段~如假设地面为朗伯面~排除云的存在~采用有关标准大气模式及大气气溶胶模式等~一次产生了许多不同类型的大气辐射传输模型~主要分为两类~ 1,采用大气的光学参数 2,直接采用大气物理参数如lowtran、modtran等大气辐射近似计算模型~而且还增加了多次散射计算 1. 5s模型 该模型的代码模拟计算海平面上的均匀朗伯体目标的反射率~并假定大气吸收作用与散射作用可以耦合~就像吸收粒子位于散射层的上面一样~则大气上层测量的目标反射率可以表示为~ 海平面处朗伯体的反射率 大气透过率 分子、气溶胶层的内在反射率 有太阳到地表再到传感器的大气透过率 S为大气的反射率 大气传输辐射校正模型,3 modtran 该模型是由美国空军地球物理实验室研制的大气辐射模拟计算程序~在遥感领域被广泛应用于图像的大气校正。

,1lowtran7是一个光谱分辨率20cm~的大气辐射传输实用软件~它提供了6 种参考大气模式的温度、气压、密度的垂直廓线~水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线~其他13种微量气体的垂直廓线~城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线~辐射参量,如消光系数、吸收系数、非对称因子的光谱分布,~以及地外太阳光谱。 lowtran7可以根据用户的需要~设置水平、倾斜、及垂直路径~地对空、空对地等各种探测几何形式~适用对象广泛。lowtran7的基本算法包括透过率计算方法~多次散射处理和几何路径计算。 1, 多次散射处理 lowtran 采用改进的累加法~自海平面开始向上直至大气的上界~全面考 虑整层大气和地表、云层的反射贡献~逐层确定大气分层每一界面上的综 合透过率、吸收率、反射率和辐射通量。再用得到的通量计算散射源函数~用二流近似解求辐射传输方程。 2, 透过率计算 该模型在单纯计算透过率或仅考虑单次散射时~采用参数化经验方法计算 带平均透过率~在计算多次散射时~采用k,分布法 3, 光线几何路径计算 考虑了地球曲率和大气折射效应~将大气看作球面分层~逐层考虑大气折 射效应 由于lowtran直接使用大气物理参数~因而需要按照下列方法计算出与 lowtran使用的大气物理参数相对应的大气光学参数179页 4.modtran辐射传输模型 ,1modtran可以计算0到50000cm的大气透过率和辐射亮度~它在440nm到无限

【辐射传输】名词解释

2-3立体角(Ω)被定义为锥体所拦截的球面积(σ)与球半径(r)平方的比值。单位:球面度(sr) 2-7辐射通量:单位时间通过某一表面的辐射能量。也称功率。 2-8辐射通量密度:单位时间、单位面积上所通过的能量。 2-9辐射量度:单位时间、单位立体角垂直于辐射方向的单位面积上所通过的能量。在一些参考书上也称为辐射强度。2-13二项性反射分布函数:反射方向辐射亮度与入射方向辐射通量密度的比值。 2-14二项性反射率因子:反射方向辐射亮度与理想漫反射体在该方向的反射辐射亮度之比。 2-14理想漫反射体:100%反射且各向同性(朗伯体) 2-15反照率:一般定义为目标物的反射辐射通量密度与入射辐射通量密度的比值。 2-15黑空反照率(Black-Sky Albedo):将BRDF在所有反射方向上进行积分。有时也称方向-半球反射率等。 2-15白空反照率(White-Sky Albedo):将黑空反照率在所有入射方向上进行积分。有时也称为双半球反射率等。 2-16宽波段反照率就被定义为在一定波长范围内的地表上行辐射通量密度与下行辐射通量密度的比值 2-17黑体:完全的吸收体和发射体。 2-33基尔霍夫定律:在热力学平衡条件下,某介质的单色发射率等于它的单色吸收率。 2-36散射(Scattering)是这样一种物理过程:位于电磁波路径上的粒子,通过这种过程从入射波中连续地提取能量,并且将此能量向各方向重新辐射出去。 2-36吸收(Absorption):粒子将电磁辐射的能量变成自己的能量。 2-36消光(Extinction):表示介质对光的移除,使其能量衰减。消光= 散射+ 吸收。 2-40消光截面:表示粒子由初始光束中所移除的能量大小。当对粒子而言时,截面的单位是面积(cm2),因此,以面积计的消光截面(extinctioncrosssection)等于散射截面与吸收截面之和。 2-43热点:即与太阳入射方向正好相同的观测方向附近有一个反射峰值。 2-54光学厚度为空间某一点(高度为z)到大气层顶(高度为∞)的消光系数的垂直积分。 2-58大气气溶胶是指悬浮在大气中的固体和液体微粒。气溶胶粒径范围通常在10–3~10μm。 BRDF(Bidirectional Reflectance Distribution Function,即双向反射分布函数) 双向反射率分布函数(BRDF)的物理意义是:来自方向地表辐照度的微增量与其所引起的方向上反射辐射亮度增量之间的比值。 灰体:物体在任何温度下所有各波长的辐射强度与绝对黑体相应波长的辐射强度比值不变,这种物体叫作灰体。 比辐射率:物体在温度T,波长λ处的辐射出射度M1(T,λ)与同温度,同波长下的黑体辐射出射度M2(T,λ)的比值。 亮度温度:被测物体亮度是在有效波长λ=0.65μm与标准灯丝亮度平衡时所测定的温度,当物体的光谱辐射率λε与温度为Tb的黑体光谱辐射率相同时,黑体的温度Tb称为该物体的亮度温度Ts。 消光:消光(Extinction)是天文学中观测者用来描述被观测的天体发射的光线被路途中的物质(气体和尘埃)吸收和散射的状态。 漫反射,是投射在粗糙表面上的光向各个方向反射的现象。 比尔定律:(朗伯—比尔定律) 朗伯(Lambert)定律阐述为:光被透明介质吸收的比例与入射光的强度无关;在光程上每等厚层介质吸收相同比例值的光。 光学厚度,指在计算辐射传输时,单位截面积上吸收和散射物质产生的总衰弱,是无量纲量。 BRDF、BRF、普朗克定律、斯-玻定律、维恩位移定律、基尔霍夫定律、灰体、比辐射率、亮度温度、消光、漫反射、比尔定律、光学厚度 散射的分类与特点(解释自然现象) 地表反射的类型与特点(解释自然现象) 计算题:黑体辐射定律、比尔定律推导

基于自然边界条件求解辐射传输方程的方法_金蒙

第44卷 第9期 2011年9月 天 津 大 学 学 报 Journal of Tianjin University V ol.44 No.9Sep. 2011 收稿日期:2010-10-12;修回日期:2010-12-06. 基金项目:国家自然科学基金资助项目(30870657,30970775);国家重点基础研究发展计划(973计划)资助项目(2006CB705700);国 家高技术研究发展计划(863计划)资助项目(2009AA02Z413);天津市自然科学基金资助项目(09JCZDJC18200, 10JCZDJC17300). 作者简介:金 蒙(1980— ),男,博士研究生,kingman1980@https://www.wendangku.net/doc/7810397870.html,. 通讯作者:高 峰,gaofeng@https://www.wendangku.net/doc/7810397870.html, . 基于自然边界条件求解辐射传输方程的方法 金 蒙1,高 峰1, 2,马文娟1,杨 芳1,赵会娟1,2 (1. 天津大学精密仪器与光电子工程学院,天津 300072; 2. 天津市生物医学检测技术与仪器重点实验室,天津 300072) 摘 要:基于零内向流边界条件的辐射传输方程是目前被广泛采用的描述有限组织体中光子传播过程的模型.由于生物组织体及其周围介质之间折射率的差异,零内向流边界条件无法准确模拟光子到达边界时的传播过程,从而导致了实际应用中对光学参数的重建存在明显误差.为解决这一问题,建立了考虑边界内反射效应的自然边界条件下的辐射传输方程模型,发展了一种结合立体角元离散法和有限差分法的自然边界条件稳态辐射传输方程求解算法,并通过与蒙特卡洛模拟结果的对比验证了该算法的正确性. 关键词:辐射传输方程;有限差分方法;边界条件;扩散光学层析成像 中图分类号:Q63 文献标志码:A 文章编号:0493-2137(2011)09-0816-07 A Finite Difference Method to Solve Radiative Transfer Equation with Natural Boundary Condition JIN Meng 1,GAO Feng 1, 2,MA Wen-juan ,YANG Fang 1,ZHAO Hui-juan 1 ,2 (1. School of Precision Instrument and Opto-Electronics Engineering ,Tianjin University ,Tianjin 300072,China ; 2. Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments ,Tianjin 300072,China ) Abstract :The radiativ e transfer equation (RTE )with the inflow-zero boundary condition is currently increasingly adopted as a univ ersally applicable photon-migration model in the tissues. Howev er ,since biological tissues hav e normally different refractive indexes from the surroundings such as air ,this inflow-zero boundary condition can not accurately model the behavior of photons that hit the boundary ,leading to large errors in retrieval or image recon-struction of the optical properties. To overcome the limitations ,the natural boundary condition that takes into account the internal reflection effect should be considered. A joint discrete-ordinate and finite-difference solution to the steady-state RTE with the natural boundary condition is proposed and validated by comparison with the Monte-Carlo simula-tions. Keywords :radiative transfer equation ;finite difference method ;boundary condition ;diffuse optical tomography 扩散光学层析成像(diffuse optical tomography ,DOT )是一种新兴的无创功能成像模态[1-5],其基本原理是:使用波长范围在650~900nm 的近红外光“扫描”组织体,通过测量组织体表面上的光强分布来重建组织体内部的光学参数图像.DOT 的成像对象是反映组织体病生理功能信息的光学参数(吸收和散射系数),具有灵敏度和特异性高、安全廉价以及实时 性强等多重优点,因此在新生儿的脑血氧监测、乳腺 肿瘤的早期检测和基于小动物疾病模型的分子成像[5-7] 等领域具有广泛的重要应用前景.DOT 研究广泛采用基于模型的图像重建方法(model-based image reconstruction scheme )[8],其中扩散方程(diffusion equation ,DE )和辐射传输方程(radiative transfer equation ,RTE )为目前应用的2种主要光子输运正向

相关文档
相关文档 最新文档