文档库 最新最全的文档下载
当前位置:文档库 › 与圆相关的证明和计算 -

与圆相关的证明和计算 -

与圆相关的证明和计算 -
与圆相关的证明和计算 -

F

E O Q P D C B A 与圆相关的证明和计算

1. 如图, ⊙O 直径CD⊥AB 于E, AF⊥B D 于F, 交CD 的延长线于H, 连AC.

(1) 求证:AC =AH ;

(2) 若AB

==5, 求⊙O 的半径.

2.如图,在⊙O 中,AB 是直径,弦CD ⊥AB 于点H ,E 为AB 延长线上一点,CE 交⊙O 于点F ;

⑴求证:BF 平分∠DFE ;

⑵若DF=EF ,BE=5,CH=3,求⊙O 的半径;

3.已知:如图,ABC ?内接于O ,AB 为直径,弦CE AB ⊥于E ,C 是弧AD 的中点,连结BD ,连结AD ,分别交CE 、BC 于点P 、Q .

(1)求证:P 是AQ 的中点;

(2)若3tan ,84ABC CF ∠=

=,求CQ 的长;

H

A

圆中的证明与计算

圆中的证明与计算及圆与三角形、四边形 知识点圆中的重要知识点 【知识梳理】 1、圆中的重要概念 2、圆中的重要定理 3、易与圆结合的其他知识 【例题精讲一】垂径定理 例1.1、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°。(1)求证:弧CF=弧BC;(2)若CD=6,分别求BE、GF的长。

(1)求证:AD=AN;(2)若AB=2 4,ON=1,求⊙O的半径。 3、如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5。 (1)如图(1),若点P是弧AB的中点,求PA的长;(2)如图(2),若点P是弧BC的中点,求PA的长。

【课堂练习】 1、如图,AB为⊙O的直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于F,连接BF。 (1)求证:BF平分∠DFE;(2)若EF=DF,BE=5,CH=3,求⊙O半径。 2、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF。 (1)求证:∠BAD=∠F;(2)若EF=25,AC=4,求⊙O的半径。

【例题精讲二】圆周角定理 例2.1、如图,CD为⊙O的直径,AB、AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E。 (1)求证:AB=AC;(2)若DE=2,CE=10,求AC的长。 2、在△ABC中,以AC边为直径的⊙O交BC于点D,在AD上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H。 (1)求证:AC⊥BH;(2)若∠ABC=45°,AC=10,BD=8,求CE的长。

中考《圆》有关的证明和计算

半径,证垂直”,难点在于如何证明两线垂直 例1 如图,在△ ABC中,AB=AC,以AB为直径的O O交BC于D,交AC于E, B为切点的切线交OD延长线于F. 求证:EF与O O相切. 例2 如图,AD是/ BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与O O相切. 证明一:作直径AE,连结EC. ?/ AD是/ BAC的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2=Z 1+ / DAC. ???/ 2=Z B+ / DAB , ???/ 仁/ B. 又???/ B= / E, ???/ 仁/ E ?/ AE是O O的直径, ?AC 丄EC,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA丄PA. ? PA与O O相切. 证明二:延长AD交O O于E,连结OA , OE. ?/ AD是/ BAC的平分线, ?BE=C1E, c ? OE 丄BC. ?/ E+/ BDE=900. ?/ OA=OE , ? / E=/ 1.

例5 如图,AB 是O O 的直径,CD 丄AB ,且 OA 2=OD ? OP. 求证:PC 是O O 的切线. 说明: 求证: ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, ???/ 1 + Z PAD=90 0 即OA 丄PA. ? PA 与O O 相切 此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用 如图,AB=AC , AB 是O O 的直径,O O 交BC 于D , DM 与O O 相切. 例4 如图,已知:AB 是O O 的直径,点 C 在O O 上,且/ CAB=30°, BD=OB , D 在AB 的延长线上 求证:DC 是O O 的切线

中考数学总复习专题六圆的有关证明与计算试题新人教版

专题六圆的有关证明与计算 圆的切线的判定与性质 【例1】(2016·临夏州)如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,⊙O经过A,B,D三点. (1)求证:AB是⊙O的直径; (2)判断DE与⊙O的位置关系,并加以证明; (3)若⊙O的半径为3,∠BAC=60°,求DE的长. 分析:(1)连接AD,证AD⊥BC可得;(2)连接OD,利用中位线定理得到OD与AC平行,可证∠ODE为直角,由OD为半径,可证DE与圆O相切;(3)连接BF,先证三角形ABC为等边三角形,再求出BF的长,由DE为三角形CBF中位线,即可求出DE的长. 解:(1)连接AD,∵AB=AC,BD=DC,∴AD⊥BC,∴∠ADB=90°,∴AB为圆O的直径 (2)DE与圆O相切,证明:连接OD,∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∵OD为圆的半径,∴DE与圆O相切 (3)∵AB=AC,∠BAC=60°,∴△ABC为等边三角形,∴AB=AC=BC=6,连接BF,∵AB为圆O的直径,∴∠AFB=∠DEC=90°,∴AF=CF=3,DE∥BF,∵D为BC的中点,∴E为CF的中点,即DE为△BCF中位线,在Rt△ABF中,AB=6,AF=3,根据勾股定理得BF=错误!=3错误!,则DE=错误!BF=错误! 圆与相似 【例2】(2016·泸州)如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC. (1)求证:BE是⊙O的切线; (2)已知CG∥EB,且CG与BD,BA分别相交于点F,G,若BG·BA=48,FG=2,DF=2BF,求AH的值. 分析:(1)证∠EBD=90°即可;(2)由△ABC∽△CBG得错误!=错误!,可求出BC,再由△BFC∽△BCD得BC2=BF·BD,可求出BF,再求出CF,CG,GB,通过计算发现CG=AG,可证CH=CB,即可求出AC. 解:(1)连接CD,∵BD是直径,∴∠BCD=90°,即∠D+∠CBD=90°,∵∠A=∠D,∠A=∠EBC,∴∠CBD+∠EBC=90°,∴BE⊥BD,∴BE是⊙O切线 (2)∵CG∥EB,∴∠BCG=∠EBC,∴∠A=∠BCG,又∵∠CBG=∠ABC,∴△ABC∽△ CBG,∴BC BG =\f(AB,BC),即BC2=BG·BA=48,∴BC=4错误!,∵CG∥EB,∴CF⊥BD,∴△BFC∽△BCD,∴BC2=BF·BD,∵DF=2BF,∴BF=4,在Rt△BCF中,CF= \r(BC2-FB2)=42,∴CG=CF+FG=5错误!,在Rt△BFG中,BG=错误!=3错误!,∵

圆的证明与计算

以圆为背景的证明、动态探究题 1. 如图,在Rt△ABC中,ZABC=90 °,点M是AC的中点,以AB为直径作O O 分别交AC, BM于点D , E. (1) 求证:MD=ME (2) _______________________________________________ 填空:①若 AB=6,当AD=2DM 时,DE= __________________________ ; ②连接0D,OE,当/A的度数为_____________ 时,四边形ODME是菱形. 2. 如图,CD是GO的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作GO的切线PA,PB,切点分别为点A,B. (1)连接AC,若GAPO=30。,试证明CACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP= _______ cm时,四边形AOBP是正方形.

3?如图,AB是半圆0的直径,点P是半圆上不与点A, B重合的一个动点,延长BP到点C,使PC= PB, D是AC的中点,连接PD, P0. (1)求证:△CDP^△OB; (2)填空: ①若AB = 4,则四边形AOPD的最大面积为__________________ ; ②连接0D,当Z PBA的度数为_______ 时,四边形BPDO是菱形. 4. 如图,在。0中,AB是。0的直径,AC是。0的弦,过点C作。0的切线

交BA 的延长线于点P ,连接BC. (1)求证:/ PCA= ZB; (2)已知Z P=40 °,AB=12cm,点Q 在优弧AC 上,从点A 开始以n cm/s 的速度 逆时针运动到点C 停止(点Q 与点A 、C 不重合),设运动时间为ts. 5. 如图,在 Rt △ABC 中,Z ACB=90 °以AC 为直径的。O 与AB 边交于点D,过 点D 作。O 的切线交BC 于点E 连接OE,。O 的半径为 3 。 (1)求证:OE//AB; ① 当t= ② 当t= 时,以点A 、Q 、B 、C 为顶点的四边形面积最大 时,△ABQ 与A ABC 全等。 (2)①当BC= ________ 时, ②当BC= _______ 时, 四边形ODEC 是正方形 AD=3DE.

九年级数学圆中的证明与计算(二)

1、如图,AB是⊙O的直径,D为弧AC的中点,DE⊥AB于E,交AC于F,AC、BD交于点G。 (1)求证:①AC=2DE;②OF∥BD;(2)若AB=10,AC=8,求AF的长。 【例题精讲一】切线的性质 例1.1、如图,AB为⊙O的直径,CD为⊙O的弦,且AB⊥CD于E,F为弧AD上一点,BF交CD于G,FH切⊙O于点F,交CD的延长线于H。 (1)求证:FH=GH;(2)若AB=2FH,GF=3 2,求AG的长。

2、如图,已知直线AB 与⊙O 相切于点A ,弦CD ∥AB 。 (1)如图1,求证:AC =AD ; (2)如图2,E 、F 为⊙O 上两点,且∠CDE =∠ADF 。若⊙O 的半径为 2 5 ,CD =4,求EF 的长。 3、如图,正方形ABCD ,以BC 为直径在正方形内作半圆O ,过D 作DE 与半圆O 相切于点E ,连OE 交AB 于F 。 (1)如图1,连OD 、DF ,求证:∠ODF =45°; (2)如图2,过B 作BM ∥DF 交OF 于G ,交⊙O 于点M 。若AD =6,求BM 的长。

【课堂练习】 1、如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC、AB分别相交于点E、F。 (1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,∠B=2∠AFH,⊙O的半径为5,求FH的长。 2、如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于E,点O在AB上,以OA为半径的圆,交AB于D,交AC于G,且点E在⊙O上,连接DE,BF切⊙O于点F。 (1)求证:BE=BF;(2)若⊙O的半径为R,AG=R+1,CE=R-1,求弦AG的长。

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

圆的证明和计算

圆的证明和计算 题型一:图形主要以圆和三角形(多为等腰三角形或直角三角形)组成; 依据所给条件判定圆的切线或已知圆的切线,求图中线段长度或角的度数; 主要考查知识有切线的判定、切线的性质、勾股定理、等腰三角形性质、直角三角形性质(斜边中线等于斜边一半、30°所对直角边等于斜边一半等)及解决圆的问题中常加辅助线(已知切线连半径、见直径想直角等)等等。 教材原型题:(基本图形为圆和等腰三角形) 1、(P45页例1)已知:如图,直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB 。 求证:直线AB 是⊙O 的切线。 2、(P73页第4题)如图,AB 与⊙O 相切于点C ,OA=OB ,⊙O 的直径为8cm ,AB=10cm ,求OA 长. 3、(P45页练习1)如图,AB 是⊙O 的直径,∠ABT=45°,AT=AB , 求证:AT 是⊙O 的切线。 配套练习:(1、2、3、4题针对原型题1、2; 5、6、7、8针对原型题3) 1、(2009新疆乌鲁木齐市)如图5,在ABC △中,AB AC =,以AB 为直径的O ⊙交BC 于点M ,MN AC ⊥ 于点N . (1)求证MN 是O ⊙的切线; (2)若1202BAC AB ∠==° ,,求图中阴影部分的面积. 2、(2009年漳州)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,AC CD =,30D ∠=°, (1)求证:CD 是O ⊙的切线; (2)若O ⊙的半径为3,求BC 的长.(结果保留π) 3、(08福建厦门23题)已知:如图,ABC △中,AB AC =,以AB 为直 径的O 交BC 于点P ,PD AC ⊥于点D . (1)求证:PD 是O 的切线; (2)若1202CAB AB ∠==,,求BC 的值. O B A B

2018届中考数学复习专题题型(七)--圆的有关计算与证明

(2017浙江衢州第19题)如图,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆O 于点D 。连结OD ,作BE ⊥CD 于点E ,交半圆O 于点F 。已知CE=12,BE=9[来源:学#科#网Z#X#X#K] (1)求证:△COD ∽△CBE ; (2)求半圆O 的半径r 的长 : 试题解析: (1)∵CD 切半圆O 于点D , ∴CD ⊥OD , ∴∠CDO=90°, ∵BE ⊥CD , ∴∠E=90°=∠CDO , 又∵∠C=∠C , ∴△COD ∽△CBE . (2)在Rt △BEC 中,CE=12,BE=9, ∴22CE BE +=15, ∵△COD ∽△CBE . ∴OD OC BE BC =,即15915r r -=, 解得:r= 458. 考点:1. 切线的性质;2.相似三角形的判定与性质. 2.(2017山东德州第20题)如图,已知Rt ΔABC,∠C=90°,D 为BC 的中点.以AC 为直径的圆O 交AB 于点E. (1)求证:DE 是圆O 的切线. (2)若AE:EB=1:2,BC=6,求AE 的长.

(1)如图所示,连接OE,CE ∵AC是圆O的直径 ∴∠AEC=∠BEC=90° ∵D是BC的中点 ∴ED=1 2 BC=DC ∴∠1=∠2 ∵OE=OC ∴∠3=∠4 ∴∠1+∠3=∠2+∠4,即∠OED=∠ACD ∵∠ACD=90° ∴∠OED=90°,即OE⊥DE 又∵E是圆O上的一点 ∴DE是圆O的切线.

考点:圆切线判定定理及相似三角形 3.(2017甘肃庆阳第27题)如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C . (1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标; (2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线. (1)∵A 的坐标为(0,6),N (0,2), ∴AN=4, ∵∠ABN=30°,∠ANB=90°, ∴AB=2AN=8, ∴由勾股定理可知:223AB AN -=, ∴B (32). (2)连接MC ,NC ∵AN 是⊙M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,

圆的证明与计算 专 题

2012中考数学复习《圆的证明与计算》专题 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 一、考点分析: 1.圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆 三、解题秘笈: 1、判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线. 2、与圆有关的计算: 计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数. (2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。 (3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

圆的证明与计算

以圆为背景的证明、动态探究题 1.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E. (1)求证:MD=ME (2)填空:①若AB=6,当AD=2DM时,DE=___________; ②连接OD,OE,当∠A的度数为____________时,四边形ODME是菱形. 2.如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P 作⊙O的切线PA,PB,切点分别为点A,B. (1)连接AC,若⊙APO=30°,试证明⊙ACP是等腰三角形; (2)填空: ①当DP= cm时,四边形AOBD是菱形; ②当DP=________cm时,四边形AOBP是正方形.

3.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO. (1)求证:△CDP≌△POB; (2)填空: ①若AB=4,则四边形AOPD的最大面积为_________________; ②连接OD,当∠PBA的度数为________时,四边形BPDO是菱形. 4.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线

交BA的延长线于点P,连接BC. (1)求证:∠PCA=∠B; (2)已知∠P=40°,AB=12cm,点Q在优弧AC上,从点A开始以πcm/s的速度逆时针运动到点C停止(点Q与点A、C不重合),设运动时间为ts. ①当t=________时,以点A、Q、B、C为顶点的四边形面积最大。 ②当t=________时,△ABQ与△ABC全等。 5.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线交BC于点E,连接OE,⊙O的半径为3。 (1)求证:OE∥AB; (2)①当BC=_________时,四边形ODEC是正方形。 ②当BC=_________时,AD=3DE.

与圆有关的证明与计算

与圆有关的证明与计算 1.如图,在Rt △ABC 中,∠C =90°,点D 、E 、F 分别在AC 、BC 、AB 的边上,以AF 为直径的⊙O 恰好经过点D 、E ,且DE =EF . (1)求证:BC 是⊙O 的切线; (2)若∠B =30°,求CE CD 的值. 第1题图 (1)证明:如解图,连接OD ,OE ,DF , ∵AF 是⊙O 的直径, ∴∠ADF =90°, ∵∠C =90°, ∴DF ∥BC , ∵DE =EF , ∴DE ︵=EF ︵, ∴OE ⊥DF , ∴OE ⊥BC , ∵OE 是⊙O 的半径, ∴BC 是⊙O 的切线; 第1题解图 (2)解:∵∠B =30°,且OE ⊥BC , ∴∠BOE =60°, ∵OE =OF , ∴△OEF 是等边三角形, ∴∠OEF =60°, 又∵DE =EF ,OE ⊥DF , ∴∠OED =∠OEF =60°, ∴∠CED =30°, ∴∠CDE =60°, 在Rt △CDE 中, ∵tan ∠CDE =tan60°=CE CD =3,

∴ CE CD = 3. 2.如图,在Rt △BGF 中,∠F =90°,AB 是⊙O 的直径,⊙O 交BF 于点E ,交GF 于点D ,AE ⊥OD 于点C ,连接BD . (1)求证:GF 是⊙O 的切线; (2)若OC =2,AE =43,求∠DBF 的度数. 第2题图 (1)证明:∵AB 是⊙O 的直径,∴∠AEB =90°, 又∵∠F =90°, ∴∠AEB =∠F ,∴AE ∥GF , ∵AE ⊥OD ,∴OD ⊥GF , ∵OD 是⊙O 的半径, ∴GF 是⊙O 的切线; (2)解:∵OD ⊥AE , ∴AC =CE =1 2AE =23, ∵OA =OB , ∴OC 是△ABE 的中位线, ∴BE =2OC =4, ∴在Rt △AOC 中,OA =OC 2+AC 2=22+(23)2=4, ∵∠CEF =∠DCE =∠F =90°, ∴四边形CDFE 是矩形, ∴DF =CE =23,EF =CD =OD -OC =4-2=2, ∴BF =BE +EF =4+2=6, ∴tan ∠DBF =DF BF =236=3 3, ∴∠DBF =30°. 3.如图,点C 是⊙O 的直径AB 的延长线上一点,点D 在⊙O 上,且∠DAC =30°,∠BDC =1 2∠ABD . (1)求证:CD 是⊙O 的切线; (2)若OF ∥AD 分别交BD 、CD 于点E 、F ,BD =2,求OE 、CF 的长.

《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延

中考数学压轴题专项练习:圆的证明与计算题及答案

题库:圆的证明与计算题 1.如图,AB是⊙O的直径,点D是?AE上的一点,且∠BDE=∠CBE,BD与AE 交于点F. (1)求证:BC是⊙O的切线; (2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长. 第1题图 (1)证明:∵AB是⊙O的直径, ∴∠AEB=90°, ∴∠EAB+∠EBA=90°, ∵∠BDE=∠EAB,∠BDE=∠CBE, ∴∠EAB=∠CBE, ∴∠ABE+∠CBE=90°, ∴CB⊥AB, ∵AB是⊙O的直径, ∴BC是⊙O的切线; (2)解:∵BD平分∠ABE, ∴∠ABD=∠DBE, 如解图,连接DO,

第1题解图∵OD=OB, ∴∠ODB=∠OBD, ∵∠EBD=∠OBD, ∴∠EBD=∠ODB, ∴OD∥BE, ∴PD PE =PO PB , ∵P A=AO, ∴P A=AO=OB, ∴PO PB =2 3 , ∴PD PE =2 3 , ∴ PD PD+DE =2 3 , ∵DE=2, ∴PD=4. 2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线; (2)若AE=4,cos A =2 5 ,求DF的长. 第2题图 (1)证明:如解图,连接OD, 第2题解图∵OB=OD, ∴∠ODB=∠B, 又∵AB=AC, ∴∠C=∠B, ∴∠ODB=∠C, ∴OD∥AC, ∵DF⊥AC, ∴∠DFC=90°, ∴∠ODF=∠DFC=90°, ∵OD是⊙O的半径, G

∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G , ∴AG =1 2AE =2. ∵cos A =AG OA =2OA =2 5, ∴OA =5, ∴OG =OA 2-AG 2=21, ∵∠ODF =∠DFG =∠OGF =90°, ∴四边形OGFD 为矩形, ∴DF =OG =21. 3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD . (1)求证:AD =AN ; (2)若AB =42,ON =1,求⊙O 的半径. 第3题图 (1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角, ∴∠BAD =∠BCD , ∵AE ⊥CD ,AM ⊥BC ,

与圆的切线有关的计算与证明(2)

与圆的切线有关的计算与证明(1) 类型之一与切线的性质有关的计算或证明 【经典母题】 如图Z12- 1,0 O的切线PC交直径AB的延长线于点P, C为切点,若/ P =30°,0 O的半径为1,贝U PB的长为1 . 图Z12- 1 经典母题答图 【解析】如答图,连结0C. ??PC 为O O 的切线,.?./PC0 = 90 在RtSCP 中,??OC= 1,/P = 30°, ??0P= 20C= 2, ??PB= OP- 0B= 2- 1= 1. 【思想方法】(1)已知圆的切线,可得切线垂直于过切点的半径;⑵已知圆的切线,常作过切点的半径,得到切线与半径垂直. 【中考变形】 [2017天津]已知AB是O 0的直径,AT是O 0的切线,/ ABT= 50°, BT交O0于点C, E是AB上一点,延长CE交O 0于点D. (1) 如图Z12-2①,求/ T和/CDB的大小; (2) 如图②,当BE= BC时,求/ CD0的大小.

解:⑴如答图①,连结AC , ??AT 是。O 的切线,AB 是。O 的直径, ??AT 丄 AB ,即/ TAB = 90°, ? 50°,?d 90°-/ ABT = 40 由AB 是O O 的直径,得/ ACB = 90° ? Q AB = 90°』ABC = 40°,/-CDB =/CAB = 40°; ⑵如答图②,连结AD , 在厶 BCE 中,BE = BC ,/ EBC = 50 ? / BCE =/BEC = 65°, ?/ BAD = /BCD = 65 ? OA = OD ,?/ ODA =/ OAD = 65 ? / ADC =/ ABC = 50°, ? / CDO =/ ODA -/ADC = 65°- 50°= 15 【中考预测】 [2017宿迁]如图Z12-3, AB 与。O 相切于点B , BC 为。O 的弦,OC 丄OA , OA 与BC 相交于点 P. 图 Z12- 2 中考变形答图① 中考变形答图②

圆的计算与证明

圆的计算与证明 1.如图,已知AB是⊙O的直径,PB切⊙O于点B,过点B作BC⊥PO于点D,交⊙O于点C,连接AC、PC (1)求证:PC是⊙O的切线; (2)若∠BPC=60°,PB=3,求阴影部分面积. 2.如图,已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.(1)求证:∠ACD=∠ACF; (2)当AD⊥CD,BE=2cm,CF=8cm,求AD的长. 3.如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D. (1)求证:AB为⊙O的切线; (2)若BC=6,tan∠ABC=,求AD的长.

4.如图,直线MN交⊙O于A,B两点,AC是⊙O直径,∠CAM的平分线交⊙O于点D,过点D 作DE⊥MN于点E. (1)求证:DE是⊙O的切线; (2)若DE=6cm,AE=3cm,求⊙O的半径. 5.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO.若DE=2,∠DP A=45°. (1)求⊙O的半径; (2)求图中阴影部分及△PBF的面积. 6.如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB的垂线,交AB的延长线于点G,垂足为点F,连结AC. (1)求证:AC=CG; (2)若CD=8,OG=10,求⊙O的半径.

7.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,13为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连结OA,且OA∥PE. (1)求证:AP=AO; (2)若弦AB=24,求OP的长. 8.如图,Rt△ABC中,∠ACB=90°,O为△ABC角平分线的交点,以OC为半径的⊙O交△ABC 于D、E、F、G. (1)求证:CD=EF; (2)若⊙O的半径为4,AE=2,求AB的长. 9.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E. (1)求线段DE的长; (2)点O到AB的距离为3,求圆O的半径.

(完整版)圆的证明与计算(精编版)

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周

角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例: 方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需

中考数学专题训练圆的证明与计算

圆的证明与计算 1.如图,已知△ABC内接于⊙O,P是圆外一点,PA为⊙O的切线,且PA =PB,连接OP,线段AB与线段OP相交于点D. (1)求证:PB为⊙O的切线; (2)若PA=4 5 PO,⊙O的半径为10,求线段PD的长. 第1题图(1)证明:如解图,连接OA、OB, 第1题解图∵PA=PB,OA=OB,OP=OP, ∴△OAP≌△OBP(SSS), ∴∠OAP=∠OBP, ∵PA为⊙O的切线, ∴∠OAP=90°, ∴∠OBP=90°, ∵OB为⊙O的半径,

(2)解:∵PA =4 5PO ,⊙O 的半径为10, ∴在Rt △AOP 中,OA =PO 2-(45 PO )2=10, 解得PO = 503 , ∴cos ∠AOP =AO OP =OD AO , ∴OD =6, ∴PD =PO -OD =32 3 . 2. 如图,在△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连接DE . (1)求证:AC 是⊙O 的切线; (2)若cos C =3 5 ,AC =24,求直径AE 的长. 第2题图 (1)证明:∵AB =AC ,AD =DC , ∴∠C =∠B ,∠DAC =∠C , ∴∠DAC =∠B , 又∵∠E =∠B , ∴∠DAC =∠E , ∵AE 是⊙O 的直径, ∴∠ADE =90°, ∴∠E +∠EAD =90°, ∴∠DAC +∠EAD =90°,

∴AE ⊥AC , ∵OA 是⊙O 的半径, ∴AC 是⊙O 的切线; (2)解:如解图,过点D 作DF ⊥AC 于点F , 第2题解图 ∵DA =DC , ∴CF =1 2 AC =12, 在Rt △CDF 中,∵cos C =CF CD =3 5 , ∴DC =20, ∴AD =20, 在Rt △CDF 中,由勾股定理得1622==CF CD DF -, ∵∠ADE =∠DFC =90°,∠E =∠C , ∴△ADE ∽△DFC , ∴AE DC =AD DF , 即 AE 20=16 20 ,解得AE =25, 即⊙O 的直径AE 为25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E ,过点E 作⊙O 的切线EF ,交BC 于点F . (1)求证:EF ⊥BC ; (2)若CD =2,tan C =2,求⊙O 的半径.

初三数学圆中的证明与计算专题

B 圆中的证明与计算复习题 一.近五年广州中考题回顾 1.(2005改编题)如图8,CD 是⊙0的切线,切点为A,AB 是⊙0的直径.E,F ⊙0上的点, (1)求证:∠DAE=∠FDE//A B. (2)若EF //CD,求证:△AEF 是等腰三角形 2.(本小题满分12分2006) 如图7⊙0的半径为1,过点A(2,0)的直线切 ⊙0于点B ,交y 轴于点C. (1)求线段AB 的长; (2)求以直线AC 为图象的一次函数的解析式. 3、(12分2007)在△ABC 中,AB=AC ,内切圆O 与边BC 、AC 、AB 分别切于D 、E 、F. (1 )求证:BF=CE ; (2)若∠C=30°,C E =,求AC. 4、(2008广州)(12分)如图9,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E , 且??BC D E = (1)求证:AC=AE (2)利用尺规作图,分别作线段CE 的垂直平分线 与∠MCE 的平分线,两线交于点F (保留作图痕迹 ,不写作法)求证:EF 平分∠CEN

5.(本小题满分10分2009) 如图10,在⊙O 中,∠ACB=∠BDC=60°,AC=cm 32, (1)求∠BAC 的度数; (2)求⊙O 的周长 二.各地中考题精选 1. 已知:如图,AB 是⊙O 的直径,AD 是弦,OC 垂直AD 于F 交⊙O 于E ,连结DE 、BE , 且∠C =∠BED . (1)求证:AC 是⊙O 的切线; (2)若OA =10,AD =16,求AC 的长. 2. 如图,M P 切O ⊙于点M ,直线P O 交O ⊙于点A 、B ,弦A C M P ∥, (1)求证:M O B C ∥. (2补充)连结CM,当四边形BCMO 为菱形时,求∠P 的度数 或反过来问:当30P ∠=°时,判断四边形BCMO 的形状,并说明理由. 3. 如图,O ⊙的半径为2,直径C D 经过弦A B 的中点G ,若弧AB 的长等于圆周长的16 . (1)填空:cos A C B ∠=____________; (2)求G D G B 的值. C E D A F O B P

九年级数学圆中的证明与计算(一)

圆中的证明与计算之垂径定理、圆周角定理 1、如图,如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是_________。 2、如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线⊙A于M、N两点。若点M的坐标是(-4,-2),则弦MN的长为_________。 【例题精讲一】垂径定理 例1.1、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30°。(1)求证:弧CF=弧BC;(2)若CD=6,分别求BE、GF的长。 2、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。

(1)求证:AD=AN;(2)若AB=2 4,ON=1,求⊙O的半径。 3、如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5。 (1)如图(1),若点P是弧AB的中点,求PA的长;(2)如图(2),若点P是弧BC的中点,求PA的长。【课堂练习】

1、如图,AB为⊙O的直径,弦CD⊥AB于点H,E为AB延长线上一点,CE交⊙O于F,连接BF。 (1)求证:BF平分∠DFE;(2)若EF=DF,BE=5,CH=3,求⊙O半径。 2、如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF。 (1)求证:∠BAD=∠F;(2)若EF=25,AC=4,求⊙O的半径。 【例题精讲二】圆周角定理

例2.1、如图,CD为⊙O的直径,AB、AC为弦,且∠ADC=∠DAB+∠ACD,AB交CD于E。 (1)求证:AB=AC;(2)若DE=2,CE=10,求AC的长。 2、在△ABC中,以AC边为直径的⊙O交BC于点D,在AD上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H。 (1)求证:AC⊥BH;(2)若∠ABC=45°,AC=10,BD=8,求CE的长。 3、如图,⊙O为△ABD的外接圆,E为△ABD的内心,DE的延长线交⊙O于C。 (1)如图1,求证:CE=AC;

圆的相关证明与计算

圆的相关证明与计算(7) 1、如图,正方形ABCD 内接于⊙0,M 为弧AD 中点,连接BM ,CM. (1)求证:BM=CM ; (2)当⊙0的半径为2时,求弧BM 的长。 M 2、如图,A ,P ,B ,C 是圆上的四个点,∠APC=∠CPB=60°AP ,CB 的延长线相交于点D. (1)求证;△ABC 是等边三角形; (2)若∠PAC=90°,AB=2√3,求PD 的长。 D 3、(相似)已知△ABC ,以AB 为直径的⊙0分别交AC 于D ,BC 于E ,连接ED.若ED=EC. (1)求证:AB=AC ; (2)若AB=4,BC=2√3,求CD 的长。 E

4、(相似)如图,AB 为△ABC 外接圆⊙0的直径,点P 是线段CA 延长线上一点,点E 在圆上且满足PE 2=PA ·PC ,连接CE ,AE ,OE ,OE 交CA 于点D. (1)求证:△PAE ∽△PEC ; (2)求证:PE 为⊙0的切线; 5、如图,在矩形ABCD 中,点0在对角线AC 上,以0A 的长半径的⊙0与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE. (1)判断直线CE 与⊙0的位置关系,并证明你的结论; (2)(相似)若tan ∠ACB=√22 .BC=2,求⊙0的半径。 D C 6、如图,在Rt △ABC 与Rt △OCD 中,∠ACB=∠DCO=90°,0为AB 的中点。 (1)求证:∠B=∠ACD ; (2)已知点E 在AB 上,且BC 2=AB ·BE. (相似)(i )若tan ∠ACD=34,BC=10,求CE 的长; (i i )试判定CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并说明理由。

相关文档
相关文档 最新文档