文档库 最新最全的文档下载
当前位置:文档库 › 基于单片机的超声波液位测量系统

基于单片机的超声波液位测量系统

基于单片机的超声波液位测量系统
基于单片机的超声波液位测量系统

摘要

超声波液位测量是一种非接触式的测量方式,它是利用超声波在同种介质中传播速度相对恒定以及碰到障碍物能反射的原理研制而成的。与其它方法相比(如电磁的或光学的方法),它不受光线、被测对象颜色的影响,对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此,研究超声波在高精度测距系统中的应用具有重要的现实意义。

本设计基于单片机的超声波液位测量系统主要由硬件与软件两部分组成,硬件是基于AT89C51芯片为核心的超声波液位测量,采用AT89C51单片机进行控制及数据处理,给出了超声波发射和接收电路,通过盲区的消除以及环境温度的采样,提高了测距的精确度。利用超声波传输中距离与时间的关系,设计出了能精确测量两点间距离的超声波液位检测系统。此系统具有易控制、工作可靠、测量精度高的优点,可实时检测液位。并有超声波处理模块CX20106A、CD4069组成的超声波发射电路、超声波接收电路、单片机复位电路、LED显示电路、报警电路等。软件部分由主程序、预置子程序、发射子程序、接收子程序、显示子程序组成。各探头的信号经单片机综合分析处理。

最后通过实物的调试,各项参数及功能符合设计要求,能达到预期的目的。

关键词:单片机;超声波;温度控制;高精度测距

Abstract

The ultrasonic liquid level measurement is a non-contact measurement method, realized by the principle of ultrasonic wave in the same medium with relatively constant propagation velocity and being reflected when it approaches an obstacle. Compared with other methods (such as electromagnetic or optical method), it has a certain of adaptability when objects to be measured are under such harsh environment as darkness, dust, smoke, electromagnetic interference, toxicity, unaffected by the light or the color of the object to be measured. Therefore, it bears important practical significance to conduct research on the application of ultrasonic wave in high precision ranging system.

In this project, SCM-based ultrasonic liquid level measuring system is mainly composed of two components, namely the hardware and the software. The hardware is ultrasonic liquid level measurement based on AT89C51 chip as the core; it adopts AT89C51 single chip microcomputer for control and data processing, provides the ultrasonic transmitting and receiving circuit, and improves ranging accuracy through elimination of blind spot and sampling of ambient temperature,. By taking advantage of the relationship between distance and time in ultrasonic transmission, an ultrasonic liquid level detecting system which can accurately measure the distance between two points is designed. This system has these advantages like easy control, reliable operation, high measurement precision, and real-time detection of liquid level. And it has ultrasonic transmitting and receiving circuit, reset circuits of SCM, LED display circuit, alarm circuit composed of ultrasonic processing module CX20106A and CD4069. The software part consists of main program, preset subroutine, transmitting and receiving subroutine, and display subroutine. The probe signal is processed by SCM through comprehensive analysis.

Finally through debugging of real objects, various parameters and functions can meet the project requirements to achieve the desired objective.

Key words: single chip microcomputer (SCM); ultrasonic wave; temperature control; high precision ranging

目录

第一章绪论 (1)

1.1 课题研究的背景及意义 (1)

1.2 国内外发展的现状 (3)

1.3 液位计的类型 (3)

1.4 本文的主要工作 (5)

第2章系统的总体方案设计 (7)

2.1 系统设计内容和功能 (7)

2.2 课题设计的任务和要求: (7)

2.3 系统方案选择 (8)

2.4 系统总体方案的设计 (8)

2.5 超声波和超声波传感器 (9)

2.6 超声波传感器的主要应用 (10)

2.7 超声波传感器测距原理 (10)

2.8 超声波测距原理 (12)

2.9 超声波发生器选择 (12)

2.10 盲区处理 (14)

第3章各单元硬件电路设计 (16)

3.1 单片机最小系统电路 (16)

3.2 温度补偿电路设计 (18)

3.3 超声波发射电路设计 (19)

3.4 超声波接收电路设计 (20)

3.5 显示电路设计 (22)

3.6 电源电路设计 (22)

3.7 LED显示系统设计 (23)

3.8 报警电路设计 (24)

第4章系统软件的设计 (26)

4.1 超声波测距仪的算法设计 (26)

4.2 主程序流程图 (26)

4.3 系统软件设计框图 (29)

4.4 单片机的C程序设计 (31)

4.5 系统的软硬件的调试 (32)

4.6 调试分析 (37)

4.6.1 LED显示程序的调试 (37)

4.6.2 温度测量程序的调试 (38)

第5章结论 (39)

参考文献 (40)

致谢 (42)

附录Ⅰ (43)

附录Ⅱ (52)

附录Ⅲ (53)

第1章

第一章绪论

1.1课题研究的背景及意义

目前,液位测量技术已经广泛的运用在工业部门和日常检测部门中。例如:液位测量技术在石油、化工、气象等部门的应用。在测量条件和环境来说,有的测量系统被运用在十分复杂的条件与环境中。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。这些都大大的提高了对测量技术的要求。所以能实现测量的无接触与智能化是液位测量计现在的主要发展方向。

近年来,随着工业的发展,计算机、微电子、传感器等高新技术的应用和研究,液位仪表的研制得到了长足的发展,以适应越来越高的应用要求。

在现代工业生产中,常常需要测量容器中液体的液位。在一般的生产过程中,液位测量的目的主要是通过液位测量来确定容器里的原料、半成品或产品的数量,以保证生产过程各环节物料平衡以及为进行经济核算提供可靠的依据;另外还为了在连续生产的情况下,通过液位测量,了解液位是否在规定的范围内,从而维持正常生产、保证产品的产量和质量以及保证安全生产。液位的测量在工业生产过程中的作用已经相当重要。

随着各行业的快速发展,液位测量已应用到越来越多的领域,不仅用于各种容器、管道内液体液位的测量,还用于水渠、水库、江河、湖海水位的测量。这些领域使用传统的液位测量手段已经无法满足对其精确性的要求,所以超声波液位测量这种新的测量方向已经成为一种新的手段被广泛的应用。

在目前市场上,按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类[3]。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。

非接触型液位测量主要有微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。

超声波液位测量计就属于非接触型液位测量的一种,所以它也有不受被测介质影

响,不影响被测介质,能适应粘度高、腐蚀性强、污染性强、易结晶、高温、高压、低温、低压、有辐射性、毒性、易挥发易爆等特殊介质的测量的特点,能适应的范围比其它的测量手段更广泛。随着科学的发展液位的检测方法也在变化,精度也有了更佳的提高。单片机技术和传感器技术的发展使液位测量方法得到了更进一步的发展。超声波在液位测量中的应用也越来越广,但是就目前的发展水平来说,超声波在测距系统中的应用还有一定的限度,因此研究超声波的液位检测是很有发展前景的。它在技术和产业领域具有广阔的发展空间。本次设计中,通过外界环境温度的检测提高了超声波测距的精度。通过延时避免了接收未经液面反射的超声波,其次利用温度传感器检测外界温度,采用当前温度下的超声波速度去计算,从而提高了距离计算的精度。

在未来,超声波的液位测量将有更大的用途,更大的应用范围。它不但可以帮助人们解决很多生活中的困难,还可以作为科学探测和研究的手段。特别是水位的测量,可以帮助确定水位的高度,以便于其他工作的顺利进行。

本设计中采用反射式的方式,超声波传感器发射超声波,遇到液面后超声波被反射回来,超声波接收探头接收超声波。其间通过单片机的控制,P1.0口输出控制信号从555振荡器输入到驱动电路驱动超声波发射电路,超声波发生电路产生40KHz 的调制脉冲,经换能器转换为超声波信号向前方空间发射。经过液面反射后超声波接收探头将接收到的超声波送到单片机进行处理。单片机通过各个引脚来实现和各电路模块的接口连接。并通过软件的设计来控制整个检测过程。一步一步,从发射到接收超声波,定时器的初始化,中断程序的编写,温度的采样,距离的计算,单片机都发挥了重要的最用。它是整个检测系统的内部核心。

这次对超声波液位检测的设计获得了具有很大的成果和意义,在这个科学技术是第一生产力的时代,应用科学技术去解决生活中和工作的困难变得具有更高的价值。在设计中,我加深了对超声波的认识,对它的原理掌握的更好了。目前超声波已广泛运用于诊断学、治疗学、工程学、生物学等领域。此外我认识到单片机在各方面都有很大的应用潜能,在自动控制领域它更是发挥了不可替代的作用。本设计利用超声波实现液位的测量,检测方便,易于实时控制,达到了工业的要求,因此具有实际的意义和广泛的应用前景。

1.2国内外发展的现状

随着电子技术的发展出现了微波雷达测距、激光测距及超声波测距。前2种方法由于技术难度大成本高一般仅用于军事工业而超声波测距则由于其技术难度相对较低且成本低廉适于民用推广。这项技术也可用于工业测量领域。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波常常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。随着自动测量和微机技术的发展,超声波测距的理论已经成熟,超声波测距的应用也非常广泛。超声测距是一种非接触式的检测方式。与其它方法相比,如电磁的或光学的方法,它不受光芒、被测对象颜色等影响。对于被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。因此在液位测量、机单片机毕业论文械手控制、车辆自动导航、物体识别等方面有广泛应用。特殊是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很轻易检测出来,具有很高的分辨力,因而其正确度也较其它方法为高;而且超声波传感器具有结构简单、体积小、信号处理可靠等特点。因此本设计也是利用超声波来测量距离。

1.3液位计的类型

按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。

一、接触型液位仪表:

接触型液位仪表主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计。它们的共同特点是测量的感应元件与被测液体接触。

1.人工检尺法:计量员上到罐顶,自计量孔投放测深钢卷尺,然后取出尺子,观测液面浸湿尺子的刻度,此为人工检尺法。人工检尺法具有测量简单、直观、成本低等特点,但由于其是人工测量,故不适合在恶劣的情况下使用,另外需要较长的测量时间,难以实现在线实时测量,不仅如此,还容易造成人为的测量误差。

2.浮子测量装置:它是由浮子、传感器和二次仪表组成,是通过用浮子测量浮力的大小定量测量液位,将该装置固定在罐中,使浮子立于罐中处于相对静止状态,浮子在罐中所受浮力的大小等于液体的排出量。当浮力的大小发生变化时,变化值通过浮子传递给传感器,经过二次仪表显示出液位的数值。浮子式液位装置具有结构简单、价格便宜等优点,但是浮子会随着液面的波动而波动,从而造成读数误差。浮子测量装置的适用范围为非腐蚀液体的测量。

3.伺服式液位计:伺服式液位计基于浮力平衡的原理,由微伺服电动机驱动体积较小的浮子,能精确地测出液位等参数。现代伺服液位计的测量精度己达到40m范围内小于士1 mm。但是,由于伺服式液位计仍属于机械测量装置,存在机械磨损,影响了测量的精度,因此需要定期维修和重新定标且安装困难。

4.电容式液位计:电容液位传感器是利用被测对象物质的导电率,将液位变化转换成电容变化来进行测量的一种液位计。与其他液位传感器相比,电容液位传感器具有灵敏性好、输出电压高、误差小、动态响应好、无自热现象、对恶劣环境的适用性强等优点。常见的电容传感器测量电路有变压器电桥式、运算放大器式及脉冲宽度式等。这类仪表适用于腐蚀性液体、沉淀性液体以及其它化工工艺液体液面的连续测量与位式测量,或单一液面的液位测量。

5.磁致伸缩液位计:磁致伸缩液位计采用磁致伸缩技术来测量大罐的油水界面和油气界面。通常情况下,磁致伸缩液位计安装有两个浮子,其中一个浮子的密度小一于油品的密度,另一个浮子的密度大于油品的密度而小于水的密度,它们分别用来检测油气界面和油水界面。磁致伸缩液位计安装容易,不需要定期维修和重新定标,工作寿命较长。其测量精度较高,测量的重复精度也较高,是比较理想的接触型液位计。但是磁致伸缩液位计与被测液体接触,仪器容易受到腐蚀,且液体的密度变化会带来测量误差。此外,浮子装置沿着波导管的护导管上下移动,容易被卡死,从而影响液位的止确测量。

二、非接触型液位仪表:

非接触型测量仪表主要包括超声波液位计、雷达液位计、射线液位计、激光液位计以及光纤液位计等。这类液位测量仪表的共同特点是测量的敏感元件与被测液体不接触,因此不受被测介质影响,也不影响被测介质,因而适用范围较为广泛,可用于接触式测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。

1.超声波液位计:超声波液位计是由微处理器控制的数字物位仪表。在测量中脉冲超声波由传感器(换能器)发出,声波经液体表面反射后被同一种传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。由于采用非接触的测量,被测介质几乎不受限制,可广泛用于各种液体和固体物料高度的测量。目前,智能化的超声波液位计能够对接收信号做精确的处理和分析:可以将各种干扰信号过滤出来;识别多重回波;分析信号强度和环境温度等有关信息。这样即便在有外界干扰的情况下,也能够进行精确的测量。超声波液位计不仅能定点和连续测量,而且能方便地提供遥测和遥控所需的信号。同时,超声波液位计不存在可动部件,所以在安装和维护上相应比较方便。超声测位技术可适用于气体、液体或固体等多种测量介质,因而具有较大的适应性且价格较为便宜。新型气密结构、耐腐蚀的

超声波传感器可测量高达15m的液位。

2.雷达液位计:在罐顶安装天线,天线发射的微波是频率波线性调制的连续波,当回波被天线接收到时,天线发射频率已经改变。根据回波与发射波的频率差可以计算出物料面的距离。FMCW方式测量线路较复杂,从而测量精确度较高,同时干扰回波也较易去除,一般用于较高端的测量方案,但是安装比较复杂且价格不菲。

3.射线液位计:核辐射放出的射线(如丫射线等)具有较强的穿透能力,且穿过不同厚度的介质有不同的衰减特性,核辐射式液位计正是利用这一原理来测量液位的。核辐射式液位计的核辐射源用点式或狭长型结构安装在油罐的外面,狭长型核辐射源检测元件也安装在油罐外面,可实现对液位动态变化的检测。除利用核辐射射线来测量之外,还可采用中子射线来测量液位。射线液位计安装非常方便,测量精度较高。因为它没有任何部件与被测物体直接接触,特别适用于传统测量仪表不能解决的测量问颗。

4.激光液位计:其测量原理类似于超声波液位计,只是采用光波代替了超声波。发射传感器发射出激光,照射到被测液面,在液面处发生反射,接收传感器接收反射光,将从发射至接收的时间换算成液位。激光的光束很窄,在液位计中通过光学系统转换成约20mm宽的光束,这样即使被测物面很粗糙,漫反射光也能被传感器接收。激光液位计非常适用于开口很狭窄的容器以及高温、高粘度的测量对象。而缺点是对液面的波动很敏感,大罐内的油蒸汽,水气等微粒对测量不利,且光学镜头必须定期保持清洁。

5.光纤液位计:光纤液位检测是近年来出现的一种新技术。根据光导纤维中光在不同介质中传输特性的改变对液位进行测量。这类检测仪表一般具有体积小、重量轻、无动作部件、安装方便等优点、大多可适用于任何液体液位高度的检测与控制,特别适用于易燃、易爆、腐蚀性液体的检测。这类检测仪表检测精度高但正处于发展阶段尚未成熟。

1.4本文的主要工作

本文主要是针对类似油罐等封闭式液体的液位的测量,在考虑了各种液位测量方式后,根据前文所述,决定要超声波作为主要手段,采用脉冲回波测量法。此次设计采用反射波方式,超声波测距仪硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的LED数码管。

超声波发射电路主要由反相器CD4069和超声波发射换能器T构成,单片机P1.0端口输出的40kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R2、R3一方面可以提高反相器CD4069输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由震荡时间。压电式超声波换能器是利用压电晶体管的谐振来工作的。超声波换能器内部有两个压电晶片和一个换能板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片会发生共振,并带动共振板振动产生超声波,这时它就是一个超声波发生器;反之,如果两电极问未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收换能器。超声波发射换能器与接收换能器在结构上稍有不同,使用时应分清器件上的标志。

超声波检测接收电路主要是由集成电路CX20106A组成,它是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率

38kHz与测距的超声波频率40kHz较为接近,可以利用它制作超声波检测接收电路。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电容C16的大小,可以改变接收电路的灵敏度和抗干扰能力。

超声波测距仪的软件设计主要有主程序、超声波发生程序、超声波接收中断程序及显示子程序组成。我们知道C语言程序有利于实现较复杂的算法,汇编语言程序则具有较高的效率且容易精细计算程序运行的时间,而超声波测距仪的程序有较复杂的计算(计算距离时),所以控制程序可采用C语言编程。超声波测距仪主程序利用外中断1检测返回超声波信号,一旦接收到返回超声波信号(即INT0引脚出现低电平),立即进入中断程序。进入中断后就立即关闭计时器T0停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2以表示此次测距不成功。

超声波测距的算法设计原理为超声波发生器T在某一时刻发出一个超声波信号,当这个超声波遇到被测物体后反射回来,就被超声波接收器R所接收到。这样只要计算出从发出超声波信号到接收到返回信号所用的时间,就可算出超声波发生器与反射物体的距离。在启动发射电路的同时启动单片机内部的定时器T0,利用定时器的计数功能记录超声波发射的时间和收到反射波的时间。当收到超声波反射波时,接收电路输出端产生一个负跳变,在INT0端产生一个中断请求信号,单片机响应外部中断请求,执行外部中断服务子程序,读取时间差,计算距离。

第2章系统的总体方案设计

2.1系统设计内容和功能

本设计中采用反射式的方式,超声波传感器发射超声波,遇到液面后超声波被反射回来,超声波接收探头接收超声波。其间通过单片机的控制,I/O口输出控制信号从NE555振荡器输入到CD4069驱动电路驱动超声波发射电路,超声波发生电路产生40KHz的调制脉冲,经换能器转换为超声波信号向前方空间发射。经过液面反射后超声波接收探头将接收到的超声波送到单片机进行处理。输出由LED数码管显示,通过盲区的消除以及环境温度的采样,提高了测距的精确度。利用超声波传输中距离与时间的关系,采用AT89C51单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波液位检测系统。利用所设计出的超声波液位检测系统,对液面进行了测试,采集当时的环境温度获得精确的速度,计算出液面距离。此系统具有易控制、工作可靠、测量精度高的优点,可实时检测液位。

设计具体内容:

(1)AT89C51主控单元电路

(2)超声波发射电路

(3)超声波接收电路

(4)温度补偿电路

(5)报警及显示电路

2.2课题设计的任务和要求:

(1) 测量距离范围要求为≤9.99 m;

(2) 精度要求1 cm;

(3) 有温度补偿;

(4) 显示方式为数码管显示;

(5) 具有较强的抗干扰能力。

(6) 盲区问题有一定的解决方法。

2.3系统方案选择

为使基于单片机的超声波液位测量控制系统具有较好的实用性,并且具有较高的性能/价格比,对该系统的硬件电路作了精心设计。该系统的硬件设计采用了模块化的设计方法。按实现的功能来分可分为以下几个部分。其中AT89C51 单片机是整个电路的核心,它控制其他模块来完成各种复杂的操作。外围电路包括温度补偿电路、超声波发射及接收电路、报警及显示电路等等。

方案一:我们可以用NE555振荡产生40KH的方波信号,它是基于硬件的基础上,便于我们可以通过示波器观察到40KH的方波,具有直观且易于观察的特点,有利于电路的检测。

方案二:我们可以通过单片机产生40KH的脉冲信号,在通过CD4069驱动,将40KH 的脉冲信号发射出去,由于是软件控制,准确度比较高。

经过比较我们发现,在发射电路中方案一的设计是比较经济实惠而且比较方便,但方案二中的软件设计使发射超声波时间比较容易控制,而且超声波的频率准确度比较高,本设计要求测量精度在1cm以内,在方案二中我们通过采用CX20106可以将信号进行放大和整形处理,在CX20106的5脚和7脚串联一个200K的电阻可以将频率稳定在40KH。因此在本次设计中,我们选用的是方案二,以提高测量结果的准确度,并且在整个系统中我们都会采用单片机做计算和显示。

2.4系统总体方案的设计

本设计基于单片机的超声波液位测量系统主要由单片机、温度检测电路、超声波发射电路、超声波接收电路、LED显示电路、报警电路等组成。

本设计采用模块化设计思想,以单片机AT89C51为核心,将其他模块有机的整合在一起,形成一个统一的系统,硬件系统的框图如图2.1所示。

图2.1 超声波液位测量系统框图

2.5 超声波和超声波传感器

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。我们人类耳朵能听到的声波频率为20~20000赫兹。当声波的振动频率大于20000赫兹或小于20赫兹时,我们便听不见了。因此,我们把频率高于20000赫兹的声波称为“超声波”。

超声波的两个主要参数: 频率:F≥20K/Hz ; 功率密度:p=发射功率(W)/发射面积(cm 2);通常p≥0.3w/cm 2; 在液体中传播的超声波能对物体表面的污物进行清洗,其原理可用“空化”现象来解释:超声波振动在液体中传播的音波压强达到一个大气压时,其功率密度为0.35w/cm 2,这时超声波的音波压强峰值就可达到真空或负压,但实际上无负压存在,因此在液体中产生一个很大的压力,将液体分子拉裂成空洞—空化核。此空洞非常接近真空,它在超声波压强反向达到最大时破裂,由于破裂而产生的强烈冲击将物体表面的污物撞击下来。这种由无数细小的空化气泡破裂而产生的冲击波现象称为“空化”现象。 太小的声强无法产生空化效应。 一 、超声波的特性

(1)超声波可在气体、液体、固体、固熔体等介质中有效传播。 (2)超声波可传递很强的能量。

(3)超声波会产生反射、干涉、叠加和共振现象。

(4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。 二 、超声波的特点

(1)超声波在传播时,方向性强,能量易于集中。

(2)超声波能在各种不同媒质中传播,且可传播足够远的距离。

(3) 超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊

超声波接收

超声波发送

AT89C51

单片机

LED 显示

温度检测

555 电路

报警系统

断或对传声媒质产生效应)。

超声波是一种波动形式,它可以作为探测与负载信息的载体或媒介(如B超等用作诊断);超声波同时又是一种能量形式,当其强度超过一定值时,它就可以通过与传播超声波的媒质的相互作用,去影响,改变以致破坏后者的状态,性质及结构(用作治疗)。

2.6超声波传感器的主要应用

超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一,下面以医学为例子说明超声波传感技术的应用。超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。因而推广容易,受到医务工作者和患者的欢迎。超声波诊断可以基于不同的医学原理,我们来看看其中有代表性的一种所谓的A型方法。这个方法是利用超声波的反射。当超声波在人体组织中传播遇到两层声阻抗不同的介质界面是,在该界面就产生反射回声。每遇到一个反射面时,回声在示波器的屏幕上显示出来,而两个界面的阻抗差值也决定了回声的振幅的高低。

在工业方面,超声波的典型应用是对金属的无损探伤和超声波测厚两种。过去,许多技术因为无法探测到物体组织内部而受到阻碍,超声波传感技术的出现改变了这种状况。当然更多的超声波传感器是固定地安装在不同的装置上,“悄无声息”地探测人们所需要的信号。在未来的应用中,超声波将与信息技术、新材料技术结合起来,将出现更多的智能化、高灵敏度的超声波传感器。

2.7超声波传感器测距原理

超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。

以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。

一、超声波传感器的性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同

的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:(1)工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

(2)工作温度。由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不会失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。

(3)灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

二、超声波传感器的结构

超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,直探头、斜探头、表面波探头、兰姆波探头、双探头等。

当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。另一方面,当振动压电陶瓷时,则会产生一个电荷。利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。基于以上作用,便可以将压电陶瓷用作超声波传感器。

如超声波传感器,一个复合式振动器被灵活地固定在底座上。该复合式振动器是谐振器以及,由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。

室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。压电陶瓷被固定在金属盒体的顶部内侧。底座固定在盒体的开口端,并且使用树脂进行覆盖。对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。

利用常规双压电晶片元件振动器的弯曲振动,在频率高于70kHz的情况下,是不可能达到此目的的。所以,在高频率探测中,必须使用垂直厚度振动模式的压电陶瓷。在这种情况下,压电陶瓷的声阻抗与空气的匹配就变得十分重要。压电陶瓷的声阻抗为2.6×107kg/m2s,而空气的声阻抗为4.3×102kg/m2s。5个幂的差异会导致在压电陶瓷振动辐射表面上的大量损失。一种特殊材料粘附在压电陶瓷上,作为声匹配层,可实现与空气的声阻抗相匹配。这种结构可以使超声波传感器在高达数百kHz频率的情况下,仍然能够正常工作。

2.8 超声波测距原理

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s ,根据计时器记录的时间t ,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。这就是所谓的时间差测距法。

图2.2 超声波液位测量示意图

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。

测距的公式表示为:L=C×T

式中L 为测量的距离长度;C 为超声波在空气中的传播速度;T 为测量距离传播的时间差(T 为发射到接收时间数值的一半)。

超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。

由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。

2.9 超声波发生器选择

超声波发生器可以分为两类:

一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。

超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接

收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。

测距仪的分辨率取决于对超声波传感器的选择。超声波传感器是一种采用压电效应的传感器,常用材料是压电式陶瓷。由于超声波在空气传播时会有相当的衰减,衰减的程度与频率的高低成正比;而频率高分辨率也高,故短距离测量时应选择高频率的传感器,而长距离测量时应用低频率的传感器。

一、超声波接收传感器及处理芯片CX20106A

超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括:工作频率。工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。

工作温度。由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。

灵敏度。主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。

因此超声波接受传感器应该应用集成电路CX20106A,CX20106A是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38kHz与测距的超声波频率40kHz较为接近,可以利用它制作超声波检测接收电路。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和

C的大小,可以改变接收电路的灵敏度和抗干扰较强的抗干扰能力。适当更改电容

6

能力。此部分电路在集成芯片上

二、温度传感器的选择

大家知道,声音在不同温度的空气中传播速度是不同的,所以这里要考虑到温度补偿的问题。

温度传感器有很多种,例如温度传感器AD590。AD590是美国模拟器件公司生产的单片集成两端感温电流源。流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数。AD590的测温范围为-55℃~+150℃。AD590的电源电压范围为4V~30V。电源电压可在4V-6V范围变化,电流变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。输出电阻为710WM。它的精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±0.3℃。

但是考虑到成本问题我选用TS-18B20数字温度传感器。该产品采用美国

DALLAS 公司生产的DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。 独特的一线接口,只需要一条口线通信多点能力,简化了分布式温度传感应用无需外部元件可用数据总线供电,电压范围为3.0V 至5.5V 无需备用电源测量。温度范围为-55°C 至+125℃ 。-10°C 至+85°C 范围内精度为±0.5°C

温度传感器可编程的分辨率为9~12位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包括恒温控制,工业系统,消费电子产品温度计,或任何热敏感系统。

2.10 盲区处理

超声波是由压电晶片振动产生的,压电晶片的振动是由信号控制的,当信号停止的同时,晶片由于惯性要等一段时间才能停下来,之后才能接收回波信号,这段时间内超声波传感器仍然在发射信号,因此不能接收回波信号,故称之为盲区。 当发射超声波时,虽然发射信号只保持一个很短的时间,但停止发射信号后,超声波探头上还存在一定的余振,因此在发射信号停止后的一段时间内,加在回波检测电路输入端的发射信号幅值仍是相当强的,可以达到电路的限幅电平。另一方面超声波探头上接收到的反射信号却远比发射信号小,即使是离探头较近处的障碍物发射信号也达不到电路的限幅电平。当障碍物离探头越来越远时,接收信号与发射信号相隔时间越来越长,发射信号的幅值也相应地越来越小。在超声波检测中,接收信号的衰减程度设计的比发射信号余振的衰减慢得多,如图中实线所示。

V M

V m

A

O

a c b

放大器输入电压

接收信号幅值

发射信号幅值

接收阈值

图2.3 测量盲区示意图

为了保证有一定的信噪比,接收信号的幅值规定了一个阀值m V ,也就是说接收信号的幅值必须大于这一阀值时才能使回波接收电路有输入信号。从图中可见,从b 点以

后接收信号将低于阀值,这相当于所测距离的最大值。从图中的a点以后,接收信号才开始比发射信号大,但还将与发射信号相互迭加,较难分辨,因此这段时间内不能进行测量。从图中的c点以后,发射信号己低于阀值

V,接收信号才基本上摆脱了

m

发射信号的影响而能明显地分辨出来。所以在要求较高时,把oc这段时间规定为盲区时间。从距离上说,可根据盲区时间和声速,求得盲区距离。因此,oc为盲区时间,cb为可测范围,b为可测距离的最远点。

对盲区问题普遍处理办法是对绕射虚假信号作屏蔽,而屏蔽办法多种多样。可以从硬件上屏蔽,也可以从软件上采用信号滤波,或者延时接收。如果从发射开始一直到“虚假反射波”结束这段时间,采取关闭中断的方法,从而不会发生中断申请,躲避绕射干扰。这种方法优点是处理简洁,故本系统就选用这种办法。

第3章 各单元硬件电路设计

3.1 单片机最小系统电路 AT89C51是一种带4K 字节FLASH 存储器(FPEROM —Flash Programmabl

e and Erasable Read Only Memory )的低电压、高性能CMOS 8位微处理器,

俗称单片机。AT89C51是一种带2K 字节闪存可编程可擦除只读存储器的单片

机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的AT 89C51是一种高效微控制器,AT89C51是它的一种精简版本。AT89C51单片机

为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。如图3.1所示。

EA /VP 31

X 1

19X 2

18

R ESET

9

R D 17W R 16

INT0

12INT113

T0

14

T1

15

P10/T 1P11/T 2P123P134P145P156P167P178

P0039P0138P0237P0336P0435P0534P0633P07

32

P2021P2122

P2223

P2324P2425P2526P2627P27

28

PS EN

29A LE/P 30TX D 11R XD 10U 1

A T89C51C 1

30pF

C 2

30pF

Y 1

12MHz

+5V V

+

0uF 10K

R 1680

蜂鸣器

B UZZER

+5V

Q 1

N PN

a

a

图3.1 AT89C51引脚图

AT89C51的主要特点: ● 与MCS-51 兼容

● 4K 字节可编程闪烁存储器

● 寿命:1000写/擦循环数据保留时间:10年 ● 全静态工作:0Hz-24Hz

EA /VP 31X 119X 218R ESET 9R D 17W R 16

INT012INT113T014

T115P10/T 1P11/T 2P123P134P145P156P167P178P0039P0138P0237P0336P0435P0534P0633P0732P2021P2122P2223P2324P2425P2526P2627P27

28

PS EN

29

A LE/P 30TX D 11R XD 10U 1A T89C51

C 1

30pF

C 2

30pF

Y 1

12MHz

+5V

+5V +

C 320uF

R 2

10K

R 1680

蜂鸣器B UZZER

+5V

S1

SW -P B

Q 1

N PN

a a

a

a

51单片机超声波测距程序

//晶振:11.0592 //TRIG:P1.2 ECH0:P1.1 //波特率:9600 #include #include #include #define uchar unsigned char #define uint unsigned int sbit RX=P0^2; sbit TX=P0^3; unsigned int time=0; unsigned int timer=0; float S=0; bit flag =0; void Conut(void) { time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.87)/100; //算出来是CM if(flag==1) //超出测量 { flag=0; printf("-----\n"); } printf("S=%f\n",S); } void delayms(unsigned int ms) { unsigned char i=100,j; for(;ms;ms--) { while(--i)

{ j=10; while(--j); } } } void zd0() interrupt 1 //T0中断用来计数器溢出,超出测距范围{ flag=1; //中断溢出标志 } void StartModule() //T1中断用来扫描数码管和计800ms启动模块{ TX=1; //800MS启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; } void main(void) { TMOD=0x21; //设T0为方式1,GATE=1; SCON=0x50; TH1=0xFD; TL1=0xFD; TH0=0; TL0=0;

基于51单片机的超声波测距毕业设计(论文)

一设计题目基于51单片机的超声波测距 二设计者 姓名班级学号组号 三、设计思路及框图、原理图 任务:以单片机为核心,设计并制作一超声波测距系统基本要求: 利用时间差测距,不考虑温度变化 用数码管显示测试结果 工作频率:450kHz 测距范围:0.5~10米 测试精度: 10% 发挥部分尽量增大测控范围,提高测试精度 1.系统的硬件结构设计 1.1. 超声波发生电路 发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的450kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R1O、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。 1.2超声波检测接收电路 采用集成电路CX20106A为超声波接收芯片。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电

容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。 1.3 显示电路 显示电路主要由74ls273芯片驱动,用PNPC8550三级管进行位选,七段共阳极数码管显示。 2.系统的软件结构设计 设计思路 主程序中包括温度补偿子程序,计算子程序,显示子程序。采用汇编编程。首先进行系统初始化。其次利用循环产生4个40KHZ的方波,由输出口进行输出,并开始计时。第三等待中断,若超声波被接收探头捕捉到,那么通过中断可测得

超声波测距程序(详细C语言数码管显示)

超声波测距程序(详细C语言数码管显示) #include //头文件 #include// _nop_() 函数延时1US用 #include #include #define uchar unsigned char #define uint unsigned int #define nop _nop_() sbit csb=P1^0;//超声波发送端口为P1.0 sbit bai=P2^2;//数码管百位 sbit shi=P2^1;//数码管十位 sbit ge=P2^0;//数码管个位 uchar flag;//超声波接收标志 float juli1;//距离变量,用来数码管显示用 int juli; uchar table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};//共阳数码管0到9的代码 int xianshi[3]; void delayshow(uint z) { uint x,y; for(x=z;x>0;x--) for(y=110;y>0;y--); } void ledshow(void) { xianshi[0]=juli/100; xianshi[1]=((juli%100)/10); xianshi[2]=juli%10; bai=0; P0=table[xianshi[0]]; delayshow(2); bai=1; delayshow(2); shi=0; P0=table[xianshi[1]]; delayshow(2); shi=1;

基于单片机的超声波测距

测控技术与仪器专业课程设计报告 班级姓名学号起始时间 课程设计题目: 测控技术与仪器专业课程设计报告 摘 要:本文介绍了一种基于单片机的超声波测距仪的设计。详细给出了超声波测距仪的工作原理、超 声波发射电路和接受电路、测温电路、显示电路等硬件设计,以及相应的软件设计。设计中采用升压电路,提高了超声换能器的输出能力;采用红外接收芯片,减少了电路间相互干扰,提高了灵敏度;同时,考虑了环境温度对超声波测距的影响,采用温度传感器,提高了测量精度。该设计试验运行良好,系统结构简单、操作方便、价格低廉,具有广阔的推广前景。 关键字:超声波测距仪;超声波换能器;单片机;温度传感器 1 对题目的认识和理解 目前,常用的测距方法主要有毫米波测距、激光测距和超声波测距三种。超声波测距较前两种测距方法而言,具有指向性强、能耗缓慢、受环境因素影响较小等特点,广泛应用于如井深、液位、管道长度、倒车等短距离测量。 超声波测距适用于高精度中长距离测量。因为超声波在标准空气中传播速度为331.45m/s ,由单片机负责计时,单片机使用12.0M 晶振,所以此系统测量精度理论上可以达到毫米级。 目前比较普遍的测距的原理是:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接受到特征频率的超声波所用的时间,换算出距离,如超声波液位物位传感器,超声波探头,适合需要非接触测量场合,超声波测厚,超声波汽车测距告警装置等。 本设计选用频率为40kHZ 左右的超声波,它在空气中传播的效率最佳。由于超声波测距主要受温度影响较大,所以本设计增加了温度补偿电路。本设计具有电路简单、操作简便工作稳定可靠、测距精确和能耗小、成本低等特点,可实现无接触式测量,应用广泛。 1.1 超声波测距原理 超声波测距是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即反射回来,超声波接收器收到回波就立即停止计时。根据计时器测出发射和接收回波的时间差t ,可以计算出发射点距障碍物的距离s :2 = t c s ,其中t c 为超声波在空气中的传 播速度,它随温度的变化而变化,其变化关系如下:331.50.6=+t c T 式中T 为环境摄氏温度,可由温 度传感器获取。

E+H超声波液位计设置

Endress+Hauser超声波液位计设置 我们需设置三个参数: V0H1 探头到滤池滤砂的距离 V0H2 设定的量程 V0H9 实际液位高度 调试步骤:先设定量程V0H2,再估计探头到滤砂的距离设定V0H1,通过查看V0H9的数据,调节V0H1,在滤池没有水时将其调节到0。 具体操作步骤如下: 1、如何选择V、H参数 通过相应按键可选择V、H的参数,当你一直按着V或H按 键时相应V、H的参数将不断的循环增减。 2、设定V0H2参数 V0H2参数为设定的量程,如下图我们设定的量程为3m: 设定时通过按键对数值的增减操作,一直按着时数 值将会不断的增(减)。 3、初设V0H1参数 V0H1参数为探头到底砂的距离,我们需要先估计一下,现滤池液位计探头到底砂的距离大概为2m。

4、调节V0H1参数,查看V0H9参数 当我们初设了V0H1参数,然后查看V0H9参数,V0H9为实际的液位数值。 我们在进行调试液位计时,需保证滤池中无水,这样V0H9应该需要调节到0。如下图: 我们需要不断的调节V0H1参数使得V0H9参数设置为,当然在之间波动也无妨,但不要在之间波动。 在调节V0H1参数查看V0H9参数时,若V0H9变大则说明V0H1参数偏大,反之则偏小,我们需不断反复的调节V0H1参数,尽量使得V0H9参数达到标准。每次调节V0H1参数后查看V0H9参数,需要观察V0H9参数1分钟以上,看看是否稳定。 超声波液位计RESET:将参数V9H5设定为333即可复位超声波液位计。

你可以先尝试在V3H0输入1m,这是抑制,从上往下1m内的干扰将被抑制。 然后退到V0H0看示数是否正常。 若不行则先记录下空标满标值如下。 V0H1是空标值,也就是探头到池底的距离。 V0H2是满标值,也就是空标值减去的盲区,该值需要与上位机对应上,相当于量程。同时按-和V便是复位,复位后需要重新设空标和满标。 设好后选择V0H0,便是显示测量值的主界面。 若还不行,建议更换仪表测试。

超声波测距仪单片机课设实验资料报告材料

微机原理与单片机系统课程设计 业:专轨道交通信号与控制 级:班1305 交控

姓名:贺云鹏 学号: 201310104 指导教师:建国 交通大学自动化与电气工程学院 30 日 12 2015 年月 超声波测距仪设计设计说明1 设计目的1.1 测量声波在发超声波测距的原理是利用超声波在空气中的传播速度为已知,根据发射和接收的时间差计算出发射点到障碍射后遇到障碍物反射回来的时间,物的实际距离。超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量。 超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。超声波能以一定速度定向传播、遇障碍物后形成反射,利用这一特性,通过测定超声波往返所用时间就可计算出实际距离,从而实现无接触测量物体距离。超声波测距迅速、方便,且不受光线等因素影响,广泛应用于水文液位测量、建筑施工工地的测量、现场的位置监控、振动仪车辆倒车障碍物的检测、移动机器入探测定位等领域。 1.2 设计方法 本课题包括数据测距模块、显示模块。测距模块包括一个HC-SR04超声波测距模块和一片AT89C51单片机,该设计选用HC-SR04超声波测距模块,通过单片机对超声波进行计时并根据超AT89C51发射和接受超声波,使用HC-SR04.声波在空气中速度为340米每秒的特性计算出距离。显示模块包括一个4位共阳极LED数码管和AT89C51单片机,由AT89C51单片机控制数码管动态显示距离。 1.3 设计要求 采用单片机为核心部件,选用超声波模组,实现对距离的测量,测量距离能够通过显示输出(LED,LCD)。 2 设计方案及原理 2.1超声波测距模块设计

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

超声波液位计与雷达液位计的区别

超声波液位计和雷达液位计的区别 我们一般把声波频率超过20kHz的声波称为超声波,超声波是机械波的一种,即是机械振动在弹性介质中的一种传播过程,它的特征是频率高、波长短、绕射现象小,另外方向性好,能够成为射线而定向传播。超声波在液体、固体中衰减很小,因而穿透能力强,尤其是在对光不透明的固体中,超声波可穿透几十米的长度,碰到杂质或界面就会有显著的反射,超声波测量物位就是利用了它的这一特征。 在超声波检测技术中,不管那种超声波仪器,都必须把电能转换超声波发射出去,再接收回来变换成电信号,完成这项功能的装置就叫超声波换能器,也称探头。如图所示,将超声波换能器置于被测液体上方,向下发射超声波,超声波穿过空气介质,在遇到水面时被反射回来,又被换能器所接收并转换为电信号,电子检测部分检测到这一信号后将其变成液位信号进行显示并输出。 由超声波在介质中传播原理可知,若介质压力、温度、密度、湿度等条件一定,则超声波在该介质中传播速度是一个常数。因此,当测出超声波由发射到遇到液面反射被接收所需要的时间,则可换算出超声波通过的路程,即得到了液位的数据。 超声波有盲区,安装时必须计算预留出传感器安装位置与测量液体之间的距离。 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下: D=CT/2 式中 D——雷达液位计到液面的距离 C——光速 T——电磁波运行时间

雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。 超声波用的是声波,雷达用的是电磁波,这才是最大的区别。而且超声波的穿透能力和方向性都比电磁波强的多,这就是超声波探测现在比较流行的原因。 主要应用场合的区别: 1.雷达测量范围要比超声波大很多。 2.雷达有喇叭式、杆式、缆式,相对超声波能够应用于更复杂的工况。 3.超声波精度不如雷达。 4.雷达相对价位较高。 5.用雷达的时候要考虑介质的介电常数。 6.超声波不能应用于真空、蒸汽含量过高或液面有泡沫等工况。

基于单片机的超声波测距系统实验报告

基于单片机的超声波测距系统实验报告

一、实验目的 1.了解超声波测距原理; 2.根据超声波测距原理,设计超声波测距器的硬件结构电路; 3.对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用 超声波方法测量物体间的距离; 4.以数字的形式显示所测量的距离; 5.用蜂鸣器和发光二极管实现报警功能。 二、实验容 1.认真研究有关理论知识并大量查阅相关资料,确定系统的总体设计方案,设计出系 统框图; 2.决定各项参数所需要的硬件设施,完成电路的理论分析和电路模型构造。 3.对各单元模块进行调试与验证; 4.对单元模块进行整合,整体调试; 5.完成原理图设计和硬件制作; 6.编写程序和整体调试电路; 7.写出实验报告并交于老师验收。 三、实验原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理,单片机(AT89C51)发出短暂的40kHz信号,经放大后通过超声波换能器输出;反射后的超声波经超声波换能器作为系统的输入,锁相环对此信号锁定,产生锁定信号启动单片机中断程序,得出时间t,再由系统软件对其进行计算、判别后,相应的计算结果被送至LED显示电路进行显示。 (一)超声波模块原理: 超声波模块采用现成的HC-SR04超声波模块,该模块可提供 2cm-400cm 的非接触式距离感测功能,测距精度可达高到 3mm。模块包括超声波发射器、接收器与控制电路。基本工作原理:采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号;模块自动发送 8 个 40khz 的方波,自动检测是否有信号返回;有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。测试距离=(高电平时间*声速(340M/S))/2。实物如下图1。其中VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线。

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

基于超声波传感器的液位测量

基于超声波传感器的液位测量 1.摘要 超声波传感器应用广泛,其中液体液位的准确测量是实现生产过程检测和实时控制的重要保障,也是实现安全生产的重要环节。本文主要介绍液位的测量。液体罐内液位测量的方法有很多种,其中超声波传感器由于结构简单、体积小、费用低、信息处理简单可靠,易于小型化与集成化,并且可以进行实时控制,所以超声波测量法得到了广泛的应用。2.超声波概要 超声波是指频率高于20kHz的机械波,一般由压电效应或磁致伸缩效应产生;它沿直线传播,频率越高,绕射能力越弱,但反射能力越强;它还具有强度大、方向性好等特点,为此,利用超声波的这些性质就可制成超声波传感器。超声波传感器是利用超声波在超声场中的物理特性和各种效应研制而成的传感器。超声波传感器按其工作原理可分为压电式、磁致伸缩式、电磁式等,其中以压电式最为常用。压电式超声波传感器常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转换成高频机械震动,从而产生超声波,可作为发射探头;而正压电效应是将超声波振动转换成电信号,可作为接收探头。 3.检测方法选择 从测量范围来说,有的液位计只能测量几十厘米,有的却可达几十米。从测量条件和环境来说,有的非常简单,有的却十分复杂。例如:有的是高温高压,有的是低温或真空,有的需要防腐蚀、防辐射,有的从安装上提出苛刻的限制,有的从维护上提出严格的要求等。 按测量液位的感应元件与被测液体是否接触,液位仪表可以分为接触型和非接触型两大类。接触型液位测量主要有:人工检尺法、浮子测量装置、伺服式液位计、电容式液位计以及磁致伸缩液位计等。它们的共同点是测量的感应元件与被测液体接触,即都存在着与被测液体相接触的测量部件且多数带有可动部件。因此存在一定的磨损且容易被液体沾污或粘住,尤其是杆式结构装置,还需有较大的安装空间,不方便安装和检修。非接触型液位测量主要有超声波液位计、微波雷达液位计、射线液位计以及激光液位计等。顾名思义,这类测量仪表的共同特点是测量的感应元件与被测液体不接触。因此测量部件不受被测介质影响,也不影响被测介质,因而其适用范围较为广泛,可用于接触型测量仪表不能满足的特殊场合,如粘度高、腐蚀性强、污染性强、易结晶的介质。 根据以上几种因素得知,超声波液位计是非接触式液位计中发展最快的一种。超声波在同一种介质中传播速度相对恒定,遇到被测物体表面时会产生反射,基于此原理研制出

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

超声波测距C语言源程序代码

超声波测距C语言源程 序代码 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

/*{HZ即单位s的倒数}本晶振为12MHZ,因此外部的时钟频率为12MHZ,所以内部的时钟频率为(12M H Z)/12=1M H 即1000000HZ,而机械频率为1/(1MHZ),即每完成一次计算(即定时器的值加一)用时, 即1us(微秒).*/ /*************************************************************************** ********/ #include<> #define UC unsigned char #define UI unsigned int void delay(UI); sbit BX = P3^0;void TimeConfiguration(); a = 0; b = 0; c = 0; P2 =~ 0x00; goto loop; } time = TL0 + TH0*256; juli = ( int )( (time*/2 ); BAI = ( (juli%1000)/100 ); SHI = ( (juli%100)/10 ); GE = ( juli%10 ); /******************************************两种模式的距离显示 ********************************************/ if(juli > MAX) { Hong = 0; Lv = 1; while( t1-- ) { a = 0; b = 1; c = 1; P2 =~ CharacterCode[BAI]; delay(400); a = 1; b = 0; c = 1; P2 =~ CharacterCode[SHI]; delay(400); a = 1; b = 1; c = 0; P2 =~ CharacterCode[GE]; delay(390);

用51单片机实现HC-SR04超声波测距程序

#include //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long sbit Trig = P1^0; //产生脉冲引脚 sbit Echo = P3^2; //回波引脚 sbit test = P1^1; //测试用引脚 uchar code SEG7[10]={~0xC0,~0xF9,~0xA4,~0xB0,~0x99,~0x92,~0x82,~0xF8,~0x80,~0x90};//数码管0-9 uint distance[4]; //测距接收缓冲区 uchar ge,shi,bai,temp,flag,outcomeH,outcomeL,i; //自定义寄存器 bit succeed_flag; //测量成功标志 //********函数声明 void conversion(uint temp_data); void delay_20us(); void main(void) // 主程序 { uint distance_data,a,b; uchar CONT_1; i=0; flag=0; test =0; Trig=0; //首先拉低脉冲输入引脚 TMOD=0x11; //定时器0,定时器1,16位工作方式 TR0=1; //启动定时器0 IT0=0; //由高电平变低电平,触发外部中断 ET0=1; //打开定时器0中断 EX0=0; //关闭外部中断 EA=1; //打开总中断0 while(1) //程序循环 { EA=0; Trig=1; delay_20us(); Trig=0; //产生一个20us的脉冲,在Trig引脚 while(Echo==0); //等待Echo回波引脚变高电平 succeed_flag=0; //清测量成功标志 EX0=1; //打开外部中断 TH1=0; //定时器1清零 TL1=0; //定时器1清零 TF1=0; //

带温度补偿的超声波测距程序

/**程序:基于HC-SR04得超声波测距系统 *单片机型号:STC90C51612MHz *说明:开始连续进行7次超声波测距,每次测距间隔80ms, *完成后对7次结果排序并将最大得2个数值与最小得2个数值去除,对剩余得 *3个数值取平均值。完成后指示灯灭,输出结果到LCD1602上。测量超出范围则发出报警声、 *使用两个IO端口控制HC-SR04触发信号输入与回响信号输出, *以及一个T0定时器用于时间计数。 * 使用DS18B20测量环境温度,声速公式:V=334。1m/s+Temperature*0、61, *单片机晶振为12Mhz(11、953M),计数时为T=1us *计算公式:S=(334。1m/s+Temperature*0。61)*N*T/2,N为计数值=TH0*256+TL0*/ /*包含头文件*/ #include 〈reg51。h> #include 〈intrins。h> #define Delay4us(){_nop_();_nop_();_nop_();_nop_();} /*宏定义*/ #define uchar unsignedchar?//无符号8位 #define uint?unsigned int//无符号16位 #define ulongunsigned long ?//无符号32位 /*全局变量定义*/ sbit BEEP=P1^5;??//报警测量超出范围 sbit Trig=P3^4; //HC-SR04触发信号输入 sbitEcho=P3^2;?//HC—SR04回响信号输出 float xdataDistanceValue=0。0;?//测量得距离值 float xdata SPEEDSOUND; ??//声速 float xdataXTALTIME; ?//单片机计数周期 uchar xdata stringBuf[6];??//数值转字符串缓冲 //LCD1602提示信息 uchar codePrompts[][16]= { ?{"Measure Distance"}, //测量距离 {"-Out of Range -"}, //超出测量范围 ?{"MAX range400cm "}, //测距最大值400cm {”MIN range 2cm"},?//测距最小值2cm {”"},?//清屏 }; uchar xdata DistanceText[]="Range: ";//测量结果字符串 uchar xdata TemperatureText[]="Temperature:";//测量温度值 /*外部函数声明*/ extern voidLCD_Initialize(); //LCD初始化 extern void LCD_Display_String(uchar*, uchar); externvoid ReadTemperatureFromDS18B20(); extern int xdataCurTempInteger; void DelayMS(uint ms);?//毫秒延时函数 voidDelay20us(); //20微秒延时函数 voidHCSR04_Initialize();//HCSR04初始化 float MeasuringDistance();?//测量距离

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计

基于单片机的超声波测距仪设计 1总体设计方案介绍 1.1超声波测距原理 发射器发出的超声波以速度υ在空气中传播,在到达被测物体时被反射返回,由接收器接收,其往返时间为t,由s=vt/2即可算出被测物体的距离。由于超声波也是一种声波,其声速v 与温度有关,下表列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。 表1-1 超声波波速与温度的关系表 表1-1 1.2超声波测距仪原理框图如下图 单片机发出40kHZ的信号,经放大后通过超声波发射器输出;超声波接收器将接收到的超声波信号经放大器放大,用锁相环电路进行检波处理后,启动单片机中断程序,测得时间为t,再由软件进行判别、计算,得出距离数并送LED

显示。 图1-1 超声波测距仪原理框图 2 系统的硬件结构设计 硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。单片机采用AT89C51或其兼容系列。采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。单片机用P1.0端口输出超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管8550驱动。 2.1 51系列单片机的功能特点及测距原理 2.1.1 51系列单片机的功能特点 5l系列单片机中典型芯片(AT89C51)采用40引脚双列直插封装(DIP)形式,内部由CPU,4kB的ROM,256 B的RAM,2个16b的定时/计数器TO和T1,4个8 b的工/O端I:IP0,

基于单片机的超声波测距报警系统设计

综合性课程设计报告基于proteus仿真软件的超声波测距报警控制器设计 院系:计算机与通信工程学院 专业:电子信息工程 学号: 姓名: 指导教师: 设计时间:2012/6/27 综合课程设计任务书

专业:电子信息工程班级:4091603: 设计题目:基于proteus仿真软件的超声波测距报警控制器设计 一、设计实验条件 keil C和proteus仿真软件 二、设计任务 1)总体功能设计 2)硬件电路设计 3)软件设计 4)工作总结 三、设计说明书的容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.主体设计部分(各部分设计容、总结分析、结论等) 4.结束语 5.参考文献 (答辩时间18周星期日晚7:30,地点:综合楼1313室) 四、设计时间与设计时间安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、实验、收集资料:2 天 设计计算、绘制技术图纸:5 天 编写课程设计说明书:2 天 答辩:1 天 目录

一、设计题目 (2) 二、设计任务及要求 (3) 三、设计容 (3) 1.绪论 (3) 2.总体方案 (4) 2.1 总体设计方案 (4) 2.2超声波测距框图 (4) 3.系统硬件设计 (5) 3.1 硬件设计方案 (5) 3.2 各主要模块的硬件设计 (6) 4.系统软件设计 (10) 4.1 程序设计 (10) 4.2 程序流程图 (10) 四、结束语 (13) 五、参考文献 (13) 附录A 系统仿真图 (14) 附录B程序代码 (15) 一、设计题目 基于proteus仿真软件的超声波测距报警控制器设计

51单片机超声波测距程序

//超声波测距,测距范围2cm-400cm; #include #include #define uint unsigned int #define uchar unsigned char sbit trig=P1^0; sbit echo=P3^2; sbit test=P1^1; //测试灯sbit dula=P2^6; sbit wela=P2^7; sbit BEEP=P2^3; uint timeh,timel,distance; uint ge,shi,bai,xiaoshu,flag,time; /*共阴极数码管不带小数点代码表*/

uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71 }; /*共阴极数码管带小数点代码表*/ uchar code listtwo[] = { 0xbf,0x86,0xdb,0xcf,0xe6, 0xed,0xfd,0x87,0xff,0xef}; /*长延时函数*/ void delay(uint z) { uint x,y; for(x=z;x>0;x--) for(y=100;y>0;y--); }

/*短延时函数*/ void delay20us() { uchar a; for(a=0;a<100;a++); } /*报警函数*/ void beer() { // BEEP=0; delay(10); } /*定时器初始化*/ void initime0() { TMOD=0x01; TH0=0;

stm32超声波测距程序

stm32超声波测距程序 单片机用的是STM32F103VC系列,超声波是淘宝买的一个模块,只有5个引脚,用起来很方便。 用的时候只需要其中4个脚,VCC,GND,TRIG,ECHO。 TRIG接PA8,OUT_PP模式;ECHO接PA9,IN_FLOATING模式。 #include "stm32f10x_heads.h" #include "HelloRobot.h" #include "display.h" void Tim2_Init(void); void TIM2_IRQHandler(void) { if(GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_12)==0) GPIO_SetBits(GPIOE,GPIO_Pin_12); else GPIO_ResetBits(GPIOE,GPIO_Pin_12); TIM_ClearFlag(TIM2, TIM_FLAG_Update); } int main(void) { u16 count; float length; BSP_Init(); Tim2_Init();//定时器初始化函数 LCM_Init(); delay_nms(5);

GPIO_ResetBits(GPIOA,GPIO_Pin_8); Display_List_Char(1,0,"distance:"); //PA8:Trig PA0:Echo while (1) { GPIO_SetBits(GPIOA,GPIO_Pin_8); delay_nus(20);//拉高超过10us,发射超声波 GPIO_ResetBits(GPIOA,GPIO_Pin_8); TIM2->CNT=0;//计数器清0 while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_9)==0);//等待ECHO脚高电平 TIM_Cmd(TIM2, ENABLE);// TIM2 enable counter [允许tim2计数] while((GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_9)==1)&&(TIM2->CNTARR-10)); TIM_Cmd(TIM2, DISABLE); count=TIM2->CNT;//ECHO脚低电平后读取计数器的值,从而算出往返时间 length=count/58.0; Display_List_Char(1,9," "); Display_List_Float(1,9,length); delay_nms(200); } } void Tim2_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_DeInit(TIM2);//复位TIM2定时器

51单片机实现超声波测距报警系统

目录 1引言 (1) 1.1研究的目的和意义 (1) 1.21 国内外发展的状况以及存在的问题 (2) 1.22 现有的倒车雷达存在的问题 (2) 1.3本文研究的主要内容 (2) 2 超声波原理介绍 (2) 2.1 超声波的基本理论 (2) 2.11 超声波的传播速度 (3) 2.12 超声波的物理性质 (4) 2.13 超声波对声场产生的作用 (5) 2.2 超声波测距系统原理 (6) 2.3 规格参数 (8) 2.31 主要功能 (8) 2.32 基本参数 (8) 3系统硬件设计 (8) 3.1 单片机系统 (10) 3.2 超声波发射接收模块 (11) 3.3 报警电路设计 (12) 3. 4 复位电路 (12) 4系统软件程序 (14) 5计算超声波传播时间 (14) 6结论 (29) 参考文献: (29) 致谢 (30)

基于单片机倒车防撞报警系统设计 张杭 南京信息工程大学滨江学院,南京210044 摘要:对于汽车倒车防撞问题,提出了将超声波测距仪和单片机结合于一体的方案,并给出了一种基于AT89C51单片机的倒车防撞报警系统的设计,对系统中控制部分、发射部分、接收部分、显示部分和报警部分出现的问题进行处理。本文采用一种简单易行的测距原理建立了防撞报警系统,具体分析了倒车防撞系统的设计原理及各部分元件的设计方案,充分描述了超声波测距的原理及应用,并介绍了我国在超声波测距的发展现状,不过还有一些无法避免的测量误差,还需日益俱进的科学发展加以解决。 关键词:A T89C51;超声测距;倒车防撞 1引言 1.1研究的目的和意义 随着社会经济的发展交通运输业飞速发展,汽车的数量在大副攀升。交通拥挤状况也日趋严重,撞车事件屡屡发生,造成了不可避免的人身伤亡和经济损失。针对这种情况,设计一种响应快,可靠性高且较为经济实用的汽车防撞报警系统势在必行。超声波测距法是最常见的一种距离测距方法,应用于汽车停车的前后左右防撞的近距离和低速状况,并且在汽车倒车防撞报警系统中,超声波作为一种特殊的声波,同样具有声波传输的基本物理特性——折射,反射,干涉,衍射,散射。超声波测距即是利用其反射特性,当车辆后退时,超声波距离传感器利用超声波检测车辆后方的障碍物位置,并利用指示灯及蜂鸣器把车辆到障碍物的距离及位置通知驾驶人员,起到安全的作用。 1.2 国内外现状

相关文档
相关文档 最新文档