文档库 最新最全的文档下载
当前位置:文档库 › 两个基本计数原理

两个基本计数原理

两个基本计数原理
两个基本计数原理

一对一授课教案

学员姓名:年级:所授科目:

(一)两个计数原理内容

1、分类计数原理:

完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+……+m

种不同的方法.

n

2、分步计数原理:

完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n 种不同的方法.

(二)例题分析

例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种?

分析:1、完成的这件事是什么?

2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

解:属于分步:第一步配一个荤菜有3种选择

第二步配一个素菜有5种选择

第三步配一个汤有2种选择

共有N=3×5×2=30(种)

例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。

(1)从书架上任取一本书,有多少种不同的取法?

(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?

(1)分析:1、完成的这件事是什么?

2、如何完成这件事?

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算。

解:属于分类:第一类从上层取一本书有5种选择

第二类从下层取一本书有4种选择

共有N=5+4=9(种)

(2)分析:1、完成的这件事是什么?

2、如何完成这件事?

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

解:属于分步:第一步从上层取一本书有5种选择

第二步从下层取一本书有4种选择

共有N=5×4=20(种)

例3、有1、2、3、4、5五个数字.

(1)可以组成多少个不同的三位数?

(2)可以组成多少个无重复数字的三位数?

(3)可以组成多少个无重复数字的偶数的三位数?

(1)分析:1、完成的这件事是什么?

2、如何完成这件事?(配百位数、配十位数、配个位数)

3、它们属于分类还是分步?(是否独立完成)

4、运用哪个计数原理?

5、进行计算.

略解:N=5×5×5=125(个)

(2)(3)(4)师生共同完成

(三)巩固练习

1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?

2、有一个班级共有46名学生,其中男生有21名.

(1)现要选派一名学生代表班级参加学校的学代会,有多

少种不同的选派方法?

(2)若要选派男、女各一名学生代表班级参加学校的学代

会,有多少种不同的选派方法?

思考:有0、1、2、3、4、5六个数字.

(1)可以组成多少个不同的三位数?

(2)可以组成多少个无重复数字的三位数?

(3)可以组成多少个无重复数字的偶数的三位数?

(五)及时训练

1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通, 从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?

2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

3.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为() A. 180 B. 160 C. 96 D. 60

若变为图二,图三呢?

5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种? 一.特殊元素和特殊位置优先策略

例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

解:由于末位和首位有特殊要求,应该优先安排,

先排末位共有13C 然后排首位共有1

4C

最后排其它位置共有

3

4A

由分步计数原理得

113434288C C A =

练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

二.相邻元素捆绑策略

例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有

522522480A A A =种不同的排法

图一

图二

图三

4

4

3

练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的

6个元素中间包含首尾两个空位共有种4

6A 不同的方法,由分步计数原理,节目的不同顺序共有54

56A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行

排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:

7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4

7A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4

7A 种方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?

510C

五.重排问题求幂策略

例5.把6名实习生分配到7个车间实习,共有多少种不同的分法

解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有6

7种不同的排法

允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素

的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

练习题:

某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42

2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法8

7

六.环排问题线排策略

例6. 8人围桌而坐,共有多少种坐法?

解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此

位置把圆形展成直线其余7人共有(8-1)!种排法即7!

A

B C D E A

E H G F

七.多排问题直排策略

例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法

解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排

后4个位置上的特殊元素丙有1

4A 种,其余的5人在5个位置上任意排列有55

A 种,

则共有215

44

5A A A 种

练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346

八.排列组合混合问题先选后排策略

例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.

解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复

合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有

24

54C A 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆

形排列共有1m

n A n 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研

练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种

例1 有12个人,按照下列要求分配,求不同的分法种数. (1)分为两组,一组7人,一组5人;

(2)分为甲、乙两组,甲组7人,乙组5人; (3)分为甲、乙两组,一组7人,一组5人; (4)分为甲、乙两组,每组6人; (5)分为两组,每组6人;

(6)分为三组,一组5人,一组4人,一组3人;

(7)分为甲、乙、丙三组,甲组5人,乙组4人,丙组3人; (8)分为甲、乙、丙三组,一组5人,一组4人,一组3人; (9)分为甲、乙、丙三组,每组4人; (10)分为三组,每组4人.

(教师慢速连续读一遍例1,同时要求学生审清题意,仔细分析,周密考虑,独立地求解. 这是一个层次分明的排列、组合题,涉及非平均分配、平均分配和排列组合综合.各小题之 间有区别、有联系,便于学生分析、比较、归纳,有利于学生加深理解,提高能力) 师:请一位同学说一下各题的答案(只需要列式).

生:(1),(2),(3)都是55712C C ;(4),(5)都是6

6

612C C ;(6),(7),(8) 都是3347512C C C ;(9),(10)都是44

48412C C C 师:从这个同学的解答中,我们可以看出他对问题的考虑分先后次序,用位置法求解是掌握 了的.但是还请大家审清题意,看(3)与(1),(2);(5)与(4);(8)与(6), (7);(10)与(9)是否分别相同,有没有出现“重复”和“遗漏”的问题. (找班里水平较高的一位学生回答)

生:(3)和(1),(2);(5)和(4);(8)和(6),(7);(10)和(9)并不相 同.(3),(5),(8),(10)的答案都错了,既出现了“重复”也出现了“遗漏”的问题.(3)的答案是2

255

312

P C C ;

(5)是2266612P C C ;(8)是3

33347512P C C C (10)是3

34

448412P C C C

两个基本计数原理教学案

§1.1两个基本计数原理 教学目标:(1)理解分类计数原理与分步计数原理 (2)会利用两个原理分析和解决一些简单的应用问题 教学重点:分类计数原理与分步计数原理 教学过程 一.知识要点: 1、分类计数原理(加法原理):完成一件事有n 类方式,由第1种方法中有1m 种不同的方法可以完成,由第2种方法有2m 种不同的方法可以完成,……由第n k 种途径有n m 种方法可以完成。那么,完成这件事共有=N 种不同的方法。 2、分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第 n 步有n m 种不同的方法,那么完成这件事共有=N 种不同的方法。 三、典例分析: 例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3 层放有2本不同的体育书, (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的取法? 例2.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个。这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的一个。这样的密码共有多少个? 例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?

例4.用4种不同颜色给如左图所示的地图上色,要求相邻两块涂不同的颜色,共有 多少种不同的涂法? 变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题? 2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同 一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( ) A. 180 B. 160 C. 96 D. 60 若变为图二,图三呢? 练习: 1、乘积))()((54321321321c c c c c b b b a a a ++++++++展开后共有多少项? 2、(2006,北京,5分)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中, 各位数字之和为奇数的共有 ( ) A .36个 B.24个 C.18个 D.6个 4、(2005,北京春(文),5分)从0,1,2,3这四个数中选三个不同的数作为函数c bx ax x f ++=2)(的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个。 3、在3000到8000之间有多少个无重复数字的奇数? 思考:集合A=}{ 4,3,2,1、B=}{d c b a ,,,,则从A 到B 可建立多少个不同的映射?其中一一映射有多少个? 图一 图二 图三

两个基本计数原理教案

第一章计数原理 第1节两个基本计数原理 教材分析 本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法. 学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强. 目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣. 教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题. 教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识. 教学过程 一、创设情境:对于分类计数原理设计如下情境(看多媒体): 该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是: 第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫. 第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法? 设计的意图是让学生更清楚的认识到总方法数是各类方法数之和. 第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律? 接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.

两个计数原理与排列组合知识点与例题

两个计数原理与排列组合知识点及例题 两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种? 分析:1、完成的这件事是什么? 2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法? (1)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么? 2、如何完成这件事? 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数? (1)分析: 1、完成的这件事是什么? 2、如何完成这件事?(配百位数、配十位数、配个位数) 3、它们属于分类还是分步?(是否独立完成) 4、运用哪个计数原理? 5、进行计算. 略解:N=5×5×5=125(个)

高中数学选修2-3两个基本计数原理

两个基本计数原理 教学目标: 1、准确理解分类加法计数原理和分步乘法计数原理概念和步骤 2、会运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的问题 要点扫描: 1、(1)分类计数原理(加法原理): (2)分步计数原理(乘法原理): 2、分类计数原理和分步计数原理的区别和联系 分类计数原理和分步计数原理,回答的都是有关做一件事的不同方法总数的问题,其区别在于:分类计数原理针对的是___问题,其中各种方法____,用其中任何一种方法都可以做完这件事;分步计数原理针对的是___问题,各个步骤中的方法____,只有各个步骤都完成之后才算做完这件事。 例题讲解: 例1、(1)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中任选一本书阅读,有多少种不同的选法? (2)一个学生要从5本不同的文史类书,4本不同的理科类书及3本不同的艺术类书中各选一本书阅读,有多少种不同的选法? 例2、从1到200的自然数中,各个数位上都不含数字8的有多少个? 例3、3名学生报名参加4个不同学科的比赛,每名学生只能参赛一项,有多少种不同的报名方法?若有4项冠军在3人中产生,每项冠军只能有一人获得,有多少种不同的夺冠方法? 例4、电视台在“欢乐大本营”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?

例5、在区间[400,800]上,(1)有多少个能被5整除且数字允许重复的整数?(2)有多少 个能被5整除且数字不允许重复的整数? 当堂反馈: 1、某人要将4封信投入3个信箱中,不同的投寄方法有 ( ) A 、12种 B 、7种 C 、43种 D 、34种 2、从0,1,2,3,4,5,7七个数中任取两个数相乘,使所得积为偶数,这样的偶数共有 ( ) A 、18个 B 、9个 C 、12个 D 、10个 3、有三个车队分别有5辆,6辆,7辆车,现欲从其中两个车队各抽调一辆车外出执行任务, 设不同的抽调方案数为n ,则n 的值为 ( ) A 、107 B 、210 C 、36、 D 、77 4、已知集合A={},102,≤≤-∈x z x x A n m ∈,,方程12 2=+n y m x 表示焦点在x 轴上的椭圆,则这样的椭圆共有 ( ) A 、45个 B 、55个 C 、78个 D 、91个 作业:课课练 课时1,2

基本计数原理教学设计

《基本计数原理》教学设计 北京市怀柔区第一中学李悦 一、指导思想与理论依据 1.指导思想 本节课是在新课程理念指导下的教学探究活动。探究活动坚持面向全体学生,有计划的逐步展示问题的解决过程,使学生的思维逐步深化。注意引导学生主动的探索,强调活动的内化,树立正确的数学观。 2.理论依据 (1)新课标理念下关于概念学习的教学理论。 (2)新课标理念下关于教师教育教学的理论。 (3)现代认知主义学习理论和建构主义学习理论等。 二、教学背景分析 1.教学内容分析 本节课的内容是人教社B版普通高中课程标准实验教科书《数学》(选修2-3)第一章《计数原理》的第一节《基本计数原理》。内容主要为两个计数原理。两个计数原理是处理计数问题的两种基本思想方法。在面对一个复杂的计数问题时,通过分类或分步将它分解为若干个简单计数问题,在解决这些简单问题的基础上,将它们整合起来而得到原问题的答案,可以达到以简驭繁、化难为易的效果。 教材开篇在列举一些贴近生活的典型实例的基础上,用明确的语言指出了两个计数原理与加法、乘法运算之间的关系,并提出“不通过一个一个地数而确定这个数”的问题,从而使学生体会学习计数原理的必要性。由于两个计数原理的这种基础地位,并且在应用它们解决问题时具有很大的灵活性,是训练学生推理技能的好素材。 2.学生情况分析 本节课的授课对象是我区普通高中的学生。在知识内容上,已在初中学习过列举法、树状图,并会用这些知识解决一些简单事件的概率问题。在能力层次上,也具有一定的自主探究、观察、归纳总结的能力,他们的思维活跃,富有挑战性。学生在学习本课内容时可能会遇到以下两个困难,一个是对两个计数原理的特征理解不能深刻,因而导致不知如何判断什么是一件事;另一个是分不清两个计数原理,在解决问题时不知怎么完成这件事。 3.教学方式与教学手段说明

计数原理知识点总结与训练

计数原理知识点总结 一、两个计数原理 3、两个计数原理的区别 二、排列与组合 1、排列: 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列 的个数叫做从n 个不同元素中取出m 个元素的排列数。用符号 表 示. 3、排列数公式: 其中 4、组合: 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 5、组合数: 从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。用符号 表示。 6、组合数公式: 其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. 7、性质: m n A m n A ()()() ()! ! 121m n n m n n n n A m n -= +---=Λ . ,,*n m N m n ≤∈并且m n C ()()() ()! !! !121m n m n m m n n n n C m n -= +---= Λ . ,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1 1+-=+

三、二项式定理 如果在二项式定理中,设a=1,b=x ,则可以得到公式: 2、性质: 0241351 2 n n n n n n n C C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:

计数原理基本知识点

计数原理基本知识点 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =??? 种不同的方法 3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫 做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从 n 个不同元素中取出m 个元素的组合数... .用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或)! (!!m n m n C m n -=,,(n m N m n ≤∈*且 11 组合数的性质1:m n n m n C C -=.规定:10=n C ; 12.组合数的性质2:m n C 1+=m n C +1-m n C

1.1 两个基本计数原理(2)

教学内容 §1.1 两个基本计数原理(2) 教学目标要求(1)掌握分类计数原理与分步计数原理,并能根据具体问题的特征,选择分类加法原理或分步乘法原理解决一些简单的实际问题; (2)通过对分类计数原理与分步计数原理的理解和运用,提高学生分析问题和解 决问题的能力,开发学生的逻辑思维能力. 教学重点分类计数原理与分步计数原理的区别和综合应用. 教学难点分类计数原理与分步计数原理的区别和综合应用. 教学方法和教具 教师主导活动学生主体活动一.问题情境 复习回顾:1.两个基本计数原理; 2.练习: (1)从2,3,5,7,11中每次选出两个不同的数作为分数的分子、 分母,则可产生不同的分数的个数是,其中真分数的 个数是. (2)①用0,1,2,……,9可以组成多少个8位号码; ②用0,1,2,……,9可以组成多少个8位整数; ③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数. 二.数学运用 1.例题: 例1 用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同 的颜色,共有多少种不同的涂法? 分析完成这件事可分四个步骤,不妨 设①、②、③、④的次序填涂. 解:第一步,填涂①,有4种不同颜色 可选用; 第二步,填涂②,除①所用过的颜色外, 还有3种不同颜 色可选用; 第三步,填涂③,除①、②用过的2种 颜色外,还有2种 不同颜色可选用; 第四步,填涂④,除②、③用过的2种颜色外,还有2种不同颜色可 选用. ???=种不同的方法,即填涂这张 所以,完成这件事共有432248 地图共有48种方法. 答共有48种不同的涂法. 思考:如果按①、②、④、③的次序填涂,怎样解决这个问题?

(完整版)分类计数原理和分步计数原理练习题

1、一个学生从3本不同的科技书、4本不同的文艺书、5本不同的外语书中任选一本阅读,不同的选法有_________________种。 2、一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有_________________种不同的选法。 3、一商场有3个大门,商场内有2个楼梯,顾客从商场外到二楼的走法有 __________种。 4、从分别写有1,2,3,…,9九张数字的卡片中,抽出两张数字和为奇数的卡片,共有_________________种不同的抽法。 5、某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成,(1)从中选出1人担任组长,有多少种不同选法? (2)从中选出两位不同国家的人作为成果发布人,有多少种不同选法? 6、(1)3名同学报名参加4个不同学科的比赛,每名学生只能参赛一项,问有多少种不同的报名方案? (2)若有4项冠军在3个人中产生,每项冠军只能有一人获得,问有多少种不同的夺冠方案? 7、用五种不同颜色给图中四个区域涂色,每个区域涂一种颜色, (1)共有多少种不同的涂色方法? (2)若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法? 8、从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有_________________种不同的走法。 9、某电话局的电话号码为,若后面的五位数字是由6或8组成的,则这样的电话号码一共有_________________个。 10、从0,1,2,…,9这十个数字中,任取两个不同的数字相加,其和为偶数的不同取法有_________________种。

高中数学苏教版选修2-3教学案:1.1 两个基本计数原理-含解析

第1课时分类计数原理与分步计数原理 1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,每天有7次航班,5列火车. 问题1:该志愿者从北京到南京可乘的交通工具可分为几类? 提示:两类,即乘飞机、乘火车. 问题2:这几类方法相同吗? 提示:不同. 问题3:该志愿者从北京到南京共有多少种不同的方法? 提示:7+5=12(种). 2.甲盒中有3个不同的红球,乙盒中有5个不同的白球,某同学要从甲盒或乙盒中摸出一球. 问题4:不同的摸法有多少种? 提示:3+5=8(种). 3.某班有男生26人,女生24人,从中选一位同学为生活委员. 问题5:不同选法的种数为多少? 提示:26+24=50.

完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法. 1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,但需在天津停留,已知从北京到天津有7次航班,从天津到南京有5列火车.问题1:该志愿者从北京到南京需要经历几个步骤? 提示:两个,即从北京到天津、从天津到南京. 问题2:这几个步骤之间相互有影响吗? 提示:没有,第一个步骤采取什么方式完成与第二个步骤采用的方式没有任何关系.问题3:该志愿者从北京到南京共有多少种不同的方法? 提示:7×5=35 种. 2.若x∈{2,3,5},y∈{6,7,8}. 问题4:能组成的集合{x,y}的个数为多少? 提示:3×3=9(个). 3.某班有男生26人,女生24人,从中选一位男同学和一位女同学担任生活委员.问题5:不同的选法的种数为多少? 提示:26×24=624种. 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n 种不同的方法. 1.分类计数原理中的每一种方法都可以完成这件事情,而分步计数原理的每一个步骤只是完成这件事情的中间环节,不能独立完成这件事情.

高中数学 1_1 两个基本计数原理教案1 苏教版选修2-31

教学过程: 学生探究过程: 问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车 有4 班, 汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。 问题 2. 如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条。从A 村经B 村去C 村,共有多少种不同的走法? 分析: 从A 村经 B 村去C 村有2步, 第一步, 由A 村去B 村有3种方法, 第二步, 由B 村去C 村有3种方法, 所以 从A 村经 B 村去C 村共有 3 ×2 = 6 种不同的方法。 分类计数原理 完成一件事,有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法。那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法。 A B C 北 南 中 北 南

分步计数原理完成一件事,需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有 N=m1×m2×…×m n 种不同的方法。 、㈢例题 1.某班级有男三好学生5人,女三好学生4人。 (1)从中任选一人去领奖, 有多少种不同的选法? (2) 从中任选男、女三好学生各一人去参加座谈会, 有多少种不同的选法? 分析: (1) 完成从三好学生中任选一人去领奖这件事,共有2类办法, 第一类办法, 从男三好学生中任选一人, 共有m1 = 5 种不同的方法; 第二类办法, 从女三好学生中任选一人, 共有m2 = 4 种不同的方法; 所以, 根据分类原理,得到不同选法种数共有N = 5 + 4 = 9 种。 (2) 完成从三好学生中任选男、女各一人去参加座谈会这件事, 需分2步完成, 第一步, 选一名男三好学生,有m1 = 5 种方法; 第二步, 选一名女三好学生,有m2 = 4 种方法; 所以, 根据分步原理, 得到不同选法种数共有N = 5 ×4 = 20 种。 例2 1在图1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法? 2在图1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法 图见书本第7页 分析略 例3为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信箱中,

两个计数原理

两个计数原理 两个基本原理 1.加法原理: 2.乘法原理: 1.现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人他们自愿组成数学课外小组。 (1)选其中一人为负责人,有多少种不同选法? (2)每班选一名组长,有多少不同选法? (3)推选二人作中心发言,这二人需要来自不同班级,有多少种不同选法? 2.(1)在连接正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个? (2)四名运动员争夺三项冠军,不同结果最多有多少种? (3)四名运动员参加三项比赛,每人限报一项,不同的报名方法有多少种? 3.(1)从1到200的自然数中,各个数位上不含有数字8的有多少个? (2)由数字1、2、3、4、5组成没有重复数字,且数字1和2不相邻的五位数,求这种一位数个数? (3)由数字0、1、2、3、4组成没有重复数字的五位数,求这种五位数的个数? (4)由数字0、1、2、3、4组成没有重复数字的五位偶数,求这种五位偶数的个数。 (5)由数字0、1、2、3、4组成没重复数字的五位数,其中能被4整除的有多少个? 4.直线方程Ax+13y=0,若从0、1、2、3、5、7六个数字中每次取两个不同的数作为A、B的值,则表示不同直线条数为() A.2条B.12条C.22条D.25条 5.三边长均为整数,且最大边长为11的三角形个数为() A.25 B.26 C.36 D.37 6.若x,yEN+,且x+y=6,则有序自然数对(x,y)有多少个() A.11 B.13 C.14 D.15 7.某电话号码为168—×××××若后面的五位数字,由6或8组成,则这咱电话号码共有()A.20 B.25 C.32 D.60 8.某人射击8枪,命中4枪,恰有3枪连在一起的数是() A.720 B.480 C.224 D.20 9.已知集合} , 10 2 | {xEZ x x A≤ ≤ - =m,nEA,方程1 2 2 2 = + n y m x ,表示长轴,在x轴上椭圆,则这样椭圆共有几个() A.45 B.55 C.78 D.91 10.十字路口来往车辆,若不允许车辆回头,共有种不同行车路线。 11.不通过乘:[(a1+a2)(b1+b2+b3)+c1+c2](d1+d2+d3),展开共有项 12.三位正整数全部印出来,“0”这个字一共有个。 13.有壹元币3张,伍元币1张,拾元币2张,可以组成种不同币值 14.30030能被个不同的偶数整除。 15.(1)用红、黄、蓝、黑4种不同的颜色涂入图中A、B、C、D四个区域内,要求相邻区域的涂色不得相同,则不同涂色方法共有多少 (2)用五种不同颜色经图中4个区域涂色,如果每一个区域涂一种颜色,相邻区域不同色共有多少种涂色方法 16.在某个城市中,M,N两地之间有整齐的道路网,若规定只能向东或向北两个方向自沿图中路线前进,则从M到N不同的走法共有多少种?

基本计数原理

基本计数原理 一、主要内容 一般计数原理部分的考试,分为两种,一是排列组合二项式定理单独出题,二是在概率中需要用到排列组合二项式定理。 1、基本计数原理 2、排列和组合 3、常用方法 二、知识梳理 1、基本计数原理 (1)分类加法计数原理 从甲地到乙地,可乘坐三类交通工具:可以乘火车,可以坐汽车,还可以乘轮船,假定火车每日1班,汽车每日3班,轮船每日2班,那么一天中从甲地到乙地有多少种不同的走法?(1+3+2=6种) 做一件事,完成它有n 类办法,在第一类办法中,有1m 种不同的方法,在第二类办法中,有2m 种不同的方法,以此类推,在第n 类办法中,有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法。 (2)分步乘法计数原理。 某中学的阅览室有50本不同的科技书,80本不同的文艺书,现在张三同学想借1本科技书和1本文艺书,共有多少种借法?(50*80=4000) 做一件事,完成它需要分成n 个步骤,做第一个步骤有 1m 种不同的方法,做第二个步骤有2m 种不同的方法,以此类推,做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ???=...21种不同的方法。 以上两个基本计数原理是解决计数问题最基本的理论依据。他们分别给出了两种不同方式完成一件事的方法总数的不同计算方法。 注意:分类要“不重不漏”,每类的每一种方法都能独立完成事件; 分步要“步骤完整”,每一步不能完成事件,只有各步依次都完成,才能完成事件。

2、排列与组合 (1)排列 有红球、白球、黄球各一个,现从这三个小球中任取两个,分别放入甲、乙盒子里,有多少种不同的方法?(3*2=6) 我们把被取的对象叫做元素。取出的元素按照已知的顺序排成一列,我们称它为该问题的一个排列。 一般地,从n 个不同元素中任取出)(n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 两个排列相同,则组成排列的元素相同,并且元素的排列顺序也相同。 从n 个不同元素中取出)(n m m ≤个元素的所有排列的个数,叫做从n 个不同元素中取出 m 个元素的排列数,用符号m n A 表示。 根据分步乘法计数原理,得到公式)1()2)(1(+---=m n n n n A m n 这里+∈N m n ,,并且n m ≤,这个公式叫做排列数公式。 一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,这时n m =,则有123)2()1(????-?-?= n n n A m n ,这个公式是由1到n 。我们把正整数1到n 的连 乘积,叫做n 的阶乘,用!n 表示。所以n 个不同元素的全排列数公式可以写成!n A n n = 排列数的公式还有下面的另一种形式:)! (!m n n A m n -=,我们规定1!0=。 (2)组合 有红球、黄球、白球各一个,从这三个小球中,任意取出两个小球,共有多少种不同的取法?(与顺序无关,共3种) 一般地,从n 个不同元素中,任意取出)(n m m ≤个元素并成一组,叫做从n 个不同元素中任取m 个元素的一个组合。 从n 个不同元素中,任意取出)(n m m ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号m n C 表示。 一般地,从n 个不同元素中,任取m 个元素的排列,可以分两步完成:

两个基本计数原理的教学反思

两个基本计数原理的教学反思 一、教材分析 《课程标准》对本章的教学侧重点做了界定:“计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具”。 本节课讲的两个基本计数原理是本章的重点内容,是人类在大量的实践经验的基础上归纳出来的基本规律。它们不仅是推导排列数组合数计算公式的依据,而且其基本思想方法贯穿在解决本章应用问题的始终。 二、学情分析 高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。但在合作交流意识欠缺,有待加强。 三、目标分析 ⑴知识与技能 ①掌握分类计数原理与分步计数原理的内容 ②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题. ⑵过程与方法 ①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用 ②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题 ⑶情感、态度、价值观 树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣。 四、教学重难点分析 教学重点:分类计数原理与分步计数原理的掌握 教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.五、教法、学法分析 教法分析: ①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。 ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。 两个计数原理与排列、组合 1.分类加法计数原理(也称加法原理): N=m1+m2+……+mn. 2.分步乘法计数原理(也称乘法原理): N=m1×m2×…×mn. 3.排列的定义:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成

1.1两个基本计数原理(二)教案

备课时间年月日[来源:学科网][来源:学#科#网 Z#X#X#K] 编写: 上课时间[来源:https://www.wendangku.net/doc/7914994995.html,] 第周周月日[来 源:Z_xx_https://www.wendangku.net/doc/7914994995.html,][来源:学科网] 班级节次 课题 1.1两个基本计数原理(二)总课时数第节 教学目标1、能根据具体问题的特征,选择运用分类计数原理、分步计数原理; 2、能综合运用两个原理解决一些简单的实际问题; 3、会用列举法解一些简单问题,并体会两个原理的作用. 重难 点 综合运用两个基本原理解决一些简单的实际问题;准确选用两种基本原理.教学 参考 教材、教参 授课方法合作探究、讲授 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计复习回顾: 分类计数原理: 分步计数原理: 分类计数原理与分步计数原理的区别与联系 问题 1. 某电脑用户计划使用不超过500元的 资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买3盒,磁 盘至少买2盒,问有多少种不同的选购方式? 问题 2.等腰三角形的三边均为正整数,且其 周长不大于10,这样不同形状的三角形的种数 为多少? 问题 3.将3种作物种植在如图所示的5块试 验田里,每块种植一种作物,且相邻的试验田 不能种植同一种作物,不同的种植方法共有多 少种? 当堂检测 1、某巡洋舰上有一 排四根信号旗杆,每 根旗杆上可以挂红 色、绿色、黄色三种 信号旗中的一面(每 根旗杆必须挂一 面),则这排信号旗 杆所发出的信号种 数为. 2、有三个车队分别 有5辆、6辆、7辆 车,现欲从其中两个 车队各抽掉一辆车 外出执行任务,设不 同的抽调方案数为 n,则n的值为 . 3、某同学逛书店, 发现三本喜欢的书, 决定至少买其中一 本,则购买方案有 种

两个计数原理与排列组合知识点及例题

两个计数原理与排列组合知识点及例题两个计数原理内容 1、分类计数原理: 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法. 2、分步计数原理: 完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法. 例题分析 例1 某学校食堂备有5种素菜、3种荤菜、2种汤。现要配成一荤一素一汤的套餐。问可以配制出多少种不同的品种 ( 分析:1、完成的这件事是什么 2、如何完成这件事(配一个荤菜、配一个素菜、配一汤) 3、它们属于分类还是分步(是否独立完成) 4、运用哪个计数原理 5、进行计算. 解:属于分步:第一步配一个荤菜有3种选择 第二步配一个素菜有5种选择 。 第三步配一个汤有2种选择 共有N=3×5×2=30(种) 例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。 (1)从书架上任取一本书,有多少种不同的取法 * (2)从书架上任取一本数学书和一本语文书,有多少种不同的取法 (1)分析:1、完成的这件事是什么 2、如何完成这件事 3、它们属于分类还是分步(是否独立完成) 4、运用哪个计数原理 5、进行计算。 解:属于分类:第一类从上层取一本书有5种选择 、 第二类从下层取一本书有4种选择 共有N=5+4=9(种) (2)分析:1、完成的这件事是什么 2、如何完成这件事 3、它们属于分类还是分步(是否独立完成) 4、运用哪个计数原理 5、进行计算. — 解:属于分步:第一步从上层取一本书有5种选择 第二步从下层取一本书有4种选择 共有N=5×4=20(种) 例3、有1、2、3、4、5五个数字. (1)可以组成多少个不同的三位数 (2)可以组成多少个无重复数字的三位数 (3)可以组成多少个无重复数字的偶数的三位数 — (1)分析:1、完成的这件事是什么 2、如何完成这件事(配百位数、配十位数、配个位数) 3、它们属于分类还是分步(是否独立完成) 4、运用哪个计数原理 5、进行计算.

苏教版数学高二-数学苏教版选修2-3导学案 1.1 两个基本计数原理

1.1 两个基本计数原理 1.分类计数原理 完成一件事,有n 类方式,在第1类方式中有m 1种不同的方法,在第2类方式中有m 2种不同的方法,……,在第n 类方式中有m n 种不同的方法,那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法.分类计数原理又称为加法原理. 预习交流1 应用分类计数原理的原则是什么? 提示:做一件事有n 类方式,每一类方式中的每一种方法均完成了这件事. 2.分步计数原理 完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法.分步计数原理又称为乘法原理. 预习交流2 应用分步计数原理的原则是什么? 提示: 做一件事要分n 个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事. 一、分类计数原理问题 从甲地到乙地每天有火车3班,汽车8班,飞机2班,轮船2班,问一天内乘坐班次不同的运输工具由甲地到乙地,有多少种不同的走法? 思路分析:由于每班火车、汽车、飞机、轮船均能实现从甲地到乙地,因此利用分类计数原理.

解:根据运输工具可分四类: 第1类是乘坐火车,有3种不同的走法; 第2类是乘坐汽车,有8种不同的走法; 第3类是乘坐飞机,有2种不同的走法; 第4类是乘坐轮船,有2种不同的走法; 根据分类计数原理,共有不同的走法的种数是N=3+8+2+2=15. 设有5幅不同的油画,2幅不同的国画,7幅不同的水彩画.从这些画中只选一幅布置房间,有__________种不同的选法. 答案:14 解析:根据分类计数原理,不同的选法有N=5+2+7=14种. 如果完成一件事有n类方式,每类方式彼此之间是相互独立的,无论哪一种方式的每种方法都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理(加法原理). 二、分步计数原理问题 有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红、白、黄小球各1个,有多少种不同的取法? 思路分析:要从盒子里取到红、白、黄小球各1个,应分三个步骤,并且这三个步骤均完成时,才完成这件事,故应用分步计数原理. 解:分三步完成: 第1步是取红球,有6种不同的取法; 第2步是取白球,有5种不同的取法; 第3步是取黄球,有4种不同的取法; 根据分步计数原理,不同取法的种数为N=6×5×4=120. 现有高一学生9人,高二学生12人,高三学生7人自发组织参加数学课外活动小组,为便于管理,每年级各选一名组长,有__________种不同的选法. 答案:756 解析:根据分步计数原理有N=9×12×7=756种不同的选法. 如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有步骤才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数就用分步计数原理(乘法原理). 1.两个书橱,一个书橱内有7本不同的小说,另一个书橱内有5本不同的教科书.现从两个书橱任取一本书的取法有__________种. 答案:12 解析:根据分类计数原理,不同的取法有N=7+5=12种. 2.教学大楼有5层,每层均有2个楼梯,由1楼到5楼的走法有__________种. 答案:16 解析:根据分步计数原理,不同的走法有N=2×2×2×2=16种. 3.现有高一学生9人,高二学生12人,高三学生7人,从中推选两名来自不同年级的

基本计数原理的综合应用

基本计数原理的综合应用 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘: 正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 知识内容

相关文档
相关文档 最新文档