文档库 最新最全的文档下载
当前位置:文档库 › 737NG电子跳开关汇总(13.11.22)

737NG电子跳开关汇总(13.11.22)

737NG电子跳开关汇总(13.11.22)
737NG电子跳开关汇总(13.11.22)

737NG跳开关汇总

说明:

以下总结仅做参考,对于部件更换请参照手册!

2013.08.26

34章

1、皮托管:

C1 HEATERS CAPT PITOT (P18-3)

D5 HEATERS F/O PITOT (P18-3)

D6 HEATERS AUX PITOT (P18-3)

2、备用高度/空速表:

D10 STBY ALTM/ASI VIB (P18-2)

D8 EMER PANEL LTG (P6-3)

3、左惯导:

E5 ADIRU LEFT DC (P18-1)

E7 ADIRU LEFT AC (P18-1)

E8 ADIRU LEFT EXC (P18-2)

右惯导:

C14 ADIRU RIGHTDC (P6-1)

C15 ADIRU RIGHT AC (P6-1)

C17 ADIRU RIGHT EXC (P6-1)

4、左迎角传感器:

E6 SMYD-1 SNSR EXC AC (P18-2)

E8 ADIRU LEFT EXC (P18-2)

C3 HEATERS ALPHA VANE LEFT (P18-3)

右迎角传感器:

D3 HEATERS ALPHA VANE RIGHT (P18-3)

B4 SMYD-2SNSR EXC AC(P6-1)

C15 ADIRU RIGHT EXC (P6-1)

5、全温探头

C 2 HEATERS TEMP PROBE (P18-3)

6、RMI

A5 RADIO NAVIGATION RMI (P18-1)

7、备用磁罗盘:

A14 CONTROL CABIN LIGHTING STBY COMPASS (P6-3)

8、备用地平仪

D9 STBY ATT IND (P18-2)

9、集成备用飞行显示器:

M2100, E1-3 DBC Output breaker

或M2100, E4-1: DBC Output breaker

D8 ISFD BAT CHGR(P18-2)【若更换ISFD电池组件还需把该跳开关】10、多模式接收机:

A2 RADIO NAVIGATION MMR 1 (P18-1)

A13 RADIO NAVIGATION MMR 2 (P6-1)

11、导航控制面板1:

A 3 RADIO NAVIGATION NAV CONT PNL 1 (P18-1)

B1 RADIO NAVIGATION NAV SNSR DC-1 (P18-1)

导航控制面板2

A10 RADIO NAVIGATION NAV SNSR DC-2 (P6-1)

A15 RADIO NAVIGATION NAV CONT PNL 2 (P6-1)

12、马赫信标:

A1 RADIO NAVIGATION VOR/MKR BCN 1 (P18-1)

13、RA:

B4 RADIO NAVIGATION RADIO ALTM 1 (P18-1)

A16 RADIO NAVIGATION RADIO ALTM 2 (P6-1)

13、气象雷达

D13 WEATHER RADAR RT (P6-1)

14、TCAS

B6 TCAS (P18-1)

15、GPWS:

A7 TERRAIN DISPLAY (P18-1)

B7 GND PROX WARN (P18-1)

16、VOR:

A1 RADIO NAVIGATION VOR/MKR BCN 1 (P18-1)

A12 RADIO NAVIGATION VOR 2 (P6-1)

17、DME

B3 RADIO NAVIGATION DME 1 (P18-1)

A14 RADIO NAVIGATION DME 2 (P6-1)

18、ADF

A4 RADIO NAVIGATION ADF 1 (P18-1)

A17 RADIO NAVIGATION ADF 2 (P6-1)

19、MCDU

A7 FMCS MCDU 1 (P18-2)

D15 FMCS MCDU 2 (P6-1)

20、FMC1

A7 FMCS MCDU 1 (P18-2)

A6 FMCS CMPTR 1 (P18-2)

D15 FMCS MCDU 2 (P6-1)

FMC2

A7 FMCS MCDU 1 (P18-2)

D16 FMCS CMPTR2 (P6-1)

D15 FMCS MCDU 2 (P6-1)

21、机载装载器

A9 DATA LOADER (P18-2)

22章

1、FCC(有些包含自动油门)

C4 AFCS SYS A MACH TRIM AC (P18-1)C5 AFCS SYS A SNSR EXC AC (P18-1)D1 AFCS SYS A WARN LIGHT (BAT) (P18-1)D2 AFCS SYS A FCC DC (P18-1)D3 AFCS SYS A ENGAGE INTLK (P18-1)D4 AFCS SYS A MACH TRIM DC (P18-1)D5 AFCS MCP DC 1 (P18-1)E1 AUTOTHROTTLE DC 1 (P18-1)B1 AFCS SYS B WARN LIGHT (BAT) (P6-2)B2 AFCS SYS B MACH TRIM DC (P6-2)B3 AFCS SYS B FCC DC (P6-2)B4 AFCS SYS B ENGAGE INTLK (P6-2)C 1 AFCS SYS B MACH TRIM AC (P6-2)C2 AFCS SYS B SNSR EXC AC (P6-2)

C 3 AFCS MCP DC 2 (P6-2)

2、自动油门

E1 AUTOTHROTTLE DC 1 (P18-1)E3 AUTOTHROTTLE DC 2 (P18-1)3、模式控制面板

D1 AFCS SYS A WARN LIGHT (BAT) (P18-1 D2 AFCS SYS A FCC DC (P18-1

D3 AFCS SYS A ENGAGE INTLK (P18-1

D5 AFCS MCP DC 1 (P18-1

E1 AUTOTHROTTLE DC 1 (P18-1

E3 AUTOTHROTTLE DC 2 (P18-1

B1 AFCS SYS B WARN LIGHT (BAT) (P6-2

B3 AFCS SYS B FCC DC (P6-2

B 4 AFCS SYS B ENGAGE INTLK (P6-2

C 3 AFCS MCP DC 2 (P6-2

4、IFSAU

A10 RADIO NAVIGATION NAV SNSR DC-2 (P6-1)C14 ADIRU RIGHT AC (P6-1)C15 ADIRU RIGHT EXC (P6-1)C7 ADIRU RIGHT DC (P6-1)A3 AFCS INTLK 2 (P6-2 B1 AFCS SYS B WARN LIGHT (BAT) (P6-2

B2 AFCS SYS B MACH TRIM DC (P6-2

B3 AFCS SYS B FCC DC (P6-2

B4 AFCS SYS B ENGAGE INTLK (P6-2

C1 AFCS SYS B MACH TRIM AC (P6-2 C2 AFCS SYS B SNSR EXC AC (P6-2

C3 AFCS MCP DC 2 (P6-2

B1 RADIO NAVIGATION NAV SNSR DC-1 (P18-1)C4 AFCS SYS A MACH TRIM AC (P18-1)C5 AFCS SYS A SNSR EXC AC (P18-1)D1 AFCS SYS A WARN LIGHT (BAT) (P18-1)D2 AFCS SYS A FCC DC (P18-1)D3 AFCS SYS A ENGAGE INTLK (P18-1)D4 AFCS SYS A MACH TRIM DC (P18-1)D 5 AFCS MCP DC 1 (P18-1)E5 ADIRU LEFT DC (P18-1)E7 ADIRU LEFT AC (P18-1)E2 IINSTR XFR (P18-2)

E8 ADIRU LEFT EXC (P18-2)5、自动飞行状态通告器

C4 AFCS SYS A MACH TRIM AC (P18-1)C5 AFCS SYS A SNSR EXC AC (P18-1)D1 AFCS SYS A WARN LIGHT (BAT) (P18-1)D2 AFCS SYS A FCC DC (P18-1)D3 AFCS SYS A ENGAGE INTLK (P18-1)D4 AFCS SYS A MACH TRIM DC (P18-1)D 5 AFCS MCP DC 1 (P18-1)E1 AUTOTHROTTLE DC 1 (P18-1

B1 AFCS SYS B WARN LIGHT (BAT) (P6-2)

B2 AFCS SYS B MACH TRIM DC (P6-2)

B3 AFCS SYS B FCC DC (P6-2)

B4 AFCS SYS B ENGAGE INTLK (P6-2)

C 1 AFCS SYS B MACH TRIM AC (P6-2)

C2 AFCS SYS B SNSR EXC AC (P6-2)

C 3 AFCS MCP DC 2 (P6-2)

27章

1、Stall Management Yaw Damper1

C7 YAW DAMPER AC (P18-1

D 7 YAW DAMPER 1 DC (P18-1

E4 STICK SHAKER LEFT (P18-2)

E5 SMYD-1 CMPTR DC (P18-2)

E6 SMYD-1 SNSR EXC AC (P18-2)

C14 FLIGHT CONTROL AUTOSLAT DC (P6-2 Stall Management Yaw Damper2

D6 YAW DAMPER 2 DC (P18-1

C 8 FLIGHT RECORDER POSITION SENSOR (P18-2)

B4 SMYD-2 SNSR EXC AC (P6-1)

B5 SMYD-2 CMPTR DC (P6-1)

B 6 STICK SHAKER RIGHT (P6-1)

23章

1、HF

E11 COMMUNICATIONS HF 1 (P18-2)

D2 COMMUNICATIONS HF 2 (P6-1)

2、VHF

D11 COMMUNICATIONS VHF 1 (P18-2)D12 COMMUNICATIONS VHF 3 (P18-2

C3 COMMUNICATIONS VHF 2 (P6-1)3、Radio Tuning Panel (RTP)

D11 COMMUNICATIONS VHF 1 (P18-2)D12 COMMUNICATIONS VHF 3 (P18-2

C3 COMMUNICATIONS VHF 2 (P6-1)4、ACARS Communications Management Unit

E8 CMU-1 AC (P6-1)

E9 CMU/ACARS DC (P6-1)5、SELCAL Control Panel

D15 COMMUNICATIONS SELCAL (P18-2)

D8 EMER PANEL LTG (P6-3)

6、PA

D4 COMMUNICATIONS PA AMPL BAT (P6-1)7、预录广播播放器

C9 ENTERTAINMENT PA TAPE RPDR AC (P6-1)8、VSCU

C5 ENT VID CONT CENTER DC (P6-1)

C7 ENT VID CONT CENTER AC (P6-1)9、VDU

C5 ENT VID CONT CENTER DC (P6-1)

C7 ENT VID CONT CENTER AC (P6-1)

D5 VIDEO 1 (P6-1)

D6 VIDEO 2 (P6-1)

D7 VIDEO 3 (P6-1)

D8 VIDEO 4 (P6-1)

10、DIU

B 11 AIRSHOW A

C (P6-1)

C5 ENT VID CONT CENTER DC (P6-1)

11、地面/机组呼叫系统

A 9 PASSENGER CABIN CREW CALL (P18-3

12、REU

C21 INTERPHONE POWER F/O DC 2 (P6-2

C22 INTERPHONE POWER F/O BAT (P6-2

C23 INTERPHONE POWER CAPT DC 2 (P6-2

C24 INTERPHONE POWER CAPT BAT (P6-2

D21 INTPH AND WARN (P6-2

D22 AUDIO F/O (P6-2

D23 AUDIO CAPT (P6-2

D24 AUDIO OBS (P6-2

13、ACP

C21 INTERPHONE POWER F/O DC 2 (P6-2

C22 INTERPHONE POWER F/O BAT (P6-2

C23 INTERPHONE POWER CAPT DC 2 (P6-2

C24 INTERPHONE POWER CAPT BAT (P6-2

D21 INTPH AND WARN (P6-2

D22 AUDIO F/O (P6-2

D23 AUDIO CAPT (P6-2

D24 AUDIO OBS (P6-2

F11 INDICATOR MASTER DIM SECT 5 (P6-2

F13 INDICATOR MASTER DIM SECT 7 (P6-2

F14 INDICATOR MASTER DIM SECT 8 (P6-2

14、CVR

D 6 VOIC

E RCDR/RIPS (P18-2

D7 VOICE RCDR (P18-2

15、视频监控

B1 SURVEILLANCE CAMERA P6-12

31章

1、时钟

A1 MISC CLOCK DISPLAY (P6-3)

A2 MISC CLOCK (P6-3)

2、FDR

C9 FLIGHT RECORDER AC (P18-2

C10 FLIGHT RECORDER DC (P18-2

3、QAR

E 4 ACMS (P6-1)

4、打印机

E5 PRINTER (P6-1)

5、Aural Warning Module音频警告

E3 MACH WARN SYS-1 (P18-2

B7 MACH WARN SYS -2 (P6-1)

A21 FIRE PROT DETECTION MA WRN & CONT (P6-2

C18 LANDING GEAR TAKEOFF WARNING CUTOFF (P6-3)D18 LANDING GEAR AURAL WARN (P6-3)

6、DU

D2DISPLAY CTR UPR(P18-2

D3DISPLAY CAPT INBD(P18-2 D4DISPLAY CAPT OUTBD(P18-2 E10DISPLAY F/O OUTBD(P6-1)E11DISPLAY F/O INBD(P6-1)E12DISPLAY CTR LWR(P6-1)7、EFIS

D1DISPLAY CAPT EFIS CONT PANEL(P18-2)E13DISPLAY F/O EFIS CONT PANEL(P6-1)8、Lighting Control Module

B 9PANEL & INSTR 28V PRI CAPT & CTR(P6-3)B10PANEL & INSTR 28V PRI F/O(P6-3)9、Instrument Switching Module

E2INSTR XFR(P18-2)10、Display Electronic Unit

D5DISPLAY DEU 1 PRI(P18-2

D9DISPLAY DEU 2 HOLDUP(P6-1)D10DISPLAY DEU 1 HOLDUP(P6-1)

D11DISPLAY DEU 2 PRI(P6-1)

21章

1、供气风扇:

①备用供气风扇

115VAC: P92 D10

28VDC: P6-4 C13

②正常供气风扇

115VAC: P91 A8

28VDC: P6-4 C12

2、排气风扇:

①备用排气风扇

115VAC: P91 E1

28VDC: P6-4 C15

②正常排气风扇

115VAC: P92 D12

28VDC: P6-4 C14

3、低流量传感器

①供气低流量传感器 P18-3 A17

②排气低流量传感 P18-3 A18

27章

1、水平安定面配平马达

C 2 AFCS STABILIZER TRIM (P18-1 B 10 FLIGHT CONTROL STAB TRIM CONT (P6-2

D 10 FLIGHT CONTROL STAB TRIM ACTUATOR (P6-2

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

8通道电子开关电路

8通道电子开关电路 (1)电路结构与特点 团35所示电路是一种用途广泛的8通道电子开关电路。该电路结构简单,工作稳定 可靠,可以通过触摸、磁控、红外线、光电或连续脉冲等控制通道切换,并通过LED数码管显示通道号,适用于不同目的电子开关。其中,图35(a)为主控电路,固35(b)一(c)是几种触发电路,可视不同的目的去替换团35(a)中的前面u1部分。 在图35(a)中,平时Vl处于截止状态,其集电极输出商电平,并加至u1的2脚S端,使四处于准备状态,这时3脚Q端输出低电乎。当用手触摸传感器板M时,v1获取基 极偏流放导通,其负电报输出的低电乎加到u1的2脚s端,ul被触发,于是3脚便输出 一个宽约为200 ms的正脉冲,作为时钟情号送至U2的CP端。 u2是一个十进制计数器/脉冲分配器。当14脚(CP端)有I一10个正脉冲输入时,Y1 一Y10(图中只用到Yl—Y8)依次单独输出一个商电平信号。此输出信号有两个作用:一是送至u3作为通道显示控制信号,二是从插座P1引出,去同步控制其他电路(或电器)。 U3为1—8显示译码/驱动器。U4为共阴极LED数码管,R3为限流电阻。当U3的输出a一8有相应高电平时.u4数码管将显示l一8中的相应字形,作为工作通道显示。 图35(b)为磁控触发电路,可以用它去替换图35(a)中的U1部分。当磁铁NSl每靠近干簧管sl一次,其内部触点便接通一次,为U5的2脚加一触发倍号,u5的3脚的输出 脉冲可送到u2的cP端,作为时钟脉冲输入。固35(c)是一个磁检测电路,使用霍尔元件 u6作为信号转换,其中R6为内部负电极开路输出管的负载电阻。图35(d)是外加其他正 脉冲触发控制的例子,外加脉冲可取自各种传感电路或报警电路。图2s(e)为光电触发控 制电路,挡板Ns3每移开一次,光电管v4便输出一个正脉冲。 (2)冗IB件选择 在图35中,U1、U5选用NE555或吵555、LM555等时基电路;U2选用CD4017 CMOS集成电路;U3选用CH233显示译码/驱动器;U4选用LC5011共阴LED数码管;U6选用ND6852F霍尔元件;V1选用BCl48三极管;V2选用S9014三极管;V3选用 SE383发光管;v4选用3DU5光电接收管,R1、R10选用10kD,R2选用12ko,R3选用

信号处理电子电路图全集

信号处理电子电路图全集 一.波形发生器电路图 交流驱动电路实现的基本要求是要在选通像素点两端施加交变脉冲信号,而在非选通端加零偏压或负偏压。为了增加电路应用的灵活性,并且为研究OLED的驱动信号变化对于其性能的影响提供方便,要求交流驱动电路的相位和占空比可调。为此,本文设计了一个可以灵活控制的波形信号发生器,其结构为图1所示的一个由双D型触发器构成的振荡器。该振荡器的起振、停止可以控制,输出波形的相位和占空比也可以调节,其工作波形如图2所示。 二.红外接收头的构造 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 · [图文] T形R-2R电阻网络D/A转换电路

· [图文] KD9561组成的开关式警音发生器电路 · [图文] 石英晶体矩形波振荡器电路 · [图文] 方波振荡器电路 · [图文] 8031与DAC0832双缓冲方式接口电路 · [组图] 矩形波电压发生器 · [组图] 用DAC0832产生锯齿波电路 · [图文] 功率变换电路 · [图文] 数字温湿度传感器SHT11与CC2430应用接口电路 · [图文] 调制解调器与电脑接口电路 · [图文] 数字信号的纠错原因及解决方法 · [组图] 变压器电桥原理图 · [图文] 利用运算放大器式电路虚地点减小电缆电容原理图 · [组图] 差动脉宽(脉冲宽度)调制电路 · [图文] 通断温度控制电路--On-Off Temperature Control · [组图] Phorism with 12V · [组图] 击落模型定位器电路 (Downed Model Locator II) · [组图] 红外线开关电路-Infra Red Switch · [组图] 电池组接收器的放电电路--Discharger for Receiver Battery Packs · [组图] 多通道火箭发射器 -Multi Rocket Launcher · [组图] 阻抗变换器电路 · [图文] 步进电机各相绕组驱动电路 · [图文] 速度判别电路 · [图文] 一种实用的步进电机驱动电路 · [图文] 4线步进电机分列分列电路原理图 · [组图] 击落模型定位器电路 (Downed Model Locator) · [图文] CW431CS比较器应用线路 · [图文] 智能天线技术的应用 · 天线的基本概念及制作 · [组图] 红外接收头的构造 · [图文] 手机信号指示器电路原理图 · [组图] 二阶高通分频器单元电路 · [组图] 二阶分频器低通单元电路 · [组图] 分立元件无稳态多谐振荡电路 · [图文] 用Max038制作的函数波形发生器 · [图文] 多波调频信号产生器电路 · [组图] 方波和三角波发生器电路 · [组图] RC桥式正弦振荡电路 · [图文] AD8228集成芯片构成的阻抗匹配电路 · [图文] 分立元件组成的阻抗匹配电路 · [图文] 采用间接电流反馈架构的IA · [图文] 使用三运放搭建输入缓冲级和输出级电路

三极管开关电路设计详细过程

揭秘:三极管开关电路设计详细过程 电源网首页| 分类:功率开关| 2011-03-10 09:15:39 | 评论(0) 摘要:三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电... 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上。 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。

同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕ 因此,基极电流最少应为: 上式表出了IC和IB之间的基本关系,式中的β值代表三极管的直流电流增益,对某些三极管而言,其交流β值和直流β值之间,有着甚大的差异。欲使开关闭合,则其V in值必须够高,以送出超过或等于(式1) 式所要求的最低基极电流值。由于基极回路只是一个电阻和基射极接面的串联电路,故Vin可由下式来求解﹕

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充 电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电

NE555 双键触摸电子开关电路图

NE555 双键触摸电子开关电路图元件: R1,R2=3.3M 1/4W 5% D1=1N4148 二极管 RL1=12V 继电器 R3=10K 1/4W 5% 电阻 D2= 发光二极管 R4=1K 1/4W 5% Q1=BC547 三极管 C1=10nF 63V MKT 5% 电容 IC1=555 集成电路 分立元件的五路跑马灯控制电路

NE555和CD4017组成的流水灯控制电路 双键触摸式照明灯 本电路图使用两个触摸电极片,分别代替在实际生活中的开和关控制。 一、电路工作原理双触摸式照明开关电路如图1所示。 VS与VD7构成了开关回路。当人触摸到M1(开)电极片时,人体通过R4、VD5整流后给IC NE555集成电路的2脚一个低电平信号(此时IC NE555集成电路接为RS触发器),输出脚3输出高电平,通过R3后触发VS的门极,VS 导通,电灯点亮。 当人触摸到M2(关)电极片时,人体通过R5、VD6整流后给IC NE555集成电

路的6脚一个低电平信号,输出脚3输出低电平,R1提供的正向触发电压被R3 通过集成电路的3脚对地短路,VS失去触发电压,当交流过零时即关断,电灯 熄灭。 二、元器件选择 IC选用NE 555型集成电路;VS选用2N6565型普通塑封小型单向晶闸管;VD1~VD4选 图1 双键触摸式照明灯电路图 用IN4007硅整流二极管;VD7选用6.2V、1W的2CW105硅稳压二极管;VD6、VD7选用IN4148型硅开关二极管;R1~R5均选用RTX—1/8W型碳膜电阻器;C1选用CD11—16V型电解电容;C2选用C'I'I型瓷介电容器。 三、制作与调试方法本电路结构简单、使用方便,只要焊接正确,选用元件正确都能正常工作。由于本电路负载的能力受到稳压管VD7的限制,所以负载的功率不宜大于60W。

TNY264开关电源的应用电路图

TNY264开关电源的应用电路图 TinySwitch?II系列产品可广泛用于23W以下小功率、低成本的高效开关电源。例如,IC卡付费电度表中的小型化开关电源模块,手机电池恒压/恒流充电器,电源适配器(Powersupplyadapter),微机、彩电、激光打印机、录像机、摄录像机等高档家用电器中的待机电源(Standbypowersupply),还适用于ISDN 及DSL网络终端设备。 使用TinySwitch?II便于实现开关电源的优化设计。由于其开关频率提高到132kHz,因此高频变压器允许采用EE13或EF12.6小型化磁芯,并达到很高的电源效率。TinySwitch?II具有频率抖动特性,仅用一只电感(在输出功率小于3W 或可接受的较低效率时,还可用两个小电阻)和两只电容,即可进行EMI滤波。即使在短路条件下,也不需要使用大功率整流管。做具有恒压/恒流特性的充电器时,TinySwitch?II能直接从输入高压中获取能量,不需要反馈绕组,并且即使输出电压降到零时仍能输出电流,因此可大大简化充电器的电路设计。对于需要欠压保护的应用领域(如PC待机电源),也能节省元件数量。 1:TinySwitch?II的典型应用 1:1 -- 2.5W恒流/恒压输出式手机电池充电器 由TNY264(IC1)构成的2.5W(5V、0.5A)、交流宽范围输入的手机电池充电器电路,如图1所示。RF为熔断电阻器。85V~265V交流电经过VD1~VD4桥式整流,再通过由电感L1与C1、C2构成的π型滤波器,获得直流高压UI。R1为L1的阻尼电阻。利用TNY264的频率抖动特性,允许使用简单的滤波器和低价格的安全电容C8(Y电容)即可满足抑制初、次级之间传导式电磁干扰(EMI)的国际标准。即使发生输出端容性负载接地的最不利情况下,通过给高频变压器增加屏蔽层,仍能有效抑制EMI。由二极管VD6、电容C3和电阻R2构成的钳位保护电路,能将功率MOSFET关断时加在漏极上的尖峰电压限制在安全范围以内。当输出电流IO低于500mA时,电压控制环工作,电流控制环则因晶体管VT截止而不起作用。此时,输出电压UO由光耦合器IC2(LTV817)中LED的正向压降(UF≈1V)和稳压管VDZ的稳压值(UZ=3.9V)来共同设定,即UO=UF+UZ≈5V。电阻R8给稳压管提供偏置电流,使VDZ的稳定电流IZ接近于典型值。次级电压经VD5、C5、L2和C6整流滤波后,获得+5V输出电压。 TinySwitch?II的开关频率较高,在输出整流管VD5关断后的反向恢复过程中,会产生开关噪声,容易损坏整流管。虽然在VD5两端并上由阻容元件串联而

单火线取电智能开关设计经验(附电路原理图)_V2.0版本

关键词摘要:两线制单火线智能家居无线遥控触摸感应 ZigBee智能开关单火线取电技术超微功耗单火线电源模块 PI-3V3-B4 PI-05V-D4 前言 随着智能家居的快速发展,单火线智能墙壁开关(只有单根火线进/出,不需要零线)成为了传统机械墙壁开关的升级换代(直接替代)产品,实现了灯具和电器开关的智能化控制(如声控开关,触摸开关,红外线遥控开关,人体感应开关,手机控制WIFI 智能开关等)。并且,国内外普通家庭大多为单火线布线,在升级实现智能化改造时往往要求新智能开关能直接代换旧有的机械墙壁开关,更换时无需重新布线。所以开发新型电子智能照明开关都必须要求采用单线制(2 Wire 两线制)的单火开关。 根据电子常识可知,凡是电子智能照明开关本身都需要消耗一定的电流,在待机时,由于单火线开关待机取电是通过流过灯具的电流给智能开关的控制电路供电的,如果待机输入电流太小就会导致待机电路不能正常工作,如果待机输入电流太大就会导致灯具关闭后还会有闪烁或微亮(出现“关不死”的现象)等问题。特别是高阻抗的电子节能灯和LED灯(例如: 高效节能灯和AC直接驱动的AC LED灯具),对待机电流更为敏感。 单火线开关闪烁的原因是什么? 电子开关为什么接白炽灯不会闪烁,而接节能灯和LED灯就会闪烁呢?这与节能灯(或LED灯)以及电子开关的自身构造都有关系:由于电子开关是用电子电路组成的控制开关,就一定要消耗一定的电流,这一电流必定要通过串接在电源回路中的节能灯(或

LED灯)。由于电子节能灯(或LED灯)内部电路结构的特殊性,即使流过节能灯(或LED 灯)的电流很小,也会使节能灯产生不同程度的闪烁现象。 下面分析其中原因:节能灯(或LED灯)内部电路一般采用了桥式整流电容滤波电路,如下图: 当电子开关本身消耗的微小的电流通过火线经灯具内部的桥式整流电路的滤波电容C时,这一很小的电流向灯具内部电容C充电,当灯具内部电容C上的直流电压充到一定的程度时(约50V左右,不同的灯电路会有些差别),节能灯内部的电子电路就会恢复工作而使节能灯(或LED灯)点亮,这时电容C两端的电压因为放电而随则会下降,然后再开始下一回合的充电及放电过程。这样,我们就会看到灯闪或微亮现象。 这一闪烁现象的间隔与流过的电流及节能灯(或LED灯)的内部电路结构密切相关,很难进行具体量化(如:多少瓦数以上的灯不会闪烁,哪些类型的灯不会闪烁)。经过对大量各品牌不同厂家的节能灯进行实际测试,发现引起节能灯闪烁的电流从20微安至100微安不等。有一些节能灯在电流小于10微安以下时都还会出现闪烁或者微亮的现象,另外灯闪烁与否与实际灯的标称功率瓦数也没有直接的绝对关系(如: 测试发现有些1W甚至更小的灯都不会闪烁或微亮,而有一些个别杂牌5W的灯却会出现闪烁

三极管开关电路分析

站内搜索: 永生 RSS 电路测试仪正达电路测试 电路测试仪-北京正达专营电路测试仪 https://www.wendangku.net/doc/7f10430663.html, 高校实验教学解决方案 集成电路维修检测仪. STC 51 新39.99 USB ISP 5 in 1(USB 能在线 录器 45.0 搜索

图1 基本的三极管开关 因此,基极电流最少应为: ( 流值。由于基极回路只是一个电阻和基射极接面的串联电路,故 (

为了避免混淆起见,本文所介绍的三极管开关均采用NPN三极管,当然NPN三极管亦可以被当作开关来使用,只是比较不常见罢了。 例题1 试解释出在图2的开关电路中,欲使开关闭合(三极管饱和) 所须的输入电压为何﹖并解释出此时之负载电流与基极电流值﹖ 解﹕由2式可知,在饱和状态下,所有的供电电压完全跨降于负载电阻上,因此 由方程式 (1) 可知 因此输入电压可由下式求得﹕ 图2 用三极管做为灯泡开关 由例题得知,欲利用三极管开关来控制大到1.5A的负载电流之启闭动作,只须要利用甚小的控制电压和电流即可。此外,三极管虽然流过大电流,却不须要装上散热片,因为当负载电流流过时,三极管呈饱和状态,其VCE趋近于零,所以其电流和电压相乘的功率之非常小,根本不须要散热片。 二、三极管开关与机械式开关的比较 截至目前为止,我们都假设当三极管开关导通时,其基极与射极之间是完全短路的。事实并非如此,没有任何三极管可以完全短路而使VCE=0,大多数的小信号硅质三极管在饱和时,VCE(饱和) 值约为0.2伏特,纵使是专为开关应用而设计的交换三极管,其VCE(饱和) 值顶多也只能低到0.1伏特左右,而且负载电流一高,VCE(饱和) 值还会有些许的上升现象,虽然对大多数的分析计算而言,VCE(饱和) 值可以不予考虑,但是在测试交换电路时,必须明白VCE(饱和) 值并非真的是0。 虽然VCE(饱和)的电压很小,本身微不足道,但是若将几个三极管开关串接起来,其总和的压降效应就很可观了, 不幸的是机械式的开关经常是采用串接的方式来工作的,如图3(a)所示,三极管开关无法模拟机械式开关的等效电 路(如图3(b)所示)来工作,这是三极管开关的一大缺点。表 步进电机控制工作原理 直流电机的PWM冲调速控制技术 消除按键抖动电路 伺服电机工作原理LED驱动原理

开关电源电路图解析

开关电源电路图解析 所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 开关电源电路图 一、主电路 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,

单键开关电路图

轻触式交流电源开关 本文介绍一种适合业余自制由轻触按钮开关控制的交流开关,其特点有: (1)由单刀轻触按钮开关控制,具有停电自锁功能; (2)无需其它同类电路必须的、长期通电的直流电源和双稳态电路,因此静态不耗电; (3)由于按钮开关仅通过微弱的控制电流,所以工作可靠。该开关电路原理如附图所示。 图中,S为轻触式按钮开关,RL为单相负载,BCR是适当功率的双向可控硅。在关断状态时,RL两端无电压,光电耦合器IC1、IC2也同时截止。若按动S,则220V市电经R1降压,VD1整流、C1滤波、DW稳压得到6V直流电压,IC1内部发光二极管点亮,次级可控硅导通,BCR 触发导通,RL得电工作。松开S后,220V市电改经BCR和R2为控制电路提供工作电流。另一方面,当按下S电路刚通电时,由于C2两端电压不能突变,晶体管VT截止,故IC2也截止,电路按上述过程完成开机。随即6V直流电源经VD2、R6、R4对C2充电,VT基极电位逐渐升高,约0.5秒后VT导通,IC2内部的发光管点亮,次级可控硅导通,电路保持正常工作状态。再按动一次S,此时因IC2次级可控硅导通,故控制电路电源被其短路,于是IC1和BCR均截止,RL失电,即使松开S后,直流电源也会消失。片刻后C3电荷放尽,VT、IC2也相继截止,电路回到完全断电状态。 VT、C2、R4等组成的延时电路能保证IC2延时导通与延时截止,以防IC1、IC2同时导通导致电路产生连续通断的不稳定现象。由以上分析可知,按下S的时间应短于VT的延时时间,即RL一俟通电或断电即应及时松开S。 调试时,适当调整C2容量,使VT有不少于0.5秒的延时后导通时间;适当调整C3容量,使VT有1秒左右的延时后截止时间,其余不必调试。 简单的单按键开关 电路:如SW引线较 长的话,需在ICB 6 与GND间加一抗干 扰小电容

光控开关电路设计模拟电子技术

课程设计说明书(论文) 题目:光控开关电路设计 课程名称:模拟电子技术 学院:电子信息与电气工程学院 学生姓名: 学号: 专业班级: 指导教师: 2014年06月06日

课程设计任务书

光控开关电路设计 摘要:此光控灯电路是基于光电传感器特性的基础上而设计的。该光控开关由光控部分,开关部分, LED灯三部分组成。当自然光的亮度(或人为亮度)发生改变时,光控灯将随着“开”和“关”。适合作为街道、宿舍走廊或其它公共场所照明灯,起到日熄夜亮的控制作用,以节约用电。它具有体积小、外形美观、制作容易、工作可靠等优点,适合于各种楼房走廊的照明设备,降低能耗,节约能源。 关键词:光敏二极管;电压比较器;继电器;晶体三极管

目录 1.设计背景 (1) 1.1满足现实生活需求 (1) 1.2适应现代科技发展 (1) 2.设计方案 (1) 2.1可供选择方案. (1) 2.2方案论证 (2) 3.方案的实施 (2) 3.1原理图的设计 (2) 3.2PCB板的设计和制作 (4) 3.3元器件的组装与焊接 (6) 3.4光控开关的调试 (6) 4.结果与结论 (6) 4.1.光控开关设计结果 (6) 4.2.结论 (6) 5.收获与致谢 (7) 6.参考文献 (8) 7.附件 (8) . . .

1. 设计背景 1.1满足现实生活需求 在现代社会现实生活中我们无时无刻不在使用这电灯,现在市场上出现了各种各样的灯,比如:白炽灯,节能灯,彩灯等等,但是不论如何都少不了控制这些灯的开关。因此,设计一个可行性的开关显的尤为的重要。本次设计就是为了满足现实生活的需求而设计的光控开关。 1.2适应现代科技发展 随着现代科学技术的发展传统式开关已经不能满足现代生活。在现代社会很多地方夜晚需要长明灯,比如一些公共场所,一些生产车间。如果这些地方使用传统的开关很可能产生夜晚开灯之后,等到白天的时候就会忘记关灯而造成严重的能源浪费。还有在一些生产过程中,我们能把这些光控开关当做报警装置的一部分。当人手触碰到那些危险区域之前,由于人手的遮光而使得光线变暗而触发开关产生报警。因此我们的光控开关的设计是很有必要很有意义的一件事。 2.设计方案 2.1可供选取方案: 方案一: 用μA741光敏二极管构成光控部分 通过改变μA741正向与反向输入电压的不同使μA741的输出端输出稳定的高电平或低电平从而使8050晶体三极管导通或截止来控制继电器的锡合与断开。 方案二: 用555定时器构建单稳态电路与光敏二极管够成光控部分 用555定时器构建的单稳态触发器同样能输出稳定的高电平或低电平从而使8050晶体三极管导通或截止来控制继电器的锡合与断开。 2.2方案的论证和选取: 用μA741与光敏二极管构成的光控电路部分,电路结构更加简单可行,现实情况更容易制作。因此,通过比较最终方案选用方案一。 3. 方案实施

几种常见开关电源电路图

uc3842开关电源电路图 用UC3842做的开关电源的典型电路见图1。过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hi ccup)保护。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms 到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。仔细调整这个电阻的数值,一般都可以达到满意的保护。使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。 图2、3、4是常见的电路。图2采取拉低第1脚的方法关闭电源。图3采用断开振荡回路的方法。图4采取抬高第2脚,进而使第1脚降低的方法。在这3个电路里R3电阻即使不要,仍能很好保护。注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。在过载或短路保护时,它也起延时保护的左右。在灯泡、马达等启动电流大的场合,C4的取值也要大一点。

图1是使用最广泛的电路,然而它的保护电路仍有几个问题: 1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R 3的数值,给生产造成麻烦; 2. 在输出电压较低时,如 3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值; 3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。 这时如果采用辅助电路来实现保护关断,会达到更好的效果。辅助关断电路的实现原理:在过载或短路时,输出电压降低,电压反馈的光耦不再导通,辅助关断电路当检测到光耦不再导通时,延迟一段时间就动作,关闭电源。

电子开关电路图全集

电子开关电路图全集 一.自锁式可控硅开关电路图:好下图,电路工作原理如下:IC的信号加至BG1,当A为高电位时,BG 1导通后,PUT约10KHZ频率振荡,所以BG1也随之反复通断。当BG2截止时,C2通过R8,R9充 电。 二.单按钮控制开关:电路由降压整流电路,双稳态触发电路和可控硅控制电路等组成,由一个按扭控制电 源的通或断,降压整流电路提供直流电压。

· [图文] 电子定时开关电路图 · [图文] 电锁定时自停报信电路图 · [图文] 电脑控制风扇电路图 · [图文] 电风扇自动控制器 · [图文] 长时间高精度定时器 · [图文] 长定时自然风电路图 · [图文] 暗室定时器 · [图文] 自动喷雾控制器 · [图文] 延时开关电路 · [图文] 延时关灯电路图 · [图文] 延时关灯电路 · [图文] 无静态耗能延时开关电路图 · [图文] 无触点定时器 · [图文] 通用定时控制器 · [图文] 通断电时间独立可调定时器 · [图文] 矿井除尘延时光电控制器电路图 · [图文] 交流触发延时控制电路 · [图文] 简单的延时关灯器电路图 · [图文] 间歇工作的长时间定时器 · [图文] 电饭锅双定时控制器 · [图文] 触摸式延时开头电路图 · [图文] 长时间可调定时器 · [图文] 长时间定时器 · [图文] 3分钟到4小时定时器 · [组图] 定时再触发发生器 · [图文] 电冰箱节电器电路图 · [图文] 综合控制器 · [图文] 自然风定时发生器 · [图文] 自动爆光定时器 · [图文] 应用PUT的调压及定时器 · [图文] 停电自锁开关 · [图文] 随机自然风模拟器 · [图文] 数字钟定时控制器 · [图文] 食品加工机械定时自动开关电路图 · [图文] 实用吊扇控制器 · [图文] 轻触式定时开关电路图 · [图文] 模拟自然风电路图 · [图文] 模拟自然风电路 · [图文] 简易自然风模拟电路 · [图文] 简单实用的阵风电路图 · [图文] 高性能定时器 · [图文] 风速程控器

一键开关机电路设计集锦

一键开关机电路设计集锦

键可以作为开机键,接地时V15通,单片机上电,使MCU拉高,使V16通,保持。若此时长按KEY,则单片机读取键值,判断是否长按,若为长按,单片机控制MCU为低,进行自杀。下图试验证明是可行的。https://www.wendangku.net/doc/7f10430663.html,/dzbbs/20051102/200765214434828278.html

单键实现单片机开关机 1,控制流程,按下按键,Q1导通.单片机通电复位,进入工作. 2,检测 K-IN 是否低电平,否 不处理.是 单片机输出 K-OUT 为高电平,Q2导通,相当于按键长按.LED 指示灯亮. 3,放开按键,K-IN 经过上拉电阻,为高电平.单片机可以正常工作. 4,在工作期间,按键按下,K-IN 为低电平,单片机检测到长按1秒,K-OUT 输出低电平,Q2截止.LED 指示灯熄灭.放开按键,Q1截止,单片机断电.

5,通过软件处理,可以实现短按开机,长按关机. 单片机用PIC16F84A,通过简单的程序演示,证实此电路的可行性。 这电路如果这样用,是体现不出它的优点,用到开关电源控制,控制光耦.可以做到完全关断电原,实现零功耗待机.有些打印机上就是用这种电路. 此电路可以应用于很宽的电压范围(4.5V~40V,最大19A的电流),R5为可选,当输入电压小于20V时可短接;输入电压大于20V时建议接上,R5的取值应满足与R1的分压使MOS管V1的GS电压大于-20V 小于-5V(在V2导通时),尽量使V1的GS电压在-10V~-20V之间以使V1输出大电流。 按钮按下前,V2的GS电压(即C1电压)为零,V2截止,V1的GS电压为0,V1截止无输出;当按下S1,C1充电,V2 GS电压上升至约3V时V2导通并迅速饱和,V1 GS电压小于-4V,V1饱和导通,V out有输出,发光管亮(此时应放开按钮)C1通过R2、R3继续充电,V1、V2状态被锁定;当再次按下按钮时,由于V2处于饱和导通状态,漏极电压约为0V,C1通过R3放电,放至约3V时,V2截止,V1栅源电压大于-4V,V1截止,V out无输出,发光管灭(放开按钮),C1通过R2、R3及外电路继续放电,V1、V2维持截止状

各种开关电源电路图

电源电路 一、使用LM2575的降压开关电源 LM2575是可以输出1A电流,1A时效率高达80%以上的降压开关电源芯片,开关工作频率是52KHz。它的内部结构如下图所示: 它内置了功率管和过流保护电路,在外部只需加少量的滤波元件即可构成一个开关电源模块。在实际电路的设计中,对原电路做了一些改动: 在这个电路中,高压输入端加了一个二极管,防止不慎接反电源引起电容爆炸和芯片损坏。 保险丝是1A,防止输入电压超过40V或电源板内部短路引起的大电流造成的危害。 在图中,保险丝接在3300uF电容的后端,防止加电时电容大电流充电烧断保险丝。 3300uF的电容起储能和电源滤波的作用,在电池组供电时主要起储能作用,电容接在高压端更利于储能,因为如果电源暂时断电,稳压电路前面的电压逐渐下降不会影响输出电压。如果使用全、半波整流的工频交流或者高频开关电源供电,应该在这个电容上再并联一个瓷片电容来吸收高频。 LM2575和第一级滤波电路是按照LM2575的datasheet说明里接的,在后面又加了第二级滤波以进一步减小纹波。

发光二极管D2作输出只是,另外在空载时,D2可以提供一个负载,使空载电压不至于偏离稳压值。 在机器人的应用中,LM2575把24~30V的电压降至9~12V,供传感器板和主控板使用。主控板带有线性稳压,所以本电路对输出电压的精确程度要求不是很高,所以在输出端又串接了一个肖特基二极管防止用户错把高压接到输出端。如果该电源板直接对单片机供电,这个二极管不能接,而且最好把电源部分集成到主控板上,防止连线不当造成的干扰。 所有电感用黑色铁氧体磁芯自己绕制,不要用色环电感(小于200mA的除外)。漆包线直径0.51mm。L1用磁罐,L2用磁环。 二、使用比较器的降压开关电源 使用滞回比较器作自激振荡的12V 1A开关稳压电源,是工控主板用5V 10A开关电源(项目被取消,未实际制作)的技术验证机。 比较器A接成滞回比较器作自激振荡,C1起加速作用。自激振荡开关稳压电源的原理可以参考《模拟电子线路》,科大版,刘同怀等著。但是这里添加了R4,C3作相位补偿,消除了接通电源瞬间输出端的过冲。C2和C4空着不用。 比较器B把L2(实际上是作为电阻使用)上的电压与R13上的电压作比较,去控制基准电压源,作电流限制和短路保护。 调整R1使电路带负载时工作在50KHz左右的开关频率上。 由simpw2.sch改出来的简化版(没有实际制作过)如下页图所示,用于替代传感器板发光管的供电。取消了电流限制电路,比较器换成了速度较高的LM311,从理论上来说工作频率能达到200KHz。滤波电感相应的减小,使用100uH的色环电感(最大电流依照传感器的需要而定),RC相位补偿电路的时间常数也相应的减小。 调整R1使电路带负载时工作在200KHz左右的开关频率上,这时输出的纹波比较小。 如果把开关电源跟别的电路放在一块电路板上,布线时注意要把开关电源部分的元件放在一起,靠近电源引入接头,和精密元件保持一定距离,并且“一点接地”。以免

设计巧妙的单线制电子开关供电电路

设计巧妙的单线制电子开关供电电路 《电子报》2005 年第50 期上介绍了笔者的单线电子开关供电电路后,有 不少电子厂家和电子爱好者借鉴和仿制,但也有读者反映该电路中所用小型变 压器难找、也难自制,而且体积较大、不便安装。为此,笔者又设计制作了另 一款单线电子开关的电源电路,该电源电路带负载能力很强,输出电压稳定且 易于调节,电路简单易制,特供同行们参照和探讨。 一、性能简介该电路的巧妙之处是:采用可控硅斩波原理,只利用了交流 电过零后的起始段部分来给电路自身供电;在电压上升到设定值之后,单向可 控硅导通,电路便被旁路。这样,一方面保证了输出电压的稳定,解决了因为 负载电流的变化而影响电路自身供电的问题;另一方面,由于可控硅工作于开 关状态,因而具有自身压降小、功耗低等优点。用户要改变输出电源电压的高低,只要改变稳压二极管的稳压值就可以轻易实现。二、电路原理电路见附图,电源电路如虚线框内所示,A、B 端为单线进出端,和负载L 串联后接在 AC220V 市电上;C、D 端是电子开关的电源低压供电端,G 为开关控制端。 双向可控硅VT 作为控制负载通断的开关,可控硅VT 导通相当于开关闭合。 单线制电子开关供电的核心问题是在电器开启前的供电和开启后的电源维持。 难点就在开关闭合后,开关两端电压几乎为零,电子开关的自身供电何以解决?下面来分析电路工作原理。电子开关开启前的供电:此时,双向可控硅VT 截止,AC220V 市电通过R1 分压,由全桥Q 整流并通过D1 后,经电容C1 滤波,给电子开关自身提供低压直流待机电源。在此过程中,稳压二极管DW 和单向可 控硅SCR 起限压作用,只是在输出电压过高时才会导通。电子开关开启后的供电:电子开关开启后,双向可控硅VT 被触发导通,相当于开关闭合;市电 通过全桥Q 整流后变为脉动直流电。由于D1 的隔离作用,单向可控硅SCR 在

单火线电子照明开关单火取电的研制心得(附电路原理图)

关键词摘要:两线制单火线智能家居无线遥控触摸感应ZigBee智能开关单火线取电技术超微功耗单火线电源模块PI-3V3-B4 PI-05V-D4 前言 随着智能家居的快速发展,单火线智能墙壁开关(只有单根火线进/出,不需要零线)成为了传统机械墙壁开关的升级换代(直接替代)产品,实现了灯具和电器开关的智能化控制(如声控开关,触摸开关,红外线遥控开关,人体感应开关,手机控制WIFI 智能开关等)。并且,国内外普通家庭大多为单火线布线,在升级实现智能化改造时往往要求新智能开关能直接代换旧有的机械墙壁开关,更换时无需重新布线。所以开发新型电子智能照明开关都必须要求采用单线制(2 Wire 两线制)的单火开关。 根据电子常识可知,凡是电子智能照明开关本身都需要消耗一定的电流,在待机时,由于单火线开关待机取电是通过流过灯具的电流给智能开关的控制电路供电的,如果待机输入电流太小就会导致待机电路不能正常工作,如果待机输入电流太大就会导致灯具关闭后还会有闪烁或微亮(出现“关不死”的现象)等问题。特别是高阻抗的电子节能灯和LED灯(例如: 高效节能灯和AC直接驱动的AC LED灯具),对待机电流更为敏感。 单火线开关闪烁的原因是什么? 电子开关为什么接白炽灯不会闪烁,而接节能灯和LED灯就会闪烁呢?这与节能灯(或LED灯)以及电子开关的自身构造都有关系:由于电子开关是用电子电路组成的控制开关,就一定要消耗一定的电流,这一电流必定要通过串接在电源回路中的节能灯(或

LED灯)。由于电子节能灯(或LED灯)内部电路结构的特殊性,即使流过节能灯(或LED 灯)的电流很小,也会使节能灯产生不同程度的闪烁现象。 下面分析其中原因:节能灯(或LED灯)内部电路一般采用了桥式整流电容滤波电路,如下图: 当电子开关本身消耗的微小的电流通过火线经灯具内部的桥式整流电路的滤波电容C时,这一很小的电流向灯具内部电容C充电,当灯具内部电容C上的直流电压充到一定的程度时(约50V左右,不同的灯电路会有些差别),节能灯内部的电子电路就会恢复工作而使节能灯(或LED灯)点亮,这时电容C两端的电压因为放电而随则会下降,然后再开始下一回合的充电及放电过程。这样,我们就会看到灯闪或微亮现象。 这一闪烁现象的间隔与流过的电流及节能灯(或LED灯)的内部电路结构密切相关,很难进行具体量化(如:多少瓦数以上的灯不会闪烁,哪些类型的灯不会闪烁)。经过对大量各品牌不同厂家的节能灯进行实际测试,发现引起节能灯闪烁的电流从20微安至100微安不等。有一些节能灯在电流小于10微安以下时都还会出现闪烁或者微亮的现象,另外灯闪烁与否与实际灯的标称功率瓦数也没有直接的绝对关系(如: 测试发现有些1W甚至更小的灯都不会闪烁或微亮,而有一些个别杂牌5W的灯却会出现闪烁

相关文档