文档库 最新最全的文档下载
当前位置:文档库 › JAK_STAT信号通路研究进展.

JAK_STAT信号通路研究进展.

JAK_STAT信号通路研究进展.
JAK_STAT信号通路研究进展.

彭英才教授,博士生导师,河北大学电子信息工程学院,保定071002

赵新为副教授,日本东京理科大学理学部,河北大学客座教授

刘明研究员,中国科学院微电子研究中心,北京100029

1福间雅夫.应用物理(日文,2002;71:964

2Ono Y.,et al.IEEE Trans.Electron Devices,2000;47:147

3W ang T.H.,et al.Appl.Phys.Lett.,2001;78:2160

4Dutta A.,et al.Jpn.J.Appl.Phys.,2000;39:4647

5李国华.物理,2001;30:436

6裕之.电子通信学会志(日文,1997;80:717

7Peng Y.C.,et al.Semiconductor Photonics and Technology,2000;6:129 8W ang Z.G.,et al.Science in China,2000;43:861

9Hu ffaker P.L.,et al.Appl.Phys.Lett.,1997;70:1781

10王占国.世界科技研究与发展,2000;22:111徐少辉等.物理,2002;31:558

12K ane B.E.Nature,1998;393:133

13Smet J.H.,et al.Nature,2002;415:281

Several Active Fields in the N anometer Q uantum De2 vices

Peng Y ing2cai①,Zhao X in2wei②,Liu Ming③

①Pro fessor,Supervisor o f Ph.D.Candidates,College o f Electronic and In2 formational Engineering,H ebei Univer sity,Baoding071002

②Associate Pro fessor,Department o f Physics,Faculty o f Science,Science Univer sity o f Tokyo.Visiting Pro fessor o f H ebei Univer sity,

③Research Pro fessor,Microelectronic Center,Chinese Academy o f Sciences, Beijing,100029

key w ords nanometer sem iconductor structures,quantum mechanics effect, nanometer quantum devices,new technical revelution

JAK-ST AT信号通路研究进展

陈晓萍徐飞(浙江大学生命科学学院

关键词受体JAK ST AT信号通路

JAK(Janus激酶-STAT(信号转导子和转录激活子信号通路是与细胞生长、增殖和分化关系十分密切的一条细胞信号通路,近年来发展迅速.本文对通路中细胞表面受体、JAK、STAT等几个关键环节的分子结构、相互作用及调控因素进行了总结.

细胞外刺激可通过多条信号通路传递到细胞内,调控相关基因,引导细胞对环境的协调与适应.JAK-ST AT 信号通路是与细胞生长、增殖、分化关系十分密切的一条信号通路,近年来研究十分活跃,尤其在造血过程中的变化已有深入研究[1,2].现将有关进展综述如下.

一、受体家族

JAK-ST AT信号通路的受体是一大类异质性混合成分,包括造血系统中调节细胞增殖与分化的局部介质(细胞因子的受体,某些激素如生长激素和催乳素的受体,以及T淋巴细胞和B淋巴细胞抗原特异性受体.其共同的结构特点是本身不具有酶活性,但胞内段具有酪氨酸蛋白激酶的结合位点.受体与配体结合后,通过与之相联系的酪氨酸蛋白激酶的活化,磷酸化各种靶蛋白的酪氨酸残基来实现信号转导.

根据受体的结构差异,通常分成两大类[3].

(1Ⅰ型受体家族

Ⅰ型受体占绝大部分,包括生长激素、催乳素、多种白介素、集落生长因子等多种活性因子的受体.其结构特点为受体的胞外段有四个半胱氨酸残基和一个与细胞因子结合有关的WSXWS J序列,胞内区无激酶或催化结构域.典型的第二信使无法与其作用.细胞因子受体信号经一组受体偶联的酪氨酸蛋白激酶(PTK s传递,即JAK家族.在大多数受体胞内段的邻膜结构域处有一个八个氨基酸的富含脯氨酸的序列(PRM,也称为Box1. PRM序列对信号传递有决定性作用,它涉及到JAK和受体之间的相互作用.另外,受体结构中还有一个保守的Box2序列.

Ⅰ型受体又可以分为几个亚类(图1:

a.I L-2受体亚族.包括I L-2、I L-15、I L-7、I L-

9、I L-4、I L-4/I L-13等因子的受体.

b.I L-3受体亚族.包括I L-3、I L-5、G M-CSF等的受体.

c.I L-6受体亚族.该亚族包括I L-6、I L-11、LIF、CNTF、OS M、CT-1等因子的受体.

d.PR L受体亚族.包括PR L、G H、E po、m pl等的受体.

?

9

4

1

?

附图主要的I 型受体结构[3]

e.G-CSF 受体亚族.目前仅有G-CSF 受体.(2Ⅱ型受体家族

主要有干扰素α/β、干扰素γ、白介素-10等的受体,其特点是胞外羧基和

氨基端各有数对特征性的半胱氨酸对,它也有Box1和Box2基序.

二、JAK 家族

JAK (Janus kinase 是一种蛋白酪氨酸激酶,迄今为止共发现有4个家族成员,即JAK 1、JAK 2、JAK 3和JAK 4,整个分子可分为7个结构域[4]:

(1J H1,位于羧基末端,具有激酶催化功能.其中有

高度保守的八残基特征性序列FWF.

(2J H2,与激酶功能相关,但不具有直接的催化活性.

(3J H3-J H7,功能不明确,可能与细胞因子受体的结合有关.

JAK 1、JAK 2、Jyk2广泛分布于多种组织细胞,而JAK 3仅见于白细胞中

[5]

.

三、ST ATs 家族

ST ATs (signal transducer and activator of transcription ,

是JAK s 的直接底物,能将信号直接传递到核内,调节特定基因的表达.共包括6个家族成员,即ST AT 1~6.ST AT 蛋白长约800个氨基酸,分子量89~97kDa ,其编码基因在染色体上紧密连锁[6].

结构上ST ATs 具有SH2和SH3功能区,SH2序列高度保守,位于第

600~700位氨基酸之间,与ST ATs 的激活有关.SH3则位于第500~600位氨基酸之间,序列保守性较SH2差,能结合富含脯氨酸的序列,功能尚不明确、此外,ST ATs 还具有DNA 结合区,不同的ST ATs 常有共同的DNA 结合基序,但最佳结合点有差异[7].

四、JAK -ST AT 的信号传递过程

JAK-ST AT 信号传递的基本过程可概括为:①细胞因子与其相应配体结合;②受体和JAK s 发生聚集,邻近的JAK s 相互磷酸化而被活化;③JAK s 的J H1结构域催化ST ATs 上相应部位的酪氨酸残基磷酸化,同时ST ATs 的SH2功能区与受体中磷酸化的酪氨酸残基作用而使

ST ATs 活化;④ST ATs 进入核内同其他一些转录因子相互

作用从而调控基因转录[8].

不同的细胞因子其应答的具体的JAK s -ST ATs 途径各有不同.在I 型细胞因子受体的胞内结构域中,JAK 1和JAK 2定位于一个富含丝氨酸的近膜区域,包括富含

?

051?

脯氨酸的Box1位点.此外,根据受体结构的不同,还可能同羧基端的V-Box、Box2或X-Box位点相作用.JAK1在I型受体复合物中仅起一种辅助作用,它能同G H,I L -2受体的β链,gp130链和gp130的同源物-G-CSF受体相作用.JAK2则能与同聚化的受体链,I L-3受体亚族中的βc链,I L-6/CNTF受体亚族的gp130亚基结合,并导致ST AT5的磷酸化.值得注意的是,JAK2催化ST AT5并不要求ST AT5先与受体的特定位点结合,那样的结合仅增加FAK2和ST AT5之间的作用几率.JAK3主要同I L -2受体亚族的多链受体作用从而引起ST AT5的磷酸化,并且优先同I L-2受体亚族的γc相连.T yk2对Ⅱ型受体的功能有决定作用,其中牵涉到IFNα/β引起的ST AT5的磷酸化[9,10].

结合细胞因子后受体亚基发生二聚化或多聚化[11],并影响与之偶联的JAK s,激活JAK s的自磷酸化.这样, JAK s成为了一个相互转移磷酸基过程中的底物,它们的催化功能因为J H1结构域活化环上的酪氨酸残基的磷酸化而被激活.在免疫斑点实验中酪氨酸残基的磷酸化可以在配体结合后的几分钟内被检测出.进一步的实验证明,JAK的相互磷酸化与ST AT5的功能有关.在JAK2-G yrB蛋白转染的细胞中,JAK的磷酸化伴随着该蛋白的二聚化,其氨基端结构对ST AT5的磷酸化是必需的.在鼠类脂肪细胞或T细胞中T NF或PR L对JAK自激活的影响与二价染色体受体抗体和受体之间的结合类似.对E po-JAK嵌合体的研究同样证明,JAK2受体能独立地磷酸化ST AT5.

对于在I型细胞因子受体中的同源二聚体引起的ST AT5的磷酸化来说,典型的JAK自激活只需JAK2的相互活化,但在多个受体组成的多链受体中可能就较复杂,因为多链受体和I L-5受体的信号转导需要多种JAK之间的相互配合.如在多

链受体引起的ST ATs的磷酸化,就需要两种JAK s的协同作用.这不仅需要JAK1,大多数涉及ST AT5的细胞因子信号的传递也不能缺乏JAK2或JAK3.在I L-2受体β偶联的JAK1的磷酸化中就需要JAK3协助,而I L-5受体复合物中磷酸化的JAK1与βc 的偶联还依赖于磷酸化I L-5受体α的结合.

五、ST AT转移到核内的机制及基因转录的活化[12]

活化的ST AT需要进入核内进一步作用,此过程与ST AT的二聚化,以及ST AT上丝氨酸的状态有关.由于ST AT二聚体是一种相对分子质量较大的蛋白质(84-113ku,进入核内应该是经过了核孔复合体(NPC的主

动转运.Johnson提出了一个ST AT核输入的作用模式, ST AT通过im

portin/Ran系统进入核内.Im portin由α、β两个亚单位组成,α亚单位首先识别要输入蛋白质序列上的核定位信号(N LS,与之形成复合物.复合物与β亚单位结合,进而被锚定于NPC.最后,在G TP结合蛋白“Ran “和其他辅助因子的帮助下进入核内.但目前人们尚未在ST AT上发现N LS,推测ST AT与im portin的结合可能需要配体或受体作为伴随分子的帮助.在G H引起的信号通路中,发现G H受体具有N LS,即-VRVRSK QRN-序列, ST AT有可能是在与G H/G HR/JAK2形成复合物后,即利用了G H受体上的N LS后,被im portin识别、转运至核内.对ST AT1的67kD中心片段与DNA复合物晶体结构的研究表明,ST AT1是通过一个免疫球蛋白样折叠结构与DNA结合的,ST AT氨基端123个氨基酸的晶体结构表明此区域是由8个螺旋组成的一个钩子样的结构,与影响转录的蛋白质相互作用,使ST AT分子形成多聚体并同DNA共价结合.但总的来说,ST AT进入核内后活化基因转录的机制尚不是很明确.

六、JAK-ST AT信号通路的调节及其关闭机制

像其他任何信号通路一样,JAK-ST AT信号通路也有其自身的负反馈调节机制,以免信号通路持续开放造成细胞代谢失常和生理功能紊乱.目前对确切的调控机制尚不十分清楚.一种可能的机制是通过酪氨酸PTP酶的作用使JAK失活而发挥作用.如SHP-1,该分子特异性地作用于血红蛋白受体而抑制配体刺激的酪氨酸磷酸

化,并引起JAK2的去磷酸化.也有报道认为是先由TG F -β活化蛋白酪氨酸PTP酶[13].

另一个重要的抑制信号是SOCS家族(suppressor of cytokine signaling[14],包括CIS(一个编码含SH2结构域蛋白的早期应答基因和其他12个共享C端SOCS box结构域的蛋白.已确认这些蛋白有三种不同的调节机制:①通过对cDNA编码蛋白阻隔,阻断信号传递,如在I L-6;

②双杂交催化,蛋白质与JAK2的激酶结构域相互作用;

③像抗体一样与ST AT分子的SH2结构域特异性结合.这样,当细胞因子激活JAK s后,又诱导了SOCS基因的表达,再通过SOCS蛋白引起JAK-ST AT下调,抑制其生物应答.实验证实,SOCS1(也称为JAB或SSI-1在I L-6刺激20min后被诱导产生,并通过其与JAK的SH2结构域的相互作用而下调I L-6引起的细胞应答,随后SOCS1的表达又在4h内恢复到基础水平.SOCS基因的转录激活至少部分是由于ST AT蛋白的参与.ST AT5和

?

1

5

1

?

ST AT3参与的CIS的表达对SOCS1的表达是极其重要的.SOCS1减弱了包括LIF、oncostain-M、IFNγ、凝血因子、G H在内的一系列细胞因子的生物应答.此外,也降低了JAK s和ST ATs的磷酸化.因此,SOCS可能是一类功能更一般的信号抑制调控因子.细胞因子诱导产生这类蛋白,这些蛋白下调细胞因子的信号,双方就像一个经典的反馈抑制链.

七、其他涉及ST AT的通路[15]

JAK s并非是惟一的一种能活化ST ATs的酪氨酸激酶.PTK s,如EG F受体、PDG F受体等本身就具有酪氨酸激酶的活性,因此它们能够直接将ST ATs磷酸化,而无须JAK s的参与.甚至在无受体参与的情况下,Src家族的一些蛋白质,如Src、Lyn、Lck等可同细胞因子的胞内结构域相作用,其SH2结构域可与偶联后的JAK发生蛋白-蛋白相互作用.在鼠类骨髓细胞中,Lyn的SH2结构域在E po诱导的E po受体的磷酸化时可结合并稳定JAK2的磷酸化状态.

不久前发现,在使用克隆型抗体后,在辅助T细胞(Th细胞中,一个T细胞受体复合物的刺激诱导了ST AT5的磷酸化.该磷酸化过程受Lck的影响.该新发现似乎能够解释以前的一个发现:ST AT5的磷酸化可以因抗原受体和有丝分裂抗Ig-M 抗体的串活所诱导.

T ec酪氨酸激酶家族的成员在造血细胞的信号转导中有重要的地位.该类激酶包括一个plextrin同源结构域和一个SH2结构域.它们可以被gp130或I L-3Rβ或c-

K it所活化.T ec家族成员———Bmx被转染进哺乳动物COS-7细胞中后能诱导ST AT1、ST AT3、ST AT5的磷酸化,进而与DNA结合.

此外,一些嵌合体TE L/JAK2等也可强烈地活化ST AT5并引起淋巴细胞的增殖.

八、结束语

JAK-ST AT信号通路在细胞的生长、增殖和分化中具有重要意义,对具体的信号传递过程及调控环节的详尽研究,将有助于我们深入理解细胞间相互作用以及人体中正常的生理过程和某些疾病的发生机制.

(2002年10月5日收到陈晓萍博士生,讲师,浙江大学生命科学学院,杭州310029徐飞本科生,浙江大学生命科学学院,杭州310029

1Darnell Jr.J.E.ST ATs and gene regulation.Science,1997;277:16302 1635

2Liu K.D.,G affen G.L.,G oldsm ith M.A.JAK/ST AT signaling by cy2 tokine receptors.Curr Opin Immunol,1998;10:2712278

3G eijsen N.,K oenderman L.,C offer P.J.S pecificity in cytokine signal transduction:Less ons learned from the I L23/I L25/G M2CSF receptor fam2 ily.Cytokine and Growth Factor Reviews,2001;12:19225

4O’Shea J.J.,N otarangelo L.D.,Johnston J.A.,et al.Advances in the understanding of cytokine signal transduction:the role of Jaks and ST ATs in immunoregulation and the pathogenesis of immunodeficiency.J.Clin.

Immunol.,1997;17(6:4312447

5Muss o T.,Johnston J.A.,Linnekin D.,et al.Regulation of JAK3ex2 pression in human m onocytes:phosphorylation in response to interleukins

2,4,and7.J.Exp.Med.,1995;181(4:142521431

6 C opeland N.G.,G ilbert D.J.,Schindler C.,et al.Distribution of the mammalian S tat gene fam ily in m ouse chrom os omes.G enomics,1995;29

(1:2252228

7Ihle J.N.ST ATs:signal transducers and activators of transcription.Cell,

1996;84:3312334

8Duronio V.,Scheid M.P.,E ttinger S.D ownstream signalling events reg2 ulated by phosphatidylinositol32kinase activity.Cell Signalling,1998;

10:2332239

9Parganas E.,W ang D.,S trav opodis D.JAK2is essential for signaling through a variety of cytokine receptors.Cell,1998;93:3852595

10G rim ley P.M.,D ong F.,Rui H.S tat5a and S tat5b:fraternal twins of signal transduction and transcripitional activation.Cytokine and Growth Factor

Reviews,1999;10:1312157

11Philo J.S.,W en J.,W ypych J.,et al.Human stem cell factor dimer forms a com plex with tw o m olecules of the extracellular domain of its re2

ceptor,kit.J.Biol.Chem.,1996;271:689526902

12Johns on H.M.,T orres B.A.,G reen M.M.,et al.Cytokine2receptor com plexes as chaperones for nuclear translocation of signal transducer.

https://www.wendangku.net/doc/7918894000.html,mun.,1998;244:6072614

13Ram P.A.,W axman D.J.Interaction of growth hormne2activated ST ATS with SH22containing phosphatase SHP21and nuclear JAK2tyrosine ki2

nase.J.Biol.Chem.,1997;272:176********

14S ong M.M.,Shuai K.The suppress or of cytokine signaling S OCS1and

S0CS3but not S OCS2proteins inhibit interferon2mediated antiviral and antiproliferative activities.J.Biol.Chem.,1998;273:35056

15Linnekin D.Early signaling pathways activated by c2kit in hematopoietic cells.The International Journal o f Biochemistry and Cell Biology,1999;

31:105321074

16Y amada2oka,Suita Osaka.Nuclear im port and export of proteins:the m olecular basis for intracellular signaling.Cytokine Growth Factor Re2

views,1998;83(4:2052211

Progress in the Studies of JAK2STAT Signal P athw ay

Chen X iao2ping①,Xu Fei②

①Ph.D.Candidate,Lecturer,②Undergraduate,College o f Life Science, Zhejiang Univer sity,Hangzhou310029

K ey w ords receptor,JAK,ST AT,signalling pathway

?

2

5

1

?

白介素IL信转导及其通路研究概述

白介素IL-6信号转导及其通路研究概述 细胞因子是一类参与免疫系统的细胞之间通信的蛋白质,除此之外,许多细胞因子在免疫系统之外也具有调节功能。1986年白介素IL-6作为B细胞刺激因子被Kishimoto组分子克隆。IL-6在免疫系统外的活性还有肝细胞刺激因子和骨髓细胞分化诱导蛋白。 白介素IL-6含有184个氨基酸,属于糖基化蛋白质。IL-6可以由多种类型细胞合成和分泌,包括单核细胞、T细胞、成纤维细胞和内皮细胞。IL-6结合受体有两种,一种是特异性受体IL-6R(80kDa I型跨膜蛋白),另一种是gp130,是IL-6家族细胞因子的所有成员的常见受体亚单位。gp130可以在所有细胞表达,但IL-6R的表达受到更多的限制,主要发现于肝细胞、嗜中性粒细胞、单核细胞和CD4+ T细胞。 白介素IL-6受体gp130的二聚化会导致两种细胞内信号通路的启动:经典信号通路和反式信号通路(见下文)。白介素IL-6的受体IL-6R可以在细胞膜经过蛋白质水解,形成可溶性的IL-6R(sIL-6R),在人类中,也可以在翻译阶段进行剪接mRNA,进而产生sIL-6R。在经典信号通路中,IL-6与膜上的IL-6R结合,随后与结合在细胞膜上的gp130结合,启动细胞内信号传导。在IL-6反式信号通路中,IL-6与sIL-6R结合,IL-6和sIL-6R的复合物与细胞膜结合的gp130结合,从而引发细胞内信号。 白介素IL-6是最重要的炎症细胞因子之一。IL-6在通过膜结合和可溶性受体的信号传导中是独特的。有趣的是,这两种途径的生物学后果有很大差异,通过膜结合受体的经典IL-6信号通路主要是再生和保护性的,可溶性IL-6R的IL-6反式信号通路是促炎症的。响应于受体激活的IL-6的细胞内信号传导是通过STA T依赖和STAT独立的信号模块,其由复杂的调节网络调节。IL-6的复杂生物学对该细胞因子的治疗靶向具有影响。 白介素IL-6胞内信号通路可以简单的概述为:IL-6与受体复合物结合后,激活JAK1。JAK1磷酸化gp130细胞质部分内的酪氨酸残基,这些磷酸酪氨酸基序是STAT转录因子,SOCS3反馈抑制剂和衔接蛋白和磷酸酶SHP2的募集位点。SHP2连接到MAPK级联,使Gab1磷酸化,磷酸化的Gab1转移到质膜上,协调正在进行的MAPK和PI3K活化。Src家族激酶独立于受体磷酸化并激活Y AP。 白介素IL-6信号转导第一步:激活JAK。 大多数细胞因子受体缺乏胞内激酶活性,生长因子的受体例外。白介素IL-6胞内信号转导首先激活Janus激酶(JAK),开启酶促反应。通过JAK N末端的同源结构域内(JH)

Notch信号通路研究进展

224 中国医药生物技术 2009年6月第4卷第3期Chin Med Biotechnol, June 2009, V ol. 4, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2009.03.012 · 综述·Notch信号通路研究进展 王利祥,华子春 1917 年,Morgan 及其同事在果蝇体内发现一种基因,因其功能部分缺失可导致果蝇翅缘出现缺口,故命名该基因为 Notch。随后的研究发现,Notch 从无脊椎动物到脊椎动物的多个物种中表达,其家族成员的结构具有高度保守性,在细胞分化、发育中起着关键作用。迄今研究已阐明 Notch 信号通路的主要成员及核心转导过程,然而随着研究的深入,人们逐渐认识到该通路实际上处于十分复杂的调控网络之中,而这与其在发育过程中功能的多样性相符合。本文结合最新进展,系统阐述 Notch 信号通路的组成,功能,作用机制及调控,并揭示该通路异常与疾病的联系。 1 Notch 受体 Notch 受体是一个相对分子量约为 30 000 的 I 型膜蛋白,由胞外亚基和跨膜亚基组成,2 亚基之间通过 Ca2+ 依赖的非共价键结合形成异源二聚体。胞外亚基包含一组串联排列的 EGFR 和 3 个家族特异性的 LNR 重复序列。EGFR 在 Notch 受体与配体的结合中起关键作用,在果蝇中,Notch 受体的第 11 位和 12 位 EGFR 介导了其与配体的结合。LNR 位于 EGFR 的下游,富含半胱氨酸,介导了 2 亚基之间 Ca2+ 依赖的相互作用。跨膜亚基包括跨膜区、RAM 序列、锚蛋白重复序列、核定位序列、多聚谷氨酰胺序列以及 PEST 序列。RAM 结构域是 Notch 信号效应分子 CBF1/RBPJk 主要的结合部位。ANK 重复序列结构域是 Deltex、Mastermind 等的结合部位,这些蛋白对Notch 信号通路有修饰作用。PEST 结构域与泛素介导的Notch 胞内段降解有关[1]。 2 Notch 配体 Notch 配体与受体一样为 I 型跨膜蛋白。果蝇 Notch 配体有 2 个同源物 Delta 和 Serrate,线虫的 Notch 配体为 Lag 2,故又称 Notch 配体为 DSL 蛋白。脊椎动物体内也发现了多个 Notch 配体,与 Delta 同源性高的称为Delta 样分子,与 Serate 同源性高的被称作 Jagged。目前,发现人的 Notch 配体有 D ll l、3、4和 Jagged l、2。配体胞外 DSL 结构域在进化中高度保守,是配体与受体结合、激活 Notch 信号所必需的。Notch 配体的胞内域较短,仅70 个左右氨基酸残基,功能尚未阐明。近来研究发现,Delta 1 的胞内域能够诱导细胞的生长抑制[2]。有人推测,配体胞内段可能类似与受体胞内段,具有信号转导功能,但具体机制有待进一步研究。3 Notch 信号传递与效应因子 迄今研究发现主要有 6 种信号通路在多细胞生物的生长中发挥关键作用,分别是刺猬、骨形态发生蛋白、无翅、类固醇激素受体、Notch 和受体酪氨酸激酶。Notch 相对于其他信号通路结构较简单,没有第二信使的参与。现有研究提出了 Notch 信号活化的“三步蛋白水解模型”[3]。首先,Notch 以单链前体模式在内质网合成,经分泌运输途径,在高尔基体内被 Furin 样转化酶切割成相对分子质量为180 000 含胞外区的大片段和 120 000 含跨膜区和胞内区的小片段。两者通过 Ca2+依赖性的非共价键结合为异源二聚体,然后被转运到细胞膜。当 Notch 配体与受体结合,Notch 受体相继发生 2 次蛋白水解。第一次由 ADAM 金属蛋白酶家族的 ADAM 10/Kuz 或 ADAM 17/TACE 切割为 2 个片段。N 端裂解产物(胞外区)被配体表达细胞内吞,而 C 端裂解产物随后由早老素 1/2,Pen-2,Aph1 和Nicastrin 组成的γ-促分泌酶复合体酶切释放 Notch 受体的活化形式 NICD。 经典的 Notch 信号通路又称为 CBF-1/RBP-Jκ依赖途径。CBF-1/RBP-Jκ本身是 1 个转录抑制因子,能够特异性地与 DNA 序列“CGTGGGAA”相结合,并招募 SMRT,SKIP,I/II 型组蛋白去乙酰化酶等蛋白形成共抑制复合物,抑制下游基因的转录。当 Notch 信号激活后,NICD 通过上述酶切反应被释放进入胞核,通过 RAM 结构域及 ANK 重复序列与 CBF-1/RBP-Jκ结合使共抑制复合物解离,并募集 SKIP,MAML 1 组成共激活复合体,激活下游基因的转录。Notch 信号的靶基因多为碱性螺旋-环-螺旋转录抑制因子家族成员,如哺乳动物中的 HES、非洲爪蟾中的XHey-1,以及近来发现的 BLBP [3]。此外,存在非CBF-1/RBP-Jκ依赖的 Notch 信号转导途径。最近有研究报道,果蝇 Notch 结合蛋白 Deltex 是某些组织特异性非 Su (H)依赖性信号所必需的,同时发现 Deltex 也具有拮抗Notch 的功能 [4]。 4 Notch 信号途径功能 Notch 信号途径的功能最初是在果蝇神经系统发育的 基金项目:国家自然科学基金(30425009,30730030);江苏省自然科学基金(BK2007715) 作者单位:210093 南京大学医药生物技术国家重点实验室 通讯作者:华子春,Email:zchua@https://www.wendangku.net/doc/7918894000.html, 收稿日期:2009-02-01

p38MAPK信号转导通路与细胞凋亡研究进展.

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

ERK5信号通路研究现状

World Journal of Cancer Research 世界肿瘤研究, 2014, 4, 41-46 Published Online October 2014 in Hans. https://www.wendangku.net/doc/7918894000.html,/journal/wjcr https://www.wendangku.net/doc/7918894000.html,/10.12677/wjcr.2014.44008 Review of the ERK5 Signaling Pathway Research Song Luo*, Shengfa Su, Weiwei Ouyang#, Bing Lu# Teaching and Research Section of Oncology, Guiyang Medical University, Guiyang Email: 4567436@https://www.wendangku.net/doc/7918894000.html,, #ouyangww103173@https://www.wendangku.net/doc/7918894000.html,, #lbgymaaaa@https://www.wendangku.net/doc/7918894000.html, Received: Sep. 25th, 2014; revised: Oct. 16th, 2014; accepted: Oct. 20th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/7918894000.html,/licenses/by/4.0/ Abstract Extracellular signal regulated kinase 5 (ERK5) is an important part of mitogen activated protein kinase (MAPK) system, and also is a new signal transduction pathway of MAPK signaling system, which has attracted much attention in recent years. ERK5 can be activated by many stimulating factors and plays an important role in cell survival, proliferation and differentiation. Furthermore, ERK5 is closely related to vascular development and proliferation, and other critical functions. This paper focuses on the origin, structure, property, physiological features of ERK5, and the relation-ship between ERK5 and tumor and non-oncologic diseases, and reviews the research direction in the future. Keywords ERK5, Signaling Pathways, MAPK ERK5信号通路研究现状 罗松*,苏胜发,欧阳伟炜#,卢冰# 贵阳医学院肿瘤学教研室,贵阳 Email: 4567436@https://www.wendangku.net/doc/7918894000.html,, #ouyangww103173@https://www.wendangku.net/doc/7918894000.html,, #lbgymaaaa@https://www.wendangku.net/doc/7918894000.html, 收稿日期:2014年9月25日;修回日期:2014年10月16日;录用日期:2014年10月20日 *第一作者。 #通讯作者。

常见的信号通路

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

ATM和ATR的信号传导通路综述

ATM Ataxia telangiectasia mutated (ATM) is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks. It phosphorylates several key proteins that initiate activation of the DNA damage checkpoint, leading to cell cycle arrest, DNA repair or apoptosis. Several of these targets, including p53, CHK2 and H2AX are tumor suppressors. The protein is named for the disorder Ataxia telangiectasia caused by mutations of ATM.[1] Contents 1 Introduction 2 Structure 3 Function 4 Regulation 5 Role in cancer 6 Interactions 7 See also 8 References 9 Further reading 10 External links Introduction[edit] Throughout the cell cycle the DNA is monitored for damage. Damages result from errors during replication, by-products of metabolism, general toxic drugs or ionizing radiation. The cell cycle has different DNA damage checkpoints, which inhibit the next or maintain the current cell cycle step. There are two main checkpoints, the G1/S and the G2/M, during the cell cycle, which preserve correct progression. ATM plays a role in cell cycle delay after DNA damage, especially after double-strand breaks (DSBs).[2] ATM together with NBS1 act as primary DSB sensor proteins. Different mediators, such as Mre11 and MDC1, acquire post-translational modifications which are generated by the sensor proteins. These modified mediator proteins then amplify the DNA damage signal, and transduce the signals to downstream effectors such as CHK2 and p53. Structure[edit] The ATM gene codes for a 350 kDa protein consisting of 3056 amino acids.[3] ATM belongs to the superfamily of Phosphatidylinositol 3-kinase-related kinases (PIKKs). The PIKK superfamily comprises six Ser/Thr-protein kinases that show a sequence similarity to phosphatidylinositol 3-kinases (PI3Ks). This protein kinase family includes amongst others ATR (ATM- and RAD3-related), DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and mTOR (mammalian target of rapamycin). Characteristic for ATM are five domains. These are from N-Terminus to C-Terminus the HEAT repeat domain, the FRAP-ATM-TRRAP (FAT) domain, the kinase domain (KD), the PIKK-regulatory domain (PRD) and the FAT-C-terminal (FATC) domain. The

蛋白质组学方法在细胞内信号转导研究中的应用

生物技术通讯 LETTERSINBIOTECHNOLOGYVol.18No.2Mar.,2007 综述 文章编号:1009-0002(2007)02-0336-03 蛋白质组学方法在细胞内信号转导研究中的应用 李敏,周慧,崔银秋 吉林大学生命科学学院生物大分子实验室,吉林长春130021 [摘要]蛋白质组学的新技术为我们研究细胞内的信号转导过程提供了更广泛和崭新的思路,它克服了传统技术的局限 性,实现了对蛋白的高通量分析。简要综述了蛋白质组学技术在信号转导过程中信号分子的确定、定量,磷酸化等翻译后修 饰的识别,以及蛋白质之间相互作用研究等方面的应用。 [关键词]蛋白质组学;信号转导 [中图分类号]Q25FQ503[文献标识码]A ApplyingProteomicMethodstoCellularSignalTransductionResearch LIMin,ZHOUHui,CUIYin-qiu BiomacromoleculeLab,CollegeofLifeScience,JilinUniversity,Changchun130021,China [Abstract]Improvedtechnologiesthathaveemergedinproteomicsprovideusmuchmorecomprehensiveandnewin- sightsintocellularsignaltransductionresearch.Ithasovercomethelimitationsoftraditionalmethodsandrealizedthe high-throughputproteinanalysismode.Inthisletter,theapplyingofproteomictechnologiesindefiningandquantitating signalingmolecules,identifyingpost-translationalmodificationssuchasphosphorylation,andprotein-proteininteractionsre- searchduringcellularsignaltransductionwerereviewed. [Keywords]proteomicsFsignaltransduction 20世纪90年代以来,对细胞内信号转导途径的研究逐渐成为国内外生物学界广泛关注的热点。由于信号的传递在细胞的增殖、分化和生存等过程中都起着十分关键的作用,因而逐渐成为解决许多重要理论及实践问题的基本思路和有力武器。近年来有关细胞信号转导研究的方法层出不穷。传统地,人们主要利用RNA干扰技术、抗体免疫沉淀、32P标记结合蛋白质印迹法(Westernblotting)、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)等方法来检测和鉴定信号传递过程中差异表达的信号分子及关键蛋白的磷酸化。这些方法和技术能够做小量的分析,但无法进行大规模的研究。随着双向电泳(twodimensionalelectrophoresis,2-DE)和质谱技术的不断完善与发展,蛋白质组学方法越来越多地被用于研究胞内信号转导过程。它弥补了传统方法的不足之处,实现了高通量大规模的研究模式。近年来,蛋白质组学方法应用于信号转导的研究,主要在对蛋白表达谱的检测和定量、翻译后修饰的识别,以及蛋白质之间相互作用图谱的绘制等方面。蛋白质组学方法为我们完整地绘制细胞内信号转导网络图提供了更为可靠的依据。以下就近年来该领域的一些新技术及应用做一简要综述。 1信号蛋白的寻找和确定 细胞受到外界的刺激后,首先吸引许多锚定蛋白、衔接蛋白的结合,引起蛋白的相互作用,并随之引发胞内的一系列信号蛋白的改变(如级联磷酸化事件的发生),最终信号传递到核基因,表达或阻抑表达一些特征蛋白,或者作用于某些特定的细胞器,引发其他生物学效应。由此可见,要了解一种信号途径的具体过程,首先要对该过程的特征信号分子及下游所表达的蛋白进行确定。目前,二维电泳结合质谱技术(MALDI-TOF-MS或ESI-MS)已经成为蛋白质组学的首选工具,来获得不同状态下的细胞全蛋白质组。许多研究通过选择性抑制或激活信号通路并筛选2-DE的效应分子成功地鉴定了信号转导过程中的靶标。本文作者所在研究室[1]利用2-DE结合MALDI-TOF-MS,对处于不同生理条件下的NIH3T3细胞的全细胞裂解液进行双向电泳分离及软件分析。在我们筛选的aFGF拮抗剂小肽存在的条件下,鉴定出3种表达量下调、1种表达量上升的蛋白,其中鸟苷酸结合蛋白α-11亚单位和1C型核因子分别参与胞内aFGF信号传导以及转录调控。近来人们又开发出许多以2-DE为基础的改进方法,包括从样本制备、分离到染色等各方面,来对蛋白进行更好的分离分析,如亚细胞分离、差异凝胶电泳(DIGE)技术等[2]。 2-DE的优势是能够更直观地提供信号蛋白的相对分子质量、等电点、相对表达丰度等信息,但它在分离一些pI过大或过小、疏水性强的低丰度蛋白时有很大的困难。最近研究较多的多维蛋白质鉴定技术(multidimensionalproteinidentificationtech-nique,MudPIT)[3]弥补了上述缺陷。MudPIT能够更有效地检测疏水蛋白,且在分析来自胞内细胞器的蛋白时具有更高的效率。最常用的是二维液相色谱(2D-LC),它首先对蛋白复合物进行酶 [收稿日期]2006-08-30 [基金项目]吉林省科技发展计划项目(20040411-3) [作者简介]李敏(1982-),女,硕士研究生 [通讯作者]崔银秋,(E-mail)cuiyq@jlu.edu.cn 336

信号通路研究思路

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。

当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因

常见的信号通路

1 JAK-STAT信号通路 1) JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。 (1) 酪氨酸激酶相关受体(tyrosine kinase associated receptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生长激素)、EGF(表皮生长因子)、PDGF (血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2) 酪氨酸激酶JAK(Janus kinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosine kinase, RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Janus kinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸化多个含特定SH2结构域的信号分子。JAK蛋白家族共包括4个成员:JAK1、JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAK homology domain, JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3) 转录因子STAT(signal transducer and activator of transcription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3

FAK-ERK信号传导通路

咖啡酸苯乙酯靶向调控人结肠癌HT-29细胞FAK-ERK信号通路的研究 梁路昌1唐志晗1 李珍发2万剑2薛文1王军1涂宏2何葵2* (1.南华大学湖南衡阳421001;2.衡阳市中心医院湖南衡阳421001) [摘要]目的:探讨咖啡酸苯乙酯(caffeic acid phenethyl ester,CAPE)对结肠癌HT-29细胞FAK-ERK信号传导通路中相关蛋白表达的作用,寻找其作用靶点,试图阐明CAPE抗肿瘤作用的分子机制。方法:用不同浓度CAPE处理HT-29细胞,利用Hoechst33258染色法和流式细胞术,检测细胞凋亡的发生。应用Western-blot法分析不同浓度CAPE对HT-29细胞中FAK、ERK蛋白表达的影响。结果:Hoechst33258染色发现CAPE作用后凋亡细胞数量增加。流式细胞仪细胞凋亡率分析显示,0、2.5、5.0、7.5、10μg/ml处理HT-29 细胞24h后,细胞凋亡率上升,呈剂量依赖性。Western印迹结果显示:在(0-10)μg/ml范围内不同浓度CAPE作用于HT-29细胞24h后,FAK、ERK蛋白表达随CAPE浓度的增加而下调。结论:CAPE可诱导人结肠癌HT-29细胞凋亡,其作用机制可能与CAPE 抑制FAK-ERK信号转导通路的激活有关。 [关键词] 咖啡酸苯乙酯;结肠癌细胞HT-29;细胞凋亡;黏着斑激酶;细胞外信号调节激酶;免疫蛋白印迹 Caffeic acid phenethyl ester induces growth arrest and apoptosis of HT-29 colon cancer cells by inhibition FAK /ERK signal transduction pathway LIANG Lu-chang1,TANG Zhi-han1, LI Zhen-fa2, WAN Jian2, XUE Wen1, WANG Jun1, TU Hong2, HE Kui 2* (1.Nan-hua University; Hengyang 421001,China;2.The Central Hospital of Hengyang, Hengyang 421001) [Abstract]Objective: To explore the effects of caffeic acid phenethyl ester (CAPE) on expression of the related proteins in FAK-ERK signal transduction pathway in colorectal carcinoma cell line HT-29, to find out the targets CAPE targeted and to elucidate furtherly the anti-tumor mechanism of CAPE. Methods: The cells of human colorectal carcinoma cell line HT-29 were treated with CAPE at different concentration. Flow cytometry(FCM)and Hoechst33258 staining were used to detect apoptosis. Western blotting analysis was used to

信号通路研究思路

证明一个药物能通过抑制P38表达而发挥保护细胞的作用,需要做的是: 要证明你的药物是通过抑制P38表达而发挥保护作用,首先要证明P38表达增加会导致损伤。 其次,要证明你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 首先证明P38表达增加会导致损伤。 这里需要建立一个损伤模型。正如你提到的,钙离子导致P38mapk的增高,如果某种损伤可以通过钙离子导致P38mapk的增高,那么你就建立起了一个损伤模型。这时,对P38做个RNA干扰,使其表达下降,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说P38mapk的增高会导致损伤。 这里最好不要用P38的抑制剂SB来处理,因为这个抑制剂是针对P38活性的抑制剂,抑制的是P38的磷酸化,而不是表达量。 如果说明的问题是p38磷酸化水平增加而导致损伤,那么我建议用抑制剂。这时还可以用Dominant-negative。抑制剂的实验证实该药物不影响P38表达,而影响其活化。(应该首先考虑选用抑制剂,因为目前一些药物的作用机制不是抑制靶点的表达,而是抑制靶点的激活。如果在此应用RNAi的话,很可能会漏掉这个机制或增加实验步骤。) 其次,要证明你的药物存在保护作用。 当然就是用你的药物先处理一下,再来损伤刺激,如果这时损伤刺激不会导致损伤,那么可以说你的药物存在保护作用。 再次,证明你的药物可以抑制P38表达。 用你的药物先处理一下,再来损伤刺激,再检测P38表达,如果用药组相对于没有用药组P38表达下降,那么可以说你的药物可以抑制P38表达。 最后,证明你的药物是由于抑制了P38表达而发挥保护作用。 这一步看似不必要,其实是最重要的步骤,而国内的文章往往忽略了这一关键环节。 这里建议还是用RNA干扰P38表达,再用你的药物处理,再进行损伤刺激,如果用药组与没有用药组的损伤程度一致,那么才可以说你的药物是由于抑制了P38表达而发挥保护作用。 抑制剂也有其局限性,有时是“致命”的,主要原因是抑制剂缺乏特异性。虽然我们在文章里看到用抑制剂的时候都说是什么什么的特异性抑制剂,但真的那么特异吗?其实往往是作者为了写文章发文章的需要而夸大了抑制剂的特异性。细胞里无数的信号通路,谁也不能保证抑制剂在作用于靶分子时不会影响其他信号通路。其实无论什么抑制剂,对剂量的要求都相对比较苛刻,为什么?就是因为一旦浓度高了,就不知道会干扰到其他哪些信号通路,从而产生很多说不清道不明的现象。 PI3K的抑制剂---LY294002和wortmannin,它们都能抑制PI3K和相关的激酶,但LY294002的浓度达到200μM常用来抑制DNA依赖的蛋白激酶(DNA-PK);wortmannin在浓度超过3μM常用来抑制运动失调性毛细血管扩张基因突变(ATM)以及DNA-PK。相对而言,MEK1/2

相关文档