文档库 最新最全的文档下载
当前位置:文档库 › 智能控制答案(最终版3题全做)

智能控制答案(最终版3题全做)

智能控制答案(最终版3题全做)
智能控制答案(最终版3题全做)

智能控制作业

1.已知某一炉温控制系统,要求温度保持着600℃恒定。针对该控制系统有以下控制经验。

(1)若炉温低于600℃,则升压;低得越多升压越高。

(2)若炉温高于600℃,则降压;高得越多降压越低。

(3)若炉温等于600℃,则保持电压不变。

设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。输入、输出变量的量化等级为7级,取5个模糊集。试设计隶属度函数误差变化划分表,控制电压变化划分表和模糊控制规则表。

解:(1) 确定变量

定义理想温度为600℃,实际炉温为T,则温度差为:

e=600-T

将温度差e作为输入变量。

(2)输入量和输出量的模糊化

将偏差e分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大

(PB)。将偏差e的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,从而得到温

度变化模糊表如表1所示:

控制电压u也分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),

正大(PB)。将偏差u的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,而得到

电压变化模糊表如表2示:

MATLAB仿真程序如下:

%Fuzzy Control for water tank

clear all;

close all;

a=newfis('fuzz_tank');

a=addvar(a,'input','e',[-3,3]); %Parameter e

a=addmf(a,'input',1,'NB','zmf',[-3,-1]);

a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);

a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);

a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);

a=addmf(a,'input',1,'PB','smf',[1,3]);

a=addvar(a,'output','u',[-4,4]); %Parameter u

a=addmf(a,'output',1,'NB','zmf',[-4,-1]);

a=addmf(a,'output',1,'NS','trimf',[-4,-2,1]);

a=addmf(a,'output',1,'Z','trimf',[-2,0,2]);

a=addmf(a,'output',1,'PS','trimf',[-1,2,4]);

a=addmf(a,'output',1,'PB','smf',[1,4]);

rulelist=[1 1 1 1; %Edit rule base

2 2 1 1;

3 3 1 1;

4 4 1 1;

5 5 1 1];

a=addrule(a,rulelist);

a1=setfis(a,'DefuzzMethod','mom'); %Defuzzy

writefis(a1,'tank'); %Save to fuzzy file "tank.fis" a2=readfis('tank');

figure(1);

plotfis(a2);

figure(2);

plotmf(a,'input',1);

figure(3);

plotmf(a,'output',1);

flag=1;

if flag==1

showrule(a) %Show fuzzy rule base

ruleview('tank'); %Dynamic Simulation

end

disp('-------------------------------------------------------');

disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');

disp('-------------------------------------------------------');

for i=1:1:7 e(i)=i-4;

Ulist(i)=evalfis([e(i)],a2); end

Ulist=round(Ulist)

e=-3; % Error

u=evalfis([e],a2) %Using fuzzy inference

2.用高级语言(C 、VC++、MATLAB 等)编程实现用BP 神经网络实现下列函数的非线性映射:

101

()log ,110f x x x x

=

≤≤ 分析误差曲线及网络的泛化能力。

解:clear all; close all;

xite=0.50; alfa=0.05;

w2=rands(6,1); w2_1=w2;w2_2=w2_1;

w1=rands(2,6); w1_1=w1;w1_2=w1;

dw1=0*w1; x=[0,0]';

u_1=0;

y_1=0;

I=[0,0,0,0,0,0]';

Iout=[0,0,0,0,0,0]';

FI=[0,0,0,0,0,0]';

ts=0.001;

for k=1:1:10000

time(k)=k*ts;

u(k)=k*ts;

y(k)=u_1^(-1)*log10(u_1);

for j=1:1:6

I(j)=x'*w1(:,j);

Iout(j)=1/(1+exp(-I(j)));

end

yn(k)=w2'*Iout; % Output of NNI networks e(k)=y(k)-yn(k); % Error calculation

w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2);

for j=1:1:6

FI(j)=exp(-I(j))/(1+exp(-I(j)))^2;

end

for i=1:1:2

for j=1:1:6

dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); end end

w1=w1_1+dw1+alfa*(w1_1-w1_2); yu=0; for j=1:1:6

yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu;

x(1)=u(k); x(2)=y(k);

w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1);

plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

3. 已知优化函数为:

62424

11

1

1222()4 2.144,

53

i x f x x x x x x x x =-++-+≤

用高级语言编程实现用遗传算法搜索其最大值和最优解。

MATLAB 程序如下: Size=80; G=200;

CodeL=10;

umax=5;

umin=-5;

E=round(rand(Size,2*CodeL)); %Initial Code

for k=1:1:G

time(k)=k;

for s=1:1:Size

m=E(s,:);

y1=0;y2=0;

m1=m(1:1:CodeL);

for i=1:1:CodeL

y1=y1+m1(i)*2^(i-1);

end

x1=(umax-umin)*y1/1023+umin;

m2=m(CodeL+1:1:2*CodeL);

for i=1:1:CodeL

y2=y2+m2(i)*2^(i-1);

end

x2=(umax-umin)*y2/1023+umin;

F(s)=4*x1^2-2.1*x^4+x1^6/3+x1*x2-4*x2^2+4*x2^4; end

Ji=1./F;

BestJ(k)=min(Ji);

fi=F;

[Oderfi,Indexfi]=sort(fi);

Bestfi=Oderfi(Size);

BestS=E(Indexfi(Size),:);

bfi(k)=Bestfi;

fi_sum=sum(fi);

fi_Size=(Oderfi/fi_sum)*Size;

fi_S=floor(fi_Size); %Selecting Bigger fi value

kk=1;

for i=1:1:Size

for j=1:1:fi_S(i)

TempE(kk,:)=E(Indexfi(i),:);

kk=kk+1;

end

end

pc=0.60;

n=ceil(20*rand);

for i=1:2:(Size-1)

temp=rand;

if pc>temp

for j=n:1:20

TempE(i,j)=E(i+1,j);

TempE(i+1,j)=E(i,j);

end

end

end

TempE(Size,:)=BestS;

E=TempE;

%pm=0.001;

%pm=0.001-[1:1:Size]*(0.001)/Size; %Bigger fi, smaller Pm

%pm=0.0; %No mutation

pm=0.1; %Big mutation

for i=1:1:Size

for j=1:1:2*CodeL

temp=rand;

if pm>temp %Mutation Condition if TempE(i,j)==0

TempE(i,j)=1;

else

TempE(i,j)=0;

end

end

end

end

TempE(Size,:)=BestS;

E=TempE;

end

Max_Value=Bestfi

BestS

x1

x2

智能控制复习题

智能控制复习 第一章选择题 1.智能控制的概念首次由著名学者( D )提出 A 蔡自兴 B C D 傅京孙 2.经常作为智能控制典型研究对象的是( D ) A 智能决策系统 B 智能故障诊断系统 C 智能制造系统 D 智能机器人 3.解决自动控制面临问题的一条有效途径就是,把人工智能等技术用入自动控制系统中,其核心是( B ) A 控制算法 B 控制器智能化 C 控制结构 D 控制系统仿真 4.智能自动化开发与应用应当面向( C ) A 生产系统 B 管理系统 C 复杂系统 D 线性系统 5.不.属于 ..智能控制是( D ) A 神经网络控制B专家控制 C 模糊控制 D 确定性反馈控制 6.以下不属于智能控制主要特点的是( D ) A 具有自适应能力 B 具有自组织能力 C 具有分层递阶组织结构 D 具有反馈结构 7.以下不属于智能控制的是 ( D )

A 神经网络控制 B 专家控制 C 模糊控制 D 自校正调节器 第二章选择题 1.地质探矿专家系统常使用的知识表示方法为( D ) A 语义网络 B 框架表示 C 剧本表示 D 产生式规则 2.自然语言问答专家系统使用的知识表示方法为( B ) A 框架表示B语义网络 C 剧本表示 D 产生式规则 3.专家系统中的自动推理是基于( C )的推理。 A 直觉 B 逻辑 C 知识 D 预测 4.适合专家控制系统的是( D ) A 雷达故障诊断系统 B 军事冲突预测系统 C 聋哑人语言训练系统 D 机车低恒速运行系统 5.直接式专家控制通常由( B )组成 A 控制规则集、知识库、推理机和传感器 B 信息获取与处理、知识库、控制规则集和推理机 C 信息获取与处理、知识库、推理机和传感器 D 信息获取与处理、控制规则集、推理机和传感器 6.专家控制可以称作基于( D )的控制。 A 直觉 B 逻辑 C 预测 D 知识 7.直接式专家控制通常由( C )组成 A 信息获取与处理、知识库、推理机构和传感器

智能控制第八章课后习题答案

1.什么叫产生式系统?它由哪些部分组成?试举例略加说明。 答:如果满足某个条件,那么就应当采取某些行动,满足这种生产式规则的专家系统成为产生式系统。 产生式系统主要由总数据库,产生式规则和推理机构组成。 举例:医疗产生式系统。 2.专家系统有哪些部分构成?各部分的作用如何?专家系统它具体有哪些特点和优点? 答:知识库:知识库是知识的存储器,用于存储领域专家的经验性知识以及有关的事实、一般常识等。知识库中的知识来源于知识获取机构,同时它又为推理提供求解问题所需的知识。推理机:推理机时专家系统的思维机构,实际上是求解问题的计算机软件系统,综合推理机的运行可以有不同的控制策略。 数据库:它是用于存放推理的初始证据、中间结果以及最终结果等的工作存储器。 解释接口:它把用户输入的信息转换成系统内规范化的表现形式,然后交给相应的模块去处理,把系统输出的信息转换成用户易于理解的外部形式显示给用户,回答提出的问题。 知识获取:知识获取是指通过人工方法或机器学习的方法,将某个领域内的事实性知识和领域专家所特有的经验性知识转化成计算机程序的过程。对知识库的修改和扩充也是在系统的调试和验证中进行,是一件困难的工作。 专家系统的特点:具有专家水平的专门知识,能进行有效的推理,专家系统的透明性和灵活性,具有一定的复杂性与难度。 3.在专家系统中,推理机制,控制策略和搜索方法是如何定义的,它们之间存在什么样的关系? 答:推理机制是根据一定的原则从已有的事实推出结论的过程,这个原则就是推理的核心。专家系统的自动推理是知识推理。而知识推理是在计算机或者智能机器中,在知识表达的基础上,进行机器思维,求解问题,实现知识推理的智能操作过程。在专家系统中,可以依据专家所具有的知识的特点来选择知识表示的方法,而只是推理技术同知识方法有密切的关系。 控制策略求解问题的策略,是推理的控制策略。而控制策略包括推理方向、推理路线、冲突消解策略等,按推理进行的路线与方向,推理可分正向推理、反向推理、混合推理。 搜索方法:推理机时用于对知识库中的知识进行推理来得到结论的思维机构。 三者关系:推理机制,控制策略(推理机构)和搜索方法三者都属于推理范畴,是一个整体。只是执行顺序不同而已。 4.设计专家控制器时应考虑哪些特点?专家控制系统的一般结构模型为何? 答:设计控制器的一般原则:多样化的模型描述,在线处理的灵活性,灵活性的控制策略,

智能控制习题答案54733

第一章绪论 1. 什么是智能、智能系统、智能控制? 答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。 “智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。 “智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。 2.智能控制系统有哪几种类型,各自的特点是什么? 答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。 各自的特点有: 集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管 AHA12GAGGAGAGGAFFFFAFAF

理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。可以说是一种模拟人类专家解决领域问题的计算机程序系统。 多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。2.信息在上下级间垂直方向传递,向下的信息有优先权。同级控制器并行工作,也可以有信息交换,但不是命令。3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要。级别越往上,其决策周期越长,更关心系统的长期目标。4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策。 学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应 地改变自身特性以改善控制性能的系统。这种系统具有一定的识别、判断、记 AHA12GAGGAGAGGAFFFFAFAF

最新智能控制基础期末考试题答案

2010级智能控制基础期末 复习思考题 一重要概念解释 1 智能控制 所谓的智能控制,即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化做出适应性反应,从而实现由人来完成的任务。 2 专家系统与专家控制 专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。 专家控制是智能控制的一个重要分支。所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。它由知识库和推理机构构成主体框架,通过对控制领域知识的获取与组织,按某种策略及时的选用恰当的规则进行推理输出,实现对实际对象的控制 3 模糊集合与模糊关系,模糊推理模糊控制 ● 1)模糊集合:给定论域U 上的一个模糊集A %是指:对任何元素u U ∈ 都存在一个数()[] 0,1A u μ∈与之对应,表示元素u 属于集合A % 的程度,这个数称为元素u 对集合A %的隶属度,这个集合称为模糊集合。 ● 模糊关系:二元模糊关系:设A 、B 是两个非空集合,则直积(){},|,A B a b a A b B ?=∈∈中的一个 模糊集合 称为从A 到B 的一个模糊关系。模糊关系R %可由其隶属度(),R a b μ完全描述,隶属度 (),R a b μ 表明了元素a 与元素b 具有关系R %的程度。 ● 模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出 的情况,这就叫“模糊推理”。 4 神经网络? 答:人工神经网络是模拟人脑思维方式的数学模型。神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,对人脑进行抽象和简化,反映了人脑的基本特征,信息处理、学习、联想、模式分类、记忆等。 5 遗传算法 答:遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适配置函数并通过遗传的复制、交叉及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。 一 专家控制部分 1. 专家系统的组成及各部分特点?

(完整版)智能控制习题参考答案

1.递阶智能控制系统的主要结构特点有哪些。 答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工 智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。 递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。如下所 示: 1. 组织级 组织级代表控制系统的主导思想,并由人工智能起控制作用。根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。 其结构如下: 2.协调级 协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。协

调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。 它是由不同的协调器组成,每个协调器由计算机来实现。下图是一个协调级结构的候选框图。该结构在横向上能够通过分配器实现各协调器之间的数据共享。 3. 执行级 执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。 其结构模型如下:

2.信息特征,获取方式,分层方式有哪些? 答:一、信息的特征 1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信 息。 2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干 扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能 力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下, 获得整个系统的综合指标最优。 3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度 不同,层次较低的信号受污染程度较大。 二、获取方式 信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息, 具体处理方法如下: 1,选取特征变量 可分为选择特征变量和抽取特征变量。选择特征变量直接从采集样本的全体原始工艺参 数中选择一部分作为特征变量。抽取特征变量对所选取出来的原始变量进行线性或非线性 组合,形成新的变量,然后去其中一部分作为特征变量。 2,滤波的方法 数字滤波用计算机软件滤波,通过一定的计算程序对采样信号进行平滑加工,提高信噪比,消除和减少干扰信号,以保证计算机数据采集和控制系统的可靠性。模拟滤波用硬件 滤波。 3,剔除迷途样本 使用计算机在任意维空间自动识别删除迷途样本。 三、分层方式 1,通过计算机系统进行信号分层 2,人工指令分层 3,通过仪器设备进行测量,将数据进行分层 4,先归类,后按照一定的规则集合分层 3.详细描述数据融合的流程和方法 答:数据融合是指利用计算机对按时序获得的若干观测信息,在一定准则下加以自动分析、综合,以完成所需的决策和评估任务而进行的信息处理。 一、数据融合的流程: 分析数据融合目的和融合层次→→智能地选择合适的融合算法→→将空间配准的数据 (或提取数据的特征或模式识别的属性说明)进行有机合成→→准确表示或估计。有时还 需要做进一步的处理,如"匹配处理"和"类型变换"等,以便得到目标的更准确表示或估计。 具体可分为: 1,特征级融合 经过预处理的数据→→特征提取→→特征级融合→→融合属性说明 2,像元级融合

智能控制习题答案

第一章绪论 1.什么是智能、智能系统、智能控制? 答:“智能”在美国Heritage 词典定义为“获取和应用知识的能力”。 “智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。 “智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认 知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。 2.智能控制系统有哪几种类型,各自的特点是什么? 答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系 统、学习控制系统等。 各自的特点有: 集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。该系统 将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承 了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统 危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。 人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统 的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家 的知识和解决问题的经验方法来处理该领域的高水平难题。可以说是一种模拟人类专家解决领域问题的计算机程序系 统。 多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。这种结构的 特点是: 1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。 2.信息在上下级间垂直 方向传递,向下的信息有优先权。同级控制器并行工作,也可以有信息交换,但不是命令。 3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要。级别越往上,其决策周期越长,更关心系统 的长期目标。 4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策。 学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应地改变自身特性以改善控制性能的系统。这种系统具有一定的识别、判断、记忆和自行调整的能力。 3.比较智能控制与传统控制的特点。 答:智能控制与传统控制的比较:它们有密切的关系,而不是相互排斥。常规控制往往包含在智能控制之中,智能控 制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更 具有挑战性的复杂控制问题。 1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,这些问题对基于模型的传统自动控制来说很难解决。 2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手 写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力, 能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得 着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的 精确的送音器,即文字、声音、物体识别装置。 3.传统的自动控制系统对控制任务的要求要么使输出量为定值(调节系统),要么使输出量跟随期望的运动轨迹(跟随 系统),因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂。 4.传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽 人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径。 5.与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知 识的能力。 6.与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环 控制和定性及定量控制结合的多模态控制方式。

智能控制考试题库

填空题(每空1分,共20分) 控制论的三要素是:信息、反馈和控制。 传统控制是经典控制和现代控制理论的统称。 智能控制系统的核心是去控制复杂性和不确定性。 神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成。 按网络结构分,人工神经元细胞可分为层状结构和网状结构按照学习方式分可分为:有教师学习和无教师学习。 前馈型网络可分为可见层和隐含层,节点有输入节点、输出节点、计算单元。 神经网络工作过程主要由工作期和学习期两个阶段组成。 1、智能控制是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器;与自动控制原理和现代控制原理一起构成了自动控制课程体系的理论 基础。 2、智能控制系统的主要类型有:分级递阶控制系统,专家控制系统,学习控制系统,模糊控制系统,神经控制系统,遗传算法控制系统和混合控制系统等等。 3、模糊集合的表示法有扎德表示法、序偶表示法和隶属函数描述法。 4、遗传算法是以达尔文的自然选择学说为基础发展起来的。自然选择学说包括以下三个方面:遗传、变异、适者生存。 5、神经网络在智能控制中的应用主要有神经网络辨识技术和神经网络控制技术。 6、在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、输出单元和隐层单元三类。 7、分级递阶控制系统:主要有三个控制级组成,按智能控制的高低分为组织级、协调级、执行级,并且这三级遵循“伴随智能递降精度递增”原则。 传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,适于解决线性

、时不变性等相对简单的控制。 智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的非线性、复杂的任务要求。 IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学) AC:描述系统的动力学特征,是一种动态反馈。 AI :是一个用来模拟人思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。 智能控制:即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化作出适应性,从而实现由人来完成的任务。 智能控制的几个重要分支为模糊控制、神经网络控制和遗传算法。 智能控制的特点:1,学习功能2,适应功能3,自组织功能4,优化功能 智能控制的研究工具:1,符号推理与数值计算的结合2,模糊集理论3,神经网络理论4,遗传算法5,离散事件与连续时间系统的结合。 智能控制的应用领域,例如智能机器人控制、计算机集成制造系统、工业过程控制、航空航天控制和交通运输系统等。 10、专家系统:是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。 11、专家系统的构成:由知识库和推理机(知识库由数据库和规则库两部分构成) 18、专家控制的特点:灵活性、适应性和鲁棒性。 19、模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础的一种智能控制方法。,它从行为上模仿人的模糊推理和决策过程。 20、模糊控制理论具有一些明显的特点:1,模糊控制不需要被控对象的数学模型2,

智能控制技术复习题课后答案

一、填空题 1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例 如、、和。 1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制 2.传统控制包括和。2、经典反馈控制现代理论控制 3.一个理想的智能控制系统应具备的基本功能是、、和。 3 、学习功能适应功能自组织功能优化能力 4.智能控制中的三元论指的是:、和。 4、运筹学,人工智能,自动控制 5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。 5、神经网络模糊数学专家系统 6.智能控制方法比传统的控制方法更能适应对象的、和 。6、时变性非线性不确定性 7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是 、和。 7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控 制系统 8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。 8、不确定性、高度的非线性、复杂的任务要求 9.智能控制系统的主要类型有、、、 、和。 9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统 10.智能控制的不确定性的模型包括两类:(1) ; (2) 。 10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。11.控制论的三要素是:信息、反馈和控制。 12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。知识库、推理机 14.专家系统中的知识库包括了3类知识,它们分别为、、和。判断性规则控制性规则数据 15.专家系统的推理机可采用的3种推理方式为推理、和推理。

2011-10学年第1学期_ 智能控制试题A答案

(勤奋、求是、创新、奉献) 2010~2011学年第1学期考试试卷A 学院班级__ __ 姓名__________ 学号___________ 《智能控制系统》课程试卷 (本卷考试时间90 分钟) 一. 1.写出4种专家系统的知识表示方法。 逻辑表示法、产生式表示法、框架表示法、语义网络表示法 2.递阶智能系统的智能程度分布一般要遵循什么原则。 随着智能程度的提高,精度下降 3.写出宽度优先搜索和深度优先搜索的根本区别? 深度优先与宽度优先算法最根本的不同在于:扩展的后继节点放在OPEN表的前端。 4.何谓多层前向神经网络? 具有分层的结构,通常包括输入层、隐层(也称中间层)和输出层。每一层的神经元只接受上一层神经元的输入,并且该层神经元的输出送给下一层的各个神经元。 5.写出3种模糊输出向量的解模糊方法 重心法、最大隶属度法、取中位数判决法

6.写出基本遗传算法的3个基本操作 遗传、交叉、变异 二、简答题(共24分,每题6分) 1、简述模糊控制器的组成,及各组成部分功能 (1)模糊化接口 对于任意输入x,将其映射到模糊集系统中去,映射的过程实际上是将当前的物理输入根据模糊子集的分布情况确定出此时此刻输入值对这些模糊子集的隶属程度。 (2)知识库 知识库包括数据库和规则库。模糊控制器设计的关键在于如何有效地建立知识库,决策逻辑控制实际上是依赖规则库来实现的。 (3)推理决策逻辑 它是模糊控制的核心,利用知识库的信息模拟人类的推理决策过程,给出适合的控制量,其实质是模糊逻辑推理。 (4)精确化过程 通过模糊推理得到的结果是一个模糊集合。但实际使用中,特别是模糊控制中,必须要有一个确定的值才能去控制或驱动执行机构。在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程 2、设个体域是人类,试用两种方法(全称量词和存在量词)将语句“没有不犯错误的人”译为谓词公式 设F(x):“x犯错误”,M(x):x是人,则语句形式化为: ┐?x(M(x)∧┐F(x)) 或?x(M(x)→F(x)) 3、简述BP算法中工作信号正向传播、误差信号反向传播过程 (1)工作信号正向传播:输入信号从输入层经隐层,传向输出层,在输出端产生输出信号,这是信号的正向传播。在信号向前传递过程中网络的权值是固定不变的,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入误差信号反向传播。 (2)误差信号反向传播:网络的实际输出与期望输出之间差值即为误差信号,误差信号由输出端开始逐层向前传播,这是误差信号的反向传播。在误差信号反向传播的过程中,网络权值由误差反馈进行调节,通过权值的不断修正使网络的实际输出更接近期望输出 W

智能控制课后习题

作业1 1 简述智能控制的概念。 定义一: 智能控制是由智能机器自主地实现其目标的过程。 定义二:K.J.奥斯托罗姆则认为,把人类具有的直觉推理和试凑法等智能加以形式化或机器模拟,并用于控制系统的分析与设计中,以期在一定程度上实现控制系统的智能化,这就是智能控制。 定义三: 智能控制是一类无需人的干预就能够自主地驱动智能机器实现其目标的自动控制,也是用计算机模拟人类智能的一个重要领域。 2 智能控制由哪几部分组成?各自的特点是什么? 智能控制由人工智能、自动控制、运筹学组成。 人工智能是一个知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。 自动控制描述系统动力学特性,是一种动态反馈。 运筹学是一种定量优化的方法。如线性优化,网络规划,调度管理,优化决策和多目标优化的方法等等。 3 比较智能控制和传统控制的特点? 1)传统控制方法在处理复杂性、不确定性方面能力低而且有时丧失了这种能力,智能控制在处理复杂性、不确定性方面能力高 2)传统控制是基于被控对象精确模型的控制方式,可谓“模型论”智能控制是智能决策论,相对于“模型论”可称为“控制论” 3)传统的控制为了控制必须建模,而利用不精确的模型又采用摸个固定控制算法,使整个的控制系统置于模型框架下,缺乏灵活性,缺乏应变性,因此很难胜任对复杂系统的控制智能控制的可信是控制决策,次用灵活机动的决策方式迫使控制朝着期望的目标逼近。 4)传统控制适用于解决线性、时不变等相对简单的的控制问题智能控制是对传统控制理论的发展,传统控制室智能控制的一个组成部分,是智能控制的低级阶段。 4 智能控制有哪些应用领域?试举出一个应用实例。 应用领域:模糊系统、神经网络、专家控制、工业想、系统、电力系统、机器人等其他领域的控制。 应用实例:模糊控制的交流伺服系统 作业2

智能控制-考试题(附答案)

《智能控制》考试试题 试题1: 针对某工业过程被控对象:0.520 ()(101)(21) s G s e s s -= ++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析: 1. 比较当被控对象参数变化、结构变化时,四者的性能; 2. 研究改善Fuzzy 控制器动、静态性能的方法。 解: 常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。. 常规PID 调节器 PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为: 1 () ()[()()]t p d i de t u t K e t e t dt T T dt =+ +? (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。 PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。 Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。 用临界比例度法整定PID 参数如下: 表1.1 临界比例度法参数整定公式 控制器类型 P K i T d T P 0.5u K ∞ 0 PI 0.455u K 0.833u T

智能控制考试题及答案

智能控制考试题及答案 智能控制技术考试题及答案《智能控制技术》考试试题A 《智能控制》课程考试试题A参考答案 一、填空题 (1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字(5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统 (18) 模糊控制系统 (19) 神经控制系统 (xx年来,自动控制一直在寻找新的出路。现在看来,出路之一就是实现控制系统的智能化,以期解决面临的难题。 智能控制采用各种智能化技术实现复杂系统和其它系统的控制目标,是一种具有强大生命力的新型自动控制技术。智能控制是人工智能和自动控制的重要部分和研究领域,并被认为是通向自主机器递阶道路上自动控制的顶层。下图表示自动控制的发展过程和通向智能控制路径上控制复杂性

增加的过程。从图中可以看出,这条路径的最远点是智能控制,至少在当前是如此。智能控制涉及高级决策并与人工智能密切相关。 智能控制是一门新建立的学科,无论在理论上或应用上,仍然不够完善,有待继续研究与发展。展望智能控制的发展,我们应该: (1) 与智能控制的目标和定义相比,智能控制研究尚存在一些需要解决的问题。 人脑的结构和功能要比人们想象的复杂得多,人工智能和智能控制研究面临的困难要比我们估计的重大得多,智能科学工作者的研究任务要比我们讨论过的艰巨得多。同时,要从根本上了解人脑的结构与功能,解决面临的困难,完成人工智能和智能控制的研究任务,需要寻找和建立更新的智能控制框架和理论体系,为智能控制的进一步发展打下稳固 (2) 与人工智能相似的是,智能控制技术是人工智能技术与其它信息处理技术,尤其是信息论、系统论、控制论和认识工程学等的集成。从学科结构的观点来看,提出了不同的思想,其中,智能控制的四元交集结构是最有代表性的一种集成思想。在智能控制领域内已集成了许多不同的控制方案,如模糊自学习神经控制就集成了模糊控制、学习控制和神经

整理的智能控制导论复习题

试题 一、名词解释 1.智能2. 自动控制3. 专家控制系统4. 学习控制5. 免疫算法 6.信息7. 智能控制系统8. 专家系统9. 学习控制系统10. 人工免疫系统11.信息论12. 黑板13. 模糊判决14. 学习系统15. 选择操作 五、简答题 106. 简述递阶智能机器一般层级结构及各级功能 107.简述专家控制器的设计原则 108. 简述仿人控制器的智能属性 109. 简述实现NN监督式控制的步骤 110. 简述真体的特性 111.简述建立专家系统的一般步骤 112.简述学习控制的机理 113. 简述神经控制系统的设计内容 114. 简述人工神经网络的主要学习算法及含义 115. 简述仿人控制在结构和功能上具有的基本特征 5-3、92页116.考虑一个具有阶梯型阈值函数的神经网络,假设: (1)用常数乘所有的权值和阈值。 (2)用常数加所有的权值和阈值。 试说明网络性能是否会变化 117.简述按其作用原理,智能控制系统的分类

118. 简述基于神经网络专家系统的三种模式 119. 简述实现学习控制系统需要的三种能力及其含义 120. 简述仿人控制器设计与实现的一般步骤 六、论述题 121. 试述复合智能控制及采用复合智能控制的缘由 122. 试述模糊控制系统的工作原理 123. 试述遗传算法的特点,并画出简单遗传算法的框图 124. 试述迭代学习控制的任务;迭代控制与最优控制、自适应控制的区别;画出迭代学习控制系统基本结构图。 125. 试述遗传算法的求解步骤 126. 试述基于模式识别的学习控制的原理

答案 一、名词解释 1.智能是一种应用知识对一定环境进行处理的能力或由目标准则衡量的抽象思考能力。 2.自动控制是能按规定程序对机器或装置进行自动操作或控制的过程。 3.应用专家系统的概念和技术,模拟人类专家的控制知识与经验而建造的控制系统,称为专家 控制系统。 4.学习控制能够在系统进行过程中估计未知信息,并据之进行最优控制,以便逐步改进系统性 能。学习控制是一种控制方法,其实际经验起到控制参数和算法的类似作用。 5.免疫算法是模仿生物免疫学和基因进化机理,通过人工方式构造的一类优化搜索算法,是对 生物免疫过程的一种数学仿真,是免疫计算的一种最重要形势。 6. 信息是知识的交流或对知识的感受,是对知识内涵的一种测量。所描述事件的信息量越大该 事件的不确定性越小。 7. 用于驱动智能机器以实现其目标而无需操作人员干预的系统称为智能控制系统。 8. 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验, 能够利用人类专家的知识和解决问题的方法来处理该领域问题,以人类专家的水平完成特别困难的某一专业领域的任务。 9. 如果一个学习系统利用所学得的信息来控制某个具有位置特征的过程,则称该系统为学习控 制系统。 10. 人工免疫系统是由免疫学理论和观察到的免疫功能、原理和模型启发而产生的适应性系统。 11. 信息论是研究信息,信息特性测量,信息处理以及人机通信过程效率的数学理论。 12. 用来记录系统推理过程中用到的控制信息、中间假设和中间结果的数据库。 13. 模糊逻辑控制中,在推理得到的模糊集合中取一个相对最能代表这个模糊集合的单值的过程。

智能控制复习题-参考答案

(书本 P 13) 上海第二工业大学《智能控制系统》练习卷 一、填空题 1、机器智能是把信息进行 组织 、并 把它转换成知识 的过程。 2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不 确定性 。 3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。 4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合 操 作 。(这道题有点疑问,大家找找资料) 5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接 权值 、 求和函数 和 激发函数 。 6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。 7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量 的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。 8、? = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 } ?1 ?2 ?3 ?4 9、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。 试用: (1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖= 0. 95 + 0. 88 + 0. 8 + 0. 72 + 0. 5 110 95 85 78 65 (2)序偶表示法表示模糊集“ 肥胖” 答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)}

智能控制技术(第三章) 答案

3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库)、推理决策和精确化计算。 1、模糊化过程 模糊化过程主要完成:测量输入变量的值,并将数字表示形式的输入量转化为通常用语言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1)、数据库 数据库提供必要的定义,包含了语言控制规则论域的离散化、量化和正规化以及输入空间的分区、隶属度函数的定义等。 2)、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。(它是模糊控制的核心)。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。 {模糊控制器采用数字计算机。它具有三个重要功能: 1) 把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块); 2) 对模糊量由给定的规则进行模糊推理(规则库、推理决策完成); 3)把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量(精确化接口)。 3-2 模糊逻辑控制器常规设计的步骤怎样?应该注意哪些问题? 答:常规设计方法设计步骤如下: 1、 确定模糊控制器的输入、输出变量 2、 确定各输入、输出变量的变化范围、量化等级和量化因子 3、 在各输入和输出语言变量的量化域内定义模糊子集。 4、 模糊控制规则的确定 5、 求模糊控制表 3-3 已知由极大极小推理法得到输出模糊集为: 0.30.810.50.1 12345 C =++++-----.试用重心法计算出此推理结果的精确值z 。 重心法 重心法 是取模糊隶属度函数的曲线与横坐标围城面积的重心为模糊推理最终输出值。 连续:0()()v V v V v v dv v v dv μμ= ?? 离散:101 () () m k v k k m v k k v v v v μμ=== ∑∑ 采用离散重心法: 101 () () 0.3(1)0.8(2)1(3)0.5(4)0.1(5)0.30.810.50.1 0.3(1)0.8(2)1(3)0.5(4)0.1(5)2.7 =-2.7407 m k v k k m v k k v v v v μμ=== ?-+?-+?-+?-+?-= ++++?-+?-+?-+?-+?-= ∑∑

智能控制考试题库

填空题(每空1分,共20分) 控制论的三要素就是: 信息、反馈与控制。 传统控制就是经典控制与现代控制理论的统称。 智能控制系统的核心就是去控制复杂性与不确定性。 神经元(即神经细胞)就是由细胞体、树突、轴突与突触四部分构成。按网络结构分,人工神经元细胞可分为层状结构与网状结构按照学习方式 分可分为: 有教师学习与无教师学习。 前馈型网络可分为可见层与隐含层,节点有输入节点、输出节点、计算单元。 神经网络工作过程主要由工作期与学习期两个阶段组成。 1、智能控制就是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统与设计控制器;与自动控制原理与现代控制原理一起构成了自动控制课程体系的理 论基础。 2、智能控制系统的主要类型有:分级递阶控制系统,专家控制系统,学习控制系统,模糊控制系统,神经控制系统,遗传算法控制系统与混合控制系统等等。 3、模糊集合的表示法有扎德表示法、序偶表示法与隶属函数描述法。 4、遗传算法就是以达尔文的自然选择学说为基础发展起来的。自然选择学说包括以下三个方面:遗传、变异、适者生存。 5、神经网络在智能控制中的应用主要有神经网络辨识技术与神经网络控制技术。 6、在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、输出单元与隐层单元三类。 7、分级递阶控制系统:主要有三个控制级组成,按智能控制的高低分为组织级、协调级、执行级,并且这三级遵循“伴随智能递降精度递增”原则。 传统控制方法包括经典控制与现代控制 ,就是基于被控对象精确模型的控

制方式,缺乏灵活性与应变能力,适于解决线性 、时不变性等相对简单的控制。 智能控制的研究对象具备以下的一些特点: 不确定性的模型、高度的非线性、复杂的任务要求。 IC(智能控制)=AC(自动控制)∩AI(人工智能) ∩OR(运筹学) AC:描述系统的动力学特征,就是一种动态反馈。 AI :就是一个用来模拟人思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。OR:就是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策与多目标优化方法等。 智能控制:即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境信息的变化作出适应性,从而实现由人来完成的任务。 智能控制的几个重要分支为模糊控制、神经网络控制与遗传算法。 智能控制的特点:1,学习功能2,适应功能3,自组织功能4,优化功能 智能控制的研究工具:1,符号推理与数值计算的结合2,模糊集理论3,神经网络理论4,遗传算法5,离散事件与连续时间系统的结合。 智能控制的应用领域,例如智能机器人控制、计算机集成制造系统、工业过程控制、航空航天控制与交通运输系统等。 10、专家系统:就是一类包含知识与推理的智能计算机程序,其内部包含某领域专家水平的知识与经验,具有解决专门问题的能力。 11、专家系统的构成:由知识库与推理机(知识库由数据库与规则库两部分构成) 18、专家控制的特点: 灵活性、适应性与鲁棒性。 19、模糊控制就是以模糊集理论、模糊语言变量与模糊逻辑推理为基础的一种智能控制方法。,它从行为上模仿人的模糊推理与决策过程。

机器人复习题及参考答案

课程考试复习题及参考答案 机器人学导论 一、名词解释题: 1.自由度: 2.机器人工作载荷: 3.柔性手: 4.制动器失效抱闸: 5.机器人运动学: 6.机器人动力学: 7.虚功原理: 驱动: 9.电机无自转: 10.直流伺服电机的调节特性: 11.直流伺服电机的调速精度: 控制: 13.压电元件: 14.图像锐化: 15.隶属函数: 网络: 17.脱机编程: : 二、简答题: 1.机器人学主要包含哪些研究内容? 2.机器人常用的机身和臂部的配置型式有哪些? 3.拉格朗日运动方程式的一般表示形式与各变量含义? 4.机器人控制系统的基本单元有哪些? 5.直流电机的额定值有哪些? 6.常见的机器人外部传感器有哪些? 7.简述脉冲回波式超声波传感器的工作原理。 8.机器人视觉的硬件系统由哪些部分组成? 9.为什么要做图像的预处理?机器视觉常用的预处理步骤有哪些? 10.请简述模糊控制器的组成及各组成部分的用途。 11.从描述操作命令的角度看,机器人编程语言可分为哪几类? 12.仿人机器人的关键技术有哪些? 三、论述题: 1.试论述机器人技术的发展趋势。 2.试论述精度、重复精度与分辨率之间的关系。 3.试论述轮式行走机构和足式行走机构的特点和各自适用的场合。 4.试论述机器人静力学、动力学、运动学的关系。 5.机器人单关节伺服控制中,位置反馈增益和速度反馈增益是如何确定的? 6.试论述工业机器人的应用准则。 四、计算题:(需写出计算步骤,无计算步骤不能得分): 1.已知点u的坐标为[7,3,2]T,对点u依次进行如下的变换:(1)绕z轴旋转90°得到点v;(2)绕 y轴旋转90°得到点w;(3)沿x轴平移4个单位,再沿y轴平移-3个单位,最后沿z轴平移7个单位得到点t。求u, v, w, t各点的齐次坐标。

相关文档