文档库 最新最全的文档下载
当前位置:文档库 › 基于模糊逻辑的雾天降质图像对比度增强算法

基于模糊逻辑的雾天降质图像对比度增强算法

基于模糊逻辑的雾天降质图像对比度增强算法
基于模糊逻辑的雾天降质图像对比度增强算法

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1) 实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像去雾设计报告

课程设计——图像去雾 一、设计目的 1、通过查阅文献资料,了解几种图像去雾算法,; 2、理解和掌握图像直方图均衡化增强用于去雾的原理和应用; 3、理解和掌握图像退化的因素,设计图像复原的方法; 4、比较分析不同方法的效果。 二、设计内容 采用针对的有雾图像,完成以下工作: 1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图; 2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像; 3、分析实验效果; 4、写出具体的处理过程,并进行课堂交流展示。 三、设计要求 1、小组合作完成; 2、提交报告(*.doc)、课堂交流的PPT(*.ppt)和源代码。

四、设计原理 (一)图像去雾基础原理 1、雾霭的形成机理 雾实际上是由悬浮颗粒在大气中的微小液滴构成的气溶胶,常呈现乳白色,其底部位于地球表面,所以也可以看作是接近地面的云。霭其实跟雾区别不大,它的一种解释是轻雾,多呈现灰白色,与雾的颜色十分接近。广义的雾包括雾、霾、沙尘、烟等一切导致视觉效果受限的物理现象。由于雾的存在,户外图像质量降低,如果不处理,往往满足不了相关研究、应用的要求。在雾的影响下,经过物体表面的光被大气中的颗粒物吸收和反射,导致获取的图像质量差,细节模糊、色彩暗淡。 2、图像去雾算法 图像去雾算法可以分为两大类:一类是图像增强;另一类是图像复原。图1-1介绍了图像去雾算法的分类: 图1-1 去雾算法分类 从图像呈现的低亮度和低对比度的特征考虑,采用增强的方法处理,即图像增强。比较典型的有全局直方图均衡化,同态滤波,Retinex 算法,小波算法等等。 基于物理模型的天气退化图像复原方法,从物理成因的角度对大气散射作用进行建模分析,实现场景复原,即图像复原。运用最广泛、

基于matlab的图像去雾算法详细讲解与实现附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab 实现源代码

————————————————————————————————作者: ————————————————————————————————日期: ?

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为:? S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x,y)=r(x,y)+l(x, y)=log(R(x,y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x,y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x,y): G(x,y)=S'(x, y)-log(D(x, y)) ;

【CN110197471A】一种图像对比度增强方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910154634.5 (22)申请日 2019.03.01 (71)申请人 合肥工业大学 地址 230000 安徽省芜湖市屯溪路193号 (72)发明人 郝世杰 汪雷宇 张又明 洪日昌  汪萌  (74)专利代理机构 北京睿智保诚专利代理事务 所(普通合伙) 11732 代理人 杨海明 (51)Int.Cl. G06T 5/40(2006.01) (54)发明名称 一种图像对比度增强方法 (57)摘要 本发明公开一种图像对比度增强方法,所述 增强方法包括:采集待处理的图像,获得原始图 像;将所述原始图像采用色彩处理方法进行色彩 处理,获得色彩处理图像;将所述色彩处理图像 进行数据预处理,获得预处理色彩图像;将所述 原始图像进行预增强处理,获得第一增强图像; 根据所述色彩处理图像、所述第一增强图像和所 述原始图像采用图像增强方法,获得第二增强图 像。本发明提供的图像增强方法能够在像素级别 感知图像的结构,进行非均一的增强,产生对比 度得到增强且兼具自然性的结果。权利要求书1页 说明书2页 附图1页CN 110197471 A 2019.09.03 C N 110197471 A

1.一种图像对比度增强方法,其特征在于,所述增强方法包括: 采集待处理的图像,获得原始图像I; 将所述原始图像采用色彩处理方法进行色彩处理,获得色彩处理图像L;将所述色彩处理图像L进行数据预处理,获得预处理色彩图像; 将所述原始图像I进行预增强处理,获得第一增强图像; 根据所述色彩处理图像L、 所述第一增强图像和所述原始图像I采用图像增强方法,获得第二增强图像。 2.根据权利要求1所述的一种图像对比度增强方法,其特征在于,所述将所述原始图像采用色彩处理方法进行色彩处理,获得色彩处理图像L具体包括: 对所述原始图像做最大化颜色通道技术处理,获得色彩处理图像L。 3.根据权利要求1所述的一种图像对比度增强方法,其特征在于,所述将所述色彩处理图像L进行数据预处理,获得预处理色彩图像具体包括: 对所述色彩处理图像L进行取反和开操作,获得预处理色彩图像1-L。 4.根据权利要求1所述的一种图像对比度增强方法,其特征在于,所述将所述原始图像I进行预增强处理,获得第一增强图像具体包括: 对所述原始图像I采用简化的Retinex模型处理,获得第一增强图像。 5.根据权利要求1所述的一种图像对比度增强方法,其特征在于,所述根据所述色彩处理图像L、所述第一增强图像和所述原始图像I采用图像增强方法,获得第二增强图像具体包括: 第二增强图像。 权 利 要 求 书1/1页 2 CN 110197471 A

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比 一、摘要 本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析3 种方法在图像增强处理能力的优劣之处。 结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失; 图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题; 图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。 关键词: 图像增强灰度图直方图平滑锐化 二、三种图像增强算法 图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。 现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。 1、直方图均衡化 直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。 为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。 假设灰度级为归一化至范围[0,1]内的连续量,设其中任一灰度级别Z归一化为r,变换后图像的任一灰度级Z'归一化为s,显然r,s应当满足:0<=r<=1,0<=s<=1 因此直方图修正就是对下列公式的计算过程:s=T(r)或r=T'(s) 式中T(r)为变换函数,它必须满足下列条件: a在0<=r<=1区间内是单值单调增加函数; b对于0<=r<=1,有T(r)在[0,1]内。 条件a 保证灰度级从黑到白的次序,而条件b确保映射后的像素灰度在允许的范围内,避免整个图像明显变亮或者变暗。 从S 到r的反变换关系为r=T'(s) ;T'(s)对r同样满足上述条件。 灰度变换是对图像上各个像素点的灰度值x 按某个函数T 变换到y ,将图像的灰度级整个范围或其中某一段( A, B)扩展或压缩到( A, B)。直方图均衡化是灰度变换的一个重要应用,是以累计分布函数变换为基础的直方图修正法, 可以产生一幅灰度级分布具有均匀概率密度的图像。一幅图像灰度级r k 出现的概率近似为 其中n 是图像中像素的总和, nk 是灰度级为r k 的像素个数, L 为图像中灰度级总数。若

基于retinex的图像去雾算法

I=imread('1.jpg'); R = I(:, :, 1); G = I(:, :, 2); B = I(:, :, 3); R0 = double(R); G0 = double(G); B0 = double(B); [N1, M1] = size(R); Rlog = log(R0+1); Rfft2 = fft2(R0); sigma1 = 128; F1 = fspecial('gaussian', [N1,M1], sigma1); Efft1 = fft2(double(F1)); sigma2 = 256; F2 = fspecial('gaussian', [N1,M1], sigma2); Efft2 = fft2(double(F2)); sigma3 = 512; F3 = fspecial('gaussian', [N1,M1], sigma3); Efft3 = fft2(double(F3)); DR0 = Rfft2.* Efft1; DR = ifft2(DR0); DRlog = log(DR +1); Rr1 = Rlog - DRlog; DR0 = Rfft2.* Efft2; DR = ifft2(DR0); DRlog = log(DR +1); Rr2 = Rlog - DRlog; DR0 = Rfft2.* Efft3; DR = ifft2(DR0); DRlog = log(DR +1); Rr3 = Rlog - DRlog; Rr = (Rr1 + Rr2 +Rr3)/3; a = 125; II = imadd(R0, G0); II = imadd(II, B0); Ir = immultiply(R0, a); C = imdivide(Ir, II); C = log(C+1); Rr = immultiply(C, Rr); EXPRr = exp(Rr); MIN = min(min(EXPRr)); MAX = max(max(EXPRr)); EXPRr = (EXPRr - MIN)/(MAX - MIN); EXPRr = adapthisteq(EXPRr); Glog = log(G0+1); Gfft2 = fft2(G0); DG0 = Gfft2.* Efft1;

雾天降质图像增强处理技术研究

目录 摘要 (i) Abstract ............................................................................................................... i i 第一章绪论 (1) 1.1 课题研究背景和意义 (1) 1.2 雾天降质图像增强的研究现状 (2) 1.2.1 非物理模型去雾方法 (2) 1.2.2 基于退化模型的去雾方法 (3) 1.2.3 基于多幅图像的去雾方法 (4) 1.2.4 基于图像融合的去雾算法 (5) 1.2.5 基于GPU的并行加速去雾算法 (5) 1.2.6 去雾图像去噪算法 (6) 1.3 雾天降质图像增强的技术难点 (6) 1.4 论文概述 (7) 1.4.1 本文主要工作和成果 (7) 1.4.2 论文结构 (7) 第二章基于多尺度图像融合的暗通道先验去雾方法 (9) 2.1 雾天图像降质机理及去雾增强原理 (10) 2.2 暗通道先验去雾方法 (12) 2.2.1 DCP理论 (12) 2.2.2 经典DCP去雾算法 (12) 2.2.3 算法处理结果分析 (14) 2.3 基于多尺度图像融合的暗通道先验去雾方法 (16) 2.3.1 基于图像融合的透射率估计修正 (17) 2.3.2 自适应透射率下界求取 (22) 2.3.3 实验结果分析 (23) 2.4 本章小结 (25) 第三章基于透射率的去雾图像去噪算法 (26) 3.1 图像空域去噪基本原理和方法 (27) 3.2 非局部均值去噪算法 (30) 3.2.1 NLM去噪机理 (30)

图像去雾霭算法及其实现..

图像去雾霭算法及其实现 电气工程及其自动化 学生姓名杨超程指导教师李国辉 摘要雾霭等天气条件下获得的图像,具有图像不清晰,颜色失真等等一些图像退化的现象,直接影响了视觉系统的发挥。因此,为了有效的改善雾化图像的质量,降低雾霭等天气条件下造成户外系统成像的影响,对雾霭图像进行有效的去雾处理显得十分必要。 本设计提出了三种图像去雾算法,一种是基于光照分离模型的图像去雾算法;一种是基于直方图均衡化的图像去雾算法;还有一种是基于暗原色先验的图像去雾算法。并在MATLAB的基础上对现实生活的图像进行了去雾处理,最后对不同的方法的处理结果进行了简要的分析。 关键词:图像去雾光照分离直方图均衡化暗原色先验

Algorithm and its implementation of image dehazing Major Electrical engineering and automation Student Yang Chaocheng Supervisor Li Guohui Abstract Haze weather conditions so as to obtain the image, the image is not clear, the phenomenon of color distortion and so on some image degradation, directly influence the exertion of the visual system. Therefore, in order to effectively improve the atomization quality of the image, reduce the haze caused by outdoor weather conditions such as imaging system, the influence of the haze image effectively it is necessary to deal with the fog. This design introduced three kinds of algorithms of image to fog, a model is based on the separation of light image to fog algorithm; One is the image to fog algorithm based on histogram equalization; Another is based on the dark grey apriori algorithms of image to fog. And on the basis of MATLAB to the real life to deal with the fog, the image of the processing results of different methods are briefly analyzed. Key words:Image to fog Light separation histogram Dark grey

雾霾天气下降质图像的清晰化处理

doi :10.3969/j.issn.1001-893x.2016.02.017引用格式:宋晓敏,赵红东,卢俏,等.雾霾天气下降质图像的清晰化处理[J].电讯技术,2016,56(2):208-211.[SONG Xiaomin,ZHAO Hongdong,LU Qiao,et al.Clearness processing of haze-degraded images[J].Telecommunication Engineering,2016,56(2):208-211.] 雾霾天气下降质图像的清晰化处理 *宋晓敏,赵红东**,卢 俏,夏士超,席瑞媛,李梦宇,肖梦琪 (河北工业大学电子信息工程学院,天津300401)摘 要:针对雾霾天气条件下大气散射和悬浮颗粒物引起的图像对比度二清晰度降低问题,提出通过采用独立分量分析(ICA )算法分解图像中具有相互独立分量的混合像元,估计图像有用信息分量三因乘性噪声信息的存在,会导致估计的图像有用信息有一定的偏差;采用基于噪声检测的局部自适应中值滤波对估计的图像有用信息进行了进一步校正三实验结果证明:新算法能有效去除雾霾,提高图像的清晰度和对比度三 关键词:雾霾图像处理;去雾;独立分量分析;噪声检测;自适应中值滤波 中图分类号:TP751 文献标志码:A 文章编号:1001-893X (2016)02-0208-04 Clearness Processing of Haze -degraded Images SONG Xiaomin,ZHAO Hongdong,LU Qiao,XIA Shichao,XI Ruiyuan,LI Mengyu,XIAO Mengqi (School of Electronic Information Engineering,Hebei University of Technology,Tianjin 300401,China) Abstract :The contrast and clarity of images are reduced in the hazy weather because of the atmospheric scattering and the suspended particulate matter.The independent component analysis(ICA)algorithm is used to estimate the useful information of image by disintegrating the mixed pixels which include many in-dependent components.The adaptive median filter algorithm with noise detection is employed to eliminate the multiplicative noise information.Experimental results show that the new algorithm can meet the defog-ging goal and improve the contrast and clarity.Key words :haze imaging processing;defogging;independent component analysis;noise detection;adaptive median filter 1 引 言 雾霾天气严重影响人们的工作生活,在智能车 辆监控二视屏监控二道路交通等方面尤其明显三为有 效提取图像目标信息,禹晶等[1]提出暗原色先验去 雾算法,依据户外无雾图像的统计规律建立去雾模 型,估计出雾霾浓度,实现对图像的去雾处理,但在 建立去雾模型时无法准确估计物体的透射率,导致 去雾效果不佳三胡媛媛[2]提出在HSI(Hue-Satura-tion-Intersity)空间上采用局部直方图均衡化法实现图像的清晰化处理,虽然能保护图像部分边缘细节信息,但存在色彩失真问题三梁天全等[3]提出了一种基于偏振信息的去雾算法,通过合成不同偏振旋转方位角度图像实现图像的去雾处理,因表面光滑目标反射光的偏振特性较强,会造成建立的图像合成模型出现偏差三对图像进行去雾处理的目的是提高图像的对比四802四第56卷第2期2016年2月电讯技术Telecommunication Engineering Vol.56,No.2February,2016***收稿日期:2015-06-10;修回日期:2015-09-24 Received date :2015-06-10;Revised date :2015-09-24基金项目:河北省自然科学基金资助项目(F2013202254)Foundation Item :The Natural Science Foundation of Hebei Province (F2013202254)通信作者:zhaohd@https://www.wendangku.net/doc/7011276086.html, Corresponding author :zhaohd@https://www.wendangku.net/doc/7011276086.html,

电子科大图像对比度增强实验报告

电子科技大学通信学院学院标准实验报告 (实验)课程名称图像对比度增强实验 电子科技大学教务处制表

电子科技大学 实验报告 学生姓名:学号:指导教师: 实验地点:实验时间: 一、实验室名称:通信系统实验室 二、实验项目名称:图像对比度增强实验 三、实验学时:16 四、实验原理: 图像增强的目的是针对应用或人们主观需求,对输入图像进行某种处理,使得处理后的图像在特定结构或对比度等方面有明显的改善,其源头可以追溯到1969年。随着应用需求的不断发展,世界各国对此问题展开了广泛的研究。 特定结构或对比度不够清晰,可能来自质量不佳的成像设备、恶劣的大气条件、不恰当图像压缩算法等,其特点是图像中像素灰度集中在一个相对较小的范围,导致后端处理设备的观察者不能有效对图像进行判读。 造成图像对比度不够清晰的原因是多方面,包括电子系统的热噪声、光照过强、光照过弱、目标反射率过低、大雾天气、逆光拍摄、压缩等等。由于其产生原因的多样性,导致图像对比度不够清晰在图像中体现出来的现象也不同,可以分为以下3类:整体偏暗、整体偏亮、分布在亮和暗的两端,并且有可能在空间分布上存在多个区域。 现有的对比度增强技术根据其处理方法理论依据不同可分为:直方图均衡化、基于Retinex理论的图像增强、基于梯度场重建的图像增强;根据其处理范围,又可以分为全局处理与局部处理两大类。本实验将主要论述直方图均衡化和基于梯度场重建的图像增强两种方法,其中直方图均衡化进描述基本原理,其实

现由学生独立完成,而基于梯度场重建的图像增强方法,本实验将重点阐述,并给出参考代码,要求学生在此基础上进行进一步的完善。 直方图均衡化的基本原理就是对图像进行灰度变换。灰度变换有逆反处理、阈值变换、灰度拉伸、灰度切分、灰度级修正、动态范围调整等方法。虽然它们对图像的处理效果不同,但处理过程中都运用了点运算,通常可分为线性变换、分段线性变换、非线性变换。其缺点是需要用户根据不同的图像调整不同的变换函数。灰度变换是最简单的对比度增强技术,它可增大图像动态范围,扩展对比度,使图像清晰、特征明显,是图像增强的重要手段之一。它主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。灰度变换不改变图像内的空间关系,灰度级的改变是根据某种特定的灰度变换函数进行。 实验所需基本结构如图1所示。 图1 实验所需基本结构图 本实验把成像设备(即摄像头)采集的一幅图像,传入计算机,由图像增强技术算法实现的编程软件处理后,对图像进行增强,然后实时显示增强后的图像。图像对比度增强技术,不仅要保持图像整体的一致性,还需要对图像的局部区域进行增强处理,使其具有最佳的表现力。因此,本文采用梯度场方法。技术方案特点有: a)梯度域增强避免了亮度不同对增强算子的影响 b)重建图像是基于最小二乘法,与原始的图像在亮度方面不同 c)重建图像在梯度域与原始图像具有强烈的相似性 d)重建图像具有亮度平均值的相对保持性 e)重建图像的边界条件周期延拓(采用DST变换要求) f)所有算子都是直接计算

基于同态滤波的图像去雾方法本科毕业论文

本科毕业设计(论文) 题目:基于同态滤波的图像去雾方法

基于同态滤波的图像去雾方法摘要 在雾霭等天气条件下获得的图像,模糊不清、颜色失真,影响视觉效果。因此有必要对图像进行去雾研究。图像去雾是通过一定的手段去除图像中雾的干扰,达到快速有效的去雾和清晰度恢复的作用,从而得到高质量的图像。 图像去雾的方法众多,同态滤波是一种在频域中进行的图像对比度增强和压缩图像亮度范围的特殊滤波方法。这种方法能减少低频并增加高频,即尽量保留低频中的灰度级(保存图像原貌),又锐化细节,从而达到去雾的效果。 本文把基于同态滤波的去雾算法,与全局均衡化的图像去雾算法等方法进行对比,借鉴其他算法的优点,优化同态滤波算法,使图像去雾效果更加理想。实验结果表明,同态滤波能较好的锐化细节,同时保持原图概况。若要使图片达到更好的清晰度,需结合多种算法,叠加运行。 关键词:图像去雾;图像增强;同态滤波;直方图均衡化

Image defog method based on the method of image filterin Abstract The image obtained in bad weather conditions such as fog, blur, color distortion, visual effects.Therefore, it is necessary to study images defogging.Images defogging is through a certain means of removing fog interference and achieve rapid recovery of fog and clarity of role, resulting in high quality images. Homomorphic filtering is an image in the frequency domain of contrast enhancement and special filtering method of image brightness range, homomorphic filtering can reduce the frequency and increase the frequency, that is, try to keep the low frequency of gray levels (save the original image) and sharpen details, so as to achieve the effect of fog. This fog based on homomorphic filtering method, and global equalization algorithm for images defogging method compares the advantages of other algorithms, optimizing the homomorphic filter algorithm, making the image to fog effect is more ideal. Experimental results show that the homomorphic filtering can be used to sharpen detail, while keeping the original profile. To make the image better definition, should be combined with a variety of algorithms, stacking operation. Key words: image, image enhancement, image enhancement, image enhancement, image enhancement, histogram equalization.

基于MATLAB的雾天降质图像

毕业论文(设计) 基于MATLAB的雾天降质图像 的清晰化技术研究 学生姓名: 学号: 系别: 专业: 指导教师: 评阅教师: 论文答辩日期2011年5月26日 答辩委员会主席

摘要 随着信息技术的不断发展同时也伴随着人类工业化进程的不断前进,空气污染也越来越严重。一项调查数据显示,一年中大雾天气所占的比例在逐年上升,而有雾天气会给人类的生产生活带来极大的不便。有雾天气时,交通事故发生的概率大大增加。一方面,数字图像处理已成为一个极其重要的学科和技术领域,在通信、语音、图像、遥感、生物工程等众多领域得到了广泛的应用。另一方面,随着计算机视觉与图像处理技术的发展,户外视觉系统的研究与应用正在飞速发展。如地形分类系统、户外监控系统、自动导航系统等的应用数量在急速攀升。在恶劣天气条件下( 如雾天,雨天等) ,户外景物图像的对比度和颜色都会被改变或退化,图像中蕴含的许多特征都被覆盖或模糊,导致这些视觉系统无法正常工作。因此,从大气退化图像中复原和增强景物细节信息具有重要的现实意义。 MATLAB是用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。MATLAB 应用广泛,其中包括信号处理和通信、图像和视频处理、控制系统、测试和测量,计算金融学及计算生物学等众多应用领域。在各行业和学术机构中,有一百多万工程师和科学家使用MATLAB 这一技术计算语言,MATLAB中的GUIDE是专门用于图形用户界面的快速开发环境。 主要针对雾天情况下获取的降质灰度图像进行研究。通过MATLAB 对数字图像进行处理,建立衰减模型。首先运用空间域中的直方图均衡化的领域处理后再经过像素点处理,对像素点处理采用三种方法来实现灰度图像的清晰化处理,即灰度线性变换法,灰度非线性变换法和灰度非线性和线性的综合法。并对这三种方法得到的结果进行了比较分析。实验结果表明,在有雾的情况下,第三种方法的去雾处理效果最好。 关键词:数字图像处理,图像去雾,MATLAB,灰度图像清晰化

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1)实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像增强方法

图像增强所包含的主要内容如下图。 1.灰度变换 灰度变换可调整图像的动态范围或图像对比度,是图像增强的重要手段之一。(1)线性变换 令图像f(i,j)的灰度范围为[a,b],线性变换后图像g(i,j)的范围为[a′,b′],如下图 g(i,j)与f(i,j)之间的关系式为: 在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。

(2)分段线性变换 为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。如下图所示。 设原图像在[0,M f],感兴趣目标所在灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为 通过调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。

(3)非线性灰度变换 当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。 ①对数变换 对数变换的一般表达式为 这里a,b,c是为了调整曲线的位置和形状而引入的参数。当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。 ②指数变换 指数变换的一般表达式为 这里参数a,b,c用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的拉伸。

2.直方图修整法 灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图 像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。直方图修整法包括直方图均衡化及直方图规定化两类。(1)直方图均衡化直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。下面先讨论连续变化图像的均衡化问题,然后推广到离散的数字图像上。为讨论方便起见,设r和s分别表示归一化了的原图像灰度和经直方图修正后的图 像灰度。即。在[0,1]区间内的任一个r值,都可产生一个s值,且 。 T(r)作为变换函数,满足下列条件: ①在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变; ②在0≤r≤1内,有0≤T(r)≤1,确保映射后的像素灰度在允许的范围内。 反变换关系为,T-1(s)对s同样满足上述两个条件。由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。假定随机变量s的分布函数用Fs(s) 表示,根据分布函数定义 利用密度函数是分布函数的导数的关系,等式两边对s求导,有: 可见,输出图像的概率密度函数可以通过变换函数T(r)可以控制图像灰度级的概率密度函数,从而改善图像的灰度层次,这就是直方图修改技术的基础。

雾霾天气下降质图像复原算法研究

雾霾天气下降质图像复原算法研究 西藏大学王新胜陈贤花苏倩周张颖 【摘要】随着工业化的发展,雾霾天气已经严重影响了人们的日常生活,特别对交通安全造成了巨大影响,是我国车祸的一个重要原因。目前,国内外对雾霾的处理方法主要有两种:单幅图像清晰化与直方图均衡化,本文将结合这两种方法,基于matlab图像处理对去雾进行研究。 【关键字】雾霾单幅图像清晰化直方图均衡化灰度非线性拉伸1.研究意义: 现今社会是一个高度复杂的人口密集型社会,人们的活动方式越来越多样、活动范围越来越大,使汽车成为了重要的交通工具,但随着我国工业化进程加快,造成了雾霾等恶劣天气,对交通存在着巨大安全隐患。在雾天情况下,由于场景可见度较低,造成驾驶员的视觉模糊,是我国车祸的重大原因之一。然而随着计算机软硬件技术的快速发展,单幅图像清晰化技术日益成熟,使得我们对雾霾天气图像清晰度的处理成为了可能,但是雾霾的日益加重,又对去雾图像的清晰度和真实感提出了更高的要求。本文将在以往图像清晰化技术的基础上,加以深入研究,设计出一种效果更好的程序,为拓宽驾驶员视野,构造顺畅、安全的交通环境提供一种更好的思路。 2.国内外研究现状: 雾天场景恢复是一个十分困难的问题, 因为雾对图像的影响程度与场景深度相关, 然而图像深度的获取却是一个不完全约束的问题。目前,国内外对去雾的方法主要有两种:单幅图像清晰度恢复技术和图像色彩均衡技术(直方图均衡化)。 如今,单幅图像清晰化技术取得较大突破, 这些方法的成功是因为众多前辈的实践或假设。2009年,何凯明博士在《Single Image Haze Removal Using Dark Channel Prior》一文中提出了一种基于暗通道先验知识统计[1]的方法, 用于单幅图像去雾, 此方法认为在绝大多数非天空的局部区域里,某一些像素总会有至少一个颜色通道具有很低的值,换言之,该区域光强度的最小值是个很小的数。在雾天图像中, 暗原色的强度值大小主要由大气光组成,此方法直接应用暗通道来估计透射率图 , 并运用图像修补的方法对透射率图进行了平滑操作, 利用修补后的透射率图能够恢复出清晰的图像, 并从中获得雾天图像的深度图,因此该方法虽然具备物理有效性, 但当图像目标在很大的区域和大气光本质上十分相同时, 并且无暗影投到物体上时, 暗通道先验知识统计将会无效, 并且修补透射率图时存在局限性, 因为当修补的参数过小时, 透射率图的细节较多, 层次感虽然较好, 但平滑过少,将会出现大量的局部错误;而当修补参数过大时, 局部错误虽然会减少, 但是修补之后细节将会变得十分不明显, 使得整幅透射率图层次感缺失, 丧失了图像的深度感。 而在单幅图像清晰度恢复技术取得突破的同时,直方图均衡化去雾技术也在被改进创新。直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比

图像对比度增强实验

电子科技大学通信学院 《图像对比度增强实验指导书》 2011年6月

图像对比度增强实验 一、实验目的 本实验是针对拟开设的《图像处理》课程而开发的综合性实验。该实验与概率统计、高等数学、信号处理等课程都有一定程度的联系。通过本实验,促使学生利用上述课程相关知识,更好地掌握图像增强的基本方法和原理。要求学生达到:掌握经典的数字图像空域增强算法的实现方法;了解实验所用的图像处理算法的运行效果;学会分析与比较各种方法的差异。 二、实验内容与要求 1.2学时:掌握图像对比度增强原理; 2.2学时:掌握图像变换原理; 3.2学时:给定输入图片,在MATLAB上实现线性变换增强和直方图增强 仿真; 4.8学时:构建图像采集系统,在已有的采集软件平台上将仿真算法用C 语言实现; 5.2学时:测试实际输入图片增强效果。 三、实验开设方式 本实验开设方式为两人一组实验,实验授课时间2学时,上机14学时。四、实验器材 硬件环境: 计算机一台; USB摄像头一个; 三脚架一个; 软件环境: Winxp操作系统; VC6.0开发环境;Open CV1.0,gsl-1.8 五、实验原理 图像增强的目的是针对应用或人们主观需求,对输入图像进行某种处理,使

得处理后的图像在特定结构或对比度等方面有明显的改善,其源头可以追溯到1969年。随着应用需求的不断发展,世界各国对此问题展开了广泛的研究。 特定结构或对比度不够清晰,可能来自质量不佳的成像设备、恶劣的大气条件、不恰当图像压缩算法等,其特点是图像中像素灰度集中在一个相对较小的范围,导致后端处理设备的观察者不能有效对图像进行判读。 造成图像对比度不够清晰的原因是多方面,包括电子系统的热噪声、光照过强、光照过弱、目标反射率过低、大雾天气、逆光拍摄、压缩等等。由于其产生原因的多样性,导致图像对比度不够清晰在图像中体现出来的现象也不同,可以分为以下3类:整体偏暗、整体偏亮、分布在亮和暗的两端,并且有可能在空间分布上存在多个区域。 现有的对比度增强技术根据其处理方法理论依据不同可分为:直方图均衡化、基于Retinex理论的图像增强、基于梯度场重建的图像增强;根据其处理范围,又可以分为全局处理与局部处理两大类。本试验将主要论述直方图均衡化和基于梯度场重建的图像增强两种方法,其中直方图均衡化仅描述基本原理,其实现由学生独立完成,而基于梯度场重建的图像增强方法,本实验将重点阐述,并给出参考代码,要求学生在此基础上进行进一步的完善。 直方图均衡化的基本原理就是对图像进行灰度变换。灰度变换有逆反处理、阈值变换、灰度拉伸、灰度切分、灰度级修正、动态范围调整等方法。虽然它们对图像的处理效果不同,但处理过程中都运用了点运算,通常可分为线性变换、分段线性变换、非线性变换。其缺点是需要用户根据不同的图像调整不同的变换函数。灰度变换是最简单的对比度增强技术,它可增大图像动态范围,扩展对比度,使图像清晰、特征明显,是图像增强的重要手段之一。它主要利用点运算来修正像素灰度,由输入像素点的灰度值确定相应输出点的灰度值,是一种基于图像变换的操作。灰度变换不改变图像内的空间关系,灰度级的改变是根据某种特定的灰度变换函数进行。 实验所需基本结构如图1所示。

相关文档