文档库 最新最全的文档下载
当前位置:文档库 › 吉林查干湖水体叶绿素a含量高光谱模型研究

吉林查干湖水体叶绿素a含量高光谱模型研究

吉林查干湖水体叶绿素a含量高光谱模型研究
吉林查干湖水体叶绿素a含量高光谱模型研究

叶绿素吸收光谱

叶绿素光合作用吸收光谱简述 一光合作用叶绿素简介 叶绿素是广泛存在于绿色植物中的最主要色素,是光合作用的捕光物质,在光合作用中发挥着重要的生理功能,光合作用是将太阳能转换为化学能,并 利用它把CO 2和H 2 0等无机物合成为有机物,同时放出0 2 的过程,是“地球上最重 要的化学反应”。因此长期以来,叶绿素和光合作用的研究一直是人们极关心的课题。例如在蛋白质进入叶绿体内的过程中Tic联合体所起的作用,主要生态因子对叶绿素a含量的影响及在不同水域各因子所起的作用,利用高光谱数据对作物群体叶绿素密度的估算等等。 叶绿素是一种复杂的有机大分子,它含有一个极性的卟啉“头”和一条非极性的叶醇“尾”。叶绿素的基本结构为卟吩,镁卟啉是绿色的基本源。叶绿素是镁卟啉的羟酸衍生物,它与叶绿醇、甲醇酯化生成叶绿素。目前人们发现的叶绿素已有许多种,包括叶绿素a,b,c,d和细菌叶绿素a,b,c等。 叶绿素a的分子式为C 55H 72 O 5 N 4 Mg,分子质量约为89kD(1 D=1.65×10-24g),它 是一个在C-7和C-8位置上带有2个氢原子的二氢卟啉与镁离子的配合物。叶绿素 b的分子式为C 55H 70 O 6 N 4 Mg,分子质量约为90kD,它也是二氢卟啉,与叶绿素a的差 别在于C-3位置上的甲基被醛基所取代。叶绿素a,b都是脂类化合物,不溶于水,溶于己烷、石油醚、丙酮等有机溶剂。当用有机溶剂提取叶绿素时,二者同时被提取出来。叶绿素a呈蓝绿色,叶绿素b呈黄绿色。在可见光范围内,二者的吸收光谱相互重叠较大,其吸收峰位于可见光的红光与蓝紫光。 二叶绿素吸收光谱 叶绿素吸收光的能力很强,如果把叶绿素溶液放在光源和分光镜之间,就可以看到有些波长的光线被吸收了。在光谱中就出现了暗带,这种光谱叫吸收光谱。 叶绿素两个最强烈的吸收区,一个是波长为640~660nm的红光部分,另一个是430~450nm的蓝紫光部分。此外,在光谱的橙光,黄光和绿光部分只有不明显的吸收带,其中尤以对绿光的吸收最少,所以叶绿素的溶液呈绿色。叶绿素 a(chl a)和叶绿素b(chl b)的吸收光谱很相似,但略有不同。

叶绿素的光敏性质探究

叶绿素的光敏性质探究(与二氢卟吩e4对比) 研究背景 光敏剂的光漂白(photobleaching)是指在光的照射下,光敏剂所激发出来的荧光强度随着时间推移逐步减弱乃至消失的现象,这是光动力诊断临床应用中考虑光剂量和检测需用时间的一个重要因素。 长波红光在组织中具有较大的穿透深度,从而能保证足够的治疗深度:大的吸光度能保证充分利用光能量和尽可能减少药物剂量;光敏剂吸光度的大小是决定药物剂量的理论依据。过多的光敏剂分布于癌组织中势必会影响光的穿透深度,然而使用过少的光敏剂又不能产生应有的疗效。因此,光敏剂的使用剂量要依据其吸光度的大小和肿瘤组织的大小来权衡。 对于同一种光敏剂,它的漂白时间将随入射光的光能流率的增大而减小。再次,除了与光敏剂的类型有关外,还与初始浓度和入射光源的波长有关。初始浓度越大,光漂白时间越长。 实验意义:探究不同浓度的叶绿素在不同光源、不同时间的照射下,其吸光度随时间的变化,探测其光漂白特性,为更好地在临床应用上要保持光敏剂的有效杀伤浓度,且控制好光敏剂的激发时间,这样才能保证治疗的效果。 初步设想: 探究叶绿素在不同浓度,不同光源,不同光照时间对光的敏感性:(1)用紫外检测得到叶绿素的紫外可见吸收光谱,与二氢卟吩e4的光谱图比较。(最好能同时测定荧光光谱) (2)在叶绿素的最大吸收波长处检测浓度为0.05 mg/ml ,0.1 mg/ml ,0.2 mg/ml ,0.3 mg/ml, 0.4mg/ml的叶绿素的吸光度,并制作曲线图,验证其是否符合朗伯-比尔定律。 (3)实验设置了不同的六组光源:白光、红外光、黄光、绿光、蓝光、紫外光,分别对0.4mg/ml的叶绿素待测样品进行垂直照射10min、20min、30min、40min、50min、60min、80min、100min,取照射后的各样品进行紫外-可见吸收光谱的检测,通过光谱的变化,探究光敏剂叶绿素明显的光漂白特性。

遮光后叶绿素含量升高和叶绿素a和b比值降低的原因

遮光后叶绿素含量升高和叶绿素a/b降低的原因 试题:如图,叶绿素的含量随着遮光比例的升高而升高,遮光后叶绿素a/b 降低,捕光能力上升。原因。 因为学生知道,光是叶绿素形成的必需条件,所以大部分学生都错误认为叶绿素含量随光照增强而增加。 从资料中可以看出,这些变化都是为了适应植物在遮光条件下的生长。 一、遮光后叶绿素含量为什么会升高 叶绿素含量受到光照、温度、矿质元素、逆境等外界因素及核基因、质基因等内在因素的共同影响,在外部因素中光对叶绿素的合成与分解起主导作用。植物体中叶绿素的合成和分解处于一个动态平衡中,叶片光照后,才能顺利地合成叶绿素,但形成叶绿素所要求光照强度相对较低,当然过弱也不利于叶绿素的生物合成,除680nm以上波长以外,可见光中各种波长的光照都能促使叶绿素形成,光过强反而会发生光氧化而受破坏。 植物中叶绿素和蛋白质结合为结合态叶绿素才能发挥作用,而自由态的叶绿素则会对细胞造成光氧化损伤。为了避免自由态叶绿素对细胞造成的光氧化损伤,植物必须快速降解这些物质。 在遮光条件下,集光色素蛋白在光合单位中的相对含量会增加,从而导致结合态叶绿素增加。与此同时,降低了叶绿素的降解和光氧化,所以遮光后叶绿素的含量会增加。 遮荫环境下,植物通过增加单位叶面积色素密度和叶绿素含量,有利于提高植株的捕光能力,吸收更多的光,提高光能利用率,是对弱光环境的一种适应。 二、遮光后叶绿素a/b降低 在不同生理条件下,叶绿素a和叶绿素b的合成、分解速度影响了叶绿素a/b的比值,但调节叶绿素a/b的比值主要通过“叶绿素循环”实现。叶绿素a 和叶绿素b的相互转化称为“叶绿素循环”。 在遮光条件下,叶绿素a向叶绿素b的转化加快,叶绿素a水解形成脱植基叶绿素a,脱植基叶绿素a再转化为脱植基叶绿素b,最后合成叶绿素b,从而降低了叶绿素a/b的比值。弱光下叶绿素b的相对含量增高是有其生理适应,有利于对弱光的利用。

YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨解析

上肠ksd.(湖泊科学),2010,22(6):965-968 http:∥www.jlakes.org.E-mail:jhk∞@IligIas.ac.cn @20lOby如£册耐矿kksc泐鲫 YSI(多参数水质检测仪)测定叶绿素a浓度的准确性及误差探讨‘刘苑1”,陈宇炜H。,邓建明1’2 (1:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,南京210008) (2:中国科学院研究生院,北京lo0049) 摘要:Ysl(多参数水质检测仪)由于其快速、轻便的特点,已广泛应用于野外水体中时绿素a的测定.通过将Y跚溯得的叶绿素a值与分光光度法测定值进行比较,对Ysl6600水质测定的准确性和数据采集进行评估.结果显示,Ysl测定值多数偏低。且与分光光度法测定值之间存在显著性差异;时间上,冬季比夏季具有更大的线性相关性.分段同归结果显示,随着叶绿素a浓度不断增大.两组数据的差值也不断增大.YsI测定误差产生于3个方面:(1)测定前YsI校准方法的不同;(2)其它种类具有荧光特性色素的存在;(3)YsI自身结构. 关键词:叶绿素a浓度;YSI;分光光度法;误差 DisCussiOn0naccuracyanderrOrSforphytopIanI∞nchlorophy¨-aconcentra埘0nanaIySiSusingYSl(MuItI-parameterwateranalyzer) U[UYu觚1r,C胍NYhweil&DENGJi柚min91.2 巧scie,lces.Nn嘲i他2、000s.P.Rcht舱)(1:胁把研k幻加fo秽巧上4妇&妇懈4耐勖佃研珊跏f,觑l咖g肺咄姚可&珊,印砂研d肠彻咖,劭加甜PAc扭娜(2:G,眦妇纪&幻Dz盯cJ咖e卵A棚d唧矿&£伽,&驴f,增l(-D049,P.尼西f,埘) Abst陀ct:YsI(Mlllti?pa强ln曲盱waler锄aly蹭r)is诵delyusedto山把皿i肿phytlDm锄kton 6eIdschl啪phyll-aconcentr撕加inm蛐ybec舢卵0fitsrapidne睇锄dportablene鹄.Tbepu叩∞e0ftllis咖由i8t0evalu砒etIlee伍c卵y0ft王leYSIEn“姒蛐entalMo_Ili试ngsye锄hw栅qIlalityⅡ地a棚他眦“tsanddalacouectionbycompfariItgtw0group邑0fdala憾illg蚰啪ltory耐}

不同环境条件下植物叶绿素a、b含量地比较

一、实验课题名称:不同环境条件下植物叶绿素a、b含量的比较 二、选题背景或文献综述: 《植物生理学实验指导》(第四版)、《植物生理学》(第六版)、上网查阅相关资料 阴生植物也称“阴性植物”,是在较弱的光照条件下生长良好的植物,但并不是阴生植物对光照强度的要求越弱越好,而是必须达到阴生植物的补偿点,植物才能正常生长,阳生植物也称“阳性植物”,光照强度对植物的生长发育及形态结构的形成有重要作用,在强光环境中生长发育健壮,在阴蔽和弱光条件下生长发育不良的植物称阳性植物,这类植物要求全日照,并且在水分、温度等条件适合的情况下,不存在光照过强的问题。 阳生植物和阴生植物的区别:关于光的饱和点和补偿点光是光合作用的能量来源,光照强度直接影响光合速率,在其它条件都适宜的情况下,在一定范围内,光合速率随光照强度提高而加快,当光照强度高到一定数值后,光照强度再提高而光合速率不再加快,这种现象叫光饱和现象。开始达到光饱和现象的光照强度称为光饱和点,在光饱和点以下,随着光照强度减弱,光合速率减慢,当减弱到一定光照强度时,光合作用吸收二氧化碳量与呼吸释放二氧化碳的量处于动态平衡,这时的光照强度称为光补偿点。此时植物制造有机物量和消耗有机物量相等,不同类型植物的光饱和点和

补偿点是不同的,阳性植物的光饱和点和补偿点一般都高于阴性植物。 结构和特性的区别:阴生植物的叶片的疏导组织比阳生植物稀疏,以叶绿体来说,阳生植物有较大的基粒,基粒片层数目多的多,叶绿素含量也高,阴生植物在较低的光照条件下充分的吸收光线,叶绿素a/叶绿素b的比值小,能够强烈的利用蓝紫光,阳性植物叶片小而厚,表面具蜡质或绒毛,叶脉密,单位面积内气孔多,叶绿素含量高,体内含盐分多,渗透压高,可以抗高温干旱,阳生植物的气孔一般在叶片下表皮分布的数量多于上表皮,这样可以避免阳光直晒而减少水分散失,阳生植物的呼吸速率高于阴生植物。 区分阳生植物与阴生植物,主要是根据植物对光照强度需要的不同,阳生植物要求充分直射日光才能生长或生长良好,阴生植物适宜于生长在荫蔽环境中,它们在完全日照下反而生长不良或不能生长,阳生植物和阴生植物之所以能适应不同光照,是与它们的生理特征和形态特征不同有关,以光饱和点来说,阳生植物的光饱合点是全光照(即全部太阳光照)的100%,而阴生植物是全光照的10%~50%。因为阴生植物叶片的输导组织比阳生植物的稀疏,当光照强度增大时,水分对叶片的供给不足,阴生植物便不再增加光合速率,以叶绿体来说,阴生植物与阳生植物相比,前者有较大的基粒,基粒片层数目多,叶绿素含量较高,能在较低光照强度下充分

植物叶绿素测定方法

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 二、材料、仪器设备及试剂 (一)材料:新鲜(或烘干)的植物叶片。 (二)仪器设备:1)分光光度计;2)电子顶载天平(感量0.01g);3)研钵;4)棕色容量瓶; 5)小漏斗;6)定量滤纸;7)吸水纸; 8)擦境纸;9)滴管。 (三)试剂:1)95%乙醇(或80%丙酮)(v丙酮:v乙醇=2:1的95%水溶液);2)石英砂;3)碳酸钙粉。暗中2h,0.5g,25ml 三、实验步骤 1)取新鲜植物叶片(或其它绿色组织)或干材料,擦净组织表面污物,剪碎(去掉中脉),混匀。 2)称取剪碎的新鲜样品 0.2g ,共3份,分别放入研钵中,加少量石英砂和碳酸钙粉及2~3ml 95%乙醇,研成均浆,再加乙醇10ml,继续研磨至组织变白。静置3~5m 3)取滤纸1张,置漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗中,过滤到25ml棕色容量瓶中,用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 4)用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入容量瓶中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至25ml,摇匀。 5)把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm 和645nm下测定吸光度。在波长663nm、645nm下或652nm测定吸光度。 四、实验结果计算 叶绿素a的含量 = 12.7 ? OD 663 – 2.69 ? OD 645 叶绿素a的含量 = 22.9 ? OD 645 – 4.86 ? OD 663 叶绿素a、b的总含量 = 8.02 ? OD 663 + 20.20 ? OD 645

叶绿素a测定实验报告

叶绿素a测定实验报告 (一)实验目的及意义 水体富营养化可以通过跟踪监测水中叶绿素的含量来实现,其中叶绿素a是所有叶绿素中含量最高的,因此叶绿素a的测定能示踪水体的富营养化程度。 (二)水样的采集与保存 1.确定具体采样点的位置 2.在采样点将采样瓶及瓶盖用待测水体的水冲洗3-5遍 3.将采样瓶下放到距水面0.5-1m处采集水样2.5L 4.在采样瓶中加保存试剂,每升水样中加1%碳酸镁悬浊液1mL 5.将采样瓶拧上并编号 6.用GPS同步定位采样点的位置 (三)仪器及试剂 仪器: 1.分光光度计 2.比色池:10mm 3.过滤装置:过滤器、微孔滤膜(孔径0.45μm,直径60mm) 4.研钵 5.常用实验设备 试剂: 1.碳酸镁悬浮液:1%。称取1.0g细粉末碳酸镁悬浮于100mL蒸馏水中。每次使用时要充分摇匀 2.乙醇溶液 (四)实验原理 将一定量的试样用微孔滤膜过滤,叶绿素会留在滤膜上,可用乙醇溶液提取。 将提取液离心分离后,测定750、663、645、630mm的吸光度,计算叶绿素的浓度。 (五)实验步骤 1.浓缩:在一定量的试样中添加0.2mL碳酸镁悬浮液,充分搅匀后,用直径60mm 的微孔滤膜吸滤.过滤器内无水分后,还要继续抽吸几分钟.如果要延时提取,可把载有浓缩样品的滤膜放在干燥器里冷冻避光贮存。 2. 提取:将载有浓缩样品的滤膜放入研钵中,加入7mL乙醇溶液至滤纸浸湿的程度,把滤膜研碎,再少量地加乙醇溶液,把滤膜完全研碎,然后用乙醇溶液将已磨碎的滤膜和乙醇溶液洗入带刻度的带塞离心管中,使离心管内提取液的总体积不超过10mL,盖上管塞,置于的暗处浸泡24h。 3.离心:将离心管放入离心机中,以4000r/min速度离心分离20min。将上清液移入标定过的10mL具塞刻度管中,加少量乙醇于原提取液的离心管中,再次悬浮沉淀物并离心,合并上清液。此操作重复2-3次,直至沉淀不含色素为止,最后将上清液定容至10mL。 4.测定:取上清液于10mm的比色池中,以乙醇溶液为对照溶液,读取波长750,663,645和630mm的吸光度。

实验4 叶绿体色素的吸收光谱曲线及含量的测定

实验二叶绿体色素吸收光谱曲线及含量的测定 一、实验目的 掌握分光光度计的使用方法,学会绘制叶绿体色素的吸收光谱曲线。 了解叶绿体色素含量测定的原理,掌握叶绿体色素含量测定的方法。 二、实验原理 叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。叶绿素吸收光谱最强的吸收区有两个:一个在波长640~660nm的红光部分,另一个在波长430~450nm的蓝紫光部分。在光谱的橙光、黄光和绿光部分只有不明显的吸收带,其中尤以对绿光的吸收最少。胡萝卜素和叶黄素的最大吸收带在蓝紫光部分,不吸收红光等长波的光。 根据朗伯一比尔定律,某有色溶液的吸光度D与其中溶液浓度C和液层厚度L成正比,即:D=KCL D:吸光度,即吸收光的量, C:溶液浓度, K:为比吸收系数(吸光系数), L:液层厚度,通常为1cm。 95 %乙醇提取液中叶绿素a 和b 及类胡萝卜素分别在在665nm 、649nm 和470nm 波长下具有最大吸收峰,据此所测得的吸光度值代人不同的经验公式(见结果计算),计算出叶绿体色素乙醇提取液中叶绿素 a 和 b 的浓度及其叶绿素总浓度和类胡萝卜素的总浓度,并依据所使用的单位植物组织(鲜重、干重或面积),求算出色素的含量。 三、实验材料及器材 仪器及试剂:研钵、量筒、滴定管、烧杯、比色杯、滤纸、脱脂棉、分光光度计、95%乙醇材料:菠菜叶片 四、实验步骤 1、提取 称取1g菠菜叶片,加入少许95%乙醇,研磨,用量筒定容至25ml。 2、吸收光谱 去1ml提取液,加3ml95%乙醇,置于比色杯中,用95%乙醇作为对照,在400~700nm 之间每隔20nm测一次光,记录波长和吸光度D于下表中,并在标准绘图纸上绘出叶绿体色素的吸收光谱曲线。 λ(nm)400 420 440 460 480 500 …... 600 620 640 660 680 700 A 3、将色素提取液充分混匀后,取光径1cm 的比色杯,注入提取液,以95%乙醇作为空白 对照,在波长665nm 、649nm 和470nm 下测定吸光度(、和)。 4、结果计算 依据下列乙醇提取液中色素浓度计算公式,分别计算出叶绿素a、b的浓度及其叶绿素总浓度和类胡萝卜素的浓度。 C T=C a+C b

(完整word版)叶绿素含量的测定

叶绿素含量的测定 一、原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A 与其中溶质浓度C 和液层厚度L 成正比,即A =αCL 式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm 时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。这就是吸光度的加和性。今欲测定叶绿体色素混合提取液中叶绿素a 、b 和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A ,并根据叶绿素a 、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a 、b 时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 已知叶绿素a 、叶绿素b 的80%丙酮溶液在红外区的最大吸收峰分别位于663、645nm 处。已知在波长663nm 下叶绿素a 、叶绿素b 在该溶液中的吸光系数的分别为82.04和9.27;在波长645nm 处的吸光系数分别为16.75和45.60。根据加和性原则列出以下关系式: A663=82.04Ca+9.27Cb (1) A645=16.76Ca+45.60Cb (2) 式(1) (2)A 663nm 和A645nm 为叶绿素溶液在663nm 和645nm 处的吸光度,C a C b 分别为叶绿素a 、叶绿素b 的浓度,以mg/L 为单位。 解方程(1) (2)组得 C a =12.72 A 663—2.59 A 645 (3) C b =22.88 A 645—4.67 A 663 (4) 将C a +C b 相加即得叶绿素总量C T C T = C a 十C b =20.29A 645—8.05 A 663 (5) 从公式(3)、(4)、(5)可以看出,,就可计算出提取液中的叶绿素a 、b 浓度另外,由于叶绿素a 叶绿素b 在652nm 的吸收峰相交,两者有相同的吸光系数(均为30.5),也可以在此波长下测定一次吸光度(A 652)而求出叶绿素a 、叶绿素 b 总量 所测定材料的单位面积或单位重量的叶绿素含量可按下式进行计算: C T = 5 .341000 652 A (6) 有叶绿素存在的条件下,用分光光度法可同时测出溶液中类胡萝卜素的含量。Licht-enthaler 等对Arnon 进行了修正,提出了 80%丙酮提取液中3种色素含量的计算公式: C a =12.21A 663—2.59 A 646 (7)

2-4叶绿素a测定

实验题目: 湖塘水体叶绿素a测定 姓名:学号: 班级:组别:第一组 指导教师: 1.实验概述 1.1实验目的及要求 (1)初步了解叶绿素a测定的原理和常规测定方法; (2)通过实验,掌握叶绿素。的测定方法及富营养化水样的前处理方法; (3)熟练掌握抽滤装置及分光光度计的使用。 1.2实验原理 浮游植物的主要光合色素是叶绿素((Chlorophyll),常见的有叶绿素a、b和c。叶绿素a (chl-a >存在于所有的浮游植物中,大约占有机物干重的1-2%,是估算浮游植物生物量的重要指标,因此浮游植物叶绿素a含量的测定成为浮游植物生物量的重要指标而被广泛应用。 浮游植物叶绿素a的测定方法有许多种,根据所使用的仪器可以分为高效液相色谱法

萃取效率比较低,使得甲醇和乙醇成为替代丙酮的色素萃取剂。不过,甲醇对人体毒害性大,且在酸化过程中容易产生误差,于是,乙醇成为现在广泛应用的叶绿素a的萃取剂。超声破碎法因快速、提取效率高等特点也被研究者所青睐。 本实验介绍一种以热乙醇为萃取溶剂,结合超声细胞破碎法为基础的叶绿素a含量侧定方法。 2.实验内容 2.1实验方案设计 每组选择一个池塘,实地取水样,测定水样的叶绿素a含量。 2.2实验条件 2.2.1实验仪器: 1) 幼分光光度计1台; 2)抽滤装置(砂芯过滤器、负压表、真空泵等)1台; 3)4000r/min离心机1台; 4) 15mL带刻度及螺旋盖的离心分离试管6个; 5)恒温水浴锅1台; 6)直径47 mm的醋酸纤维滤膜; 8)超声细胞破碎仪 9 ) icm玻璃比色皿2个 10)表面皿若干 11)10mL比色管7个; 2.2.2实验材料 1)90%乙醇 2)1mol/L盐酸 2.3实验过程(实验步骤、记录、数据、分析) 2.3.1实验步骤

不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定)

一、实验课题名称 不同环境条件下植物叶绿素a、b含量的比较(分光光度法测定) 二、文献综述 1.叶绿素a的生物合成过程 起始物是谷氨酸,之后为5-氨基酮戊酸,两分子的ALA缩合形成胆色素原(PBG),4分子PBG相互连结形成原中卟啉IX.原卟啉IX与Mg结合形成Mg-原卟啉原IX,光下E环的环化形成,D环的还原作用和叶绿醇尾部的连接完成了整个合成过程,合成过程中的许多步骤在图中已省略 2.影响叶绿素形成的条件 (1)光光是影响叶绿素形成的主要条件。从原叶绿素酸酯转变为叶绿酸酯需要光,而光过强,叶绿素又会受光氧化而破坏。黑暗中生长的幼苗呈黄白色,遮光或埋在土中的茎叶也呈黄白色。这种因缺乏某些条件而影响叶绿素形成,使叶子发黄的现象,称为黄化现象(etiolation)。 也有例外情况,例如藻类、苔藓、蕨类和松柏科植物在黑暗中可合成叶绿素,其数量当然不如在光下形成的多;柑橘种子的子叶及莲子的胚芽在无光照的条件下也能形成叶绿素,推测这些植物中存在可代替可见光促进叶绿素合成的生物物质。 (2)温度叶绿素的生物合成是一系列酶促反应,受温度影响。叶绿素形成的最低温度约2℃,最适温度约30℃,最高温度约40℃。秋天叶子变黄和早春寒潮过后秧苗变白,都与低温抑制叶绿素形成有关。高温下叶绿素分解大于合成,因而夏天绿叶蔬菜存放不到一天就变黄;相反,温度较低时,叶绿素解体慢,这也是低温保鲜的原因之一。 (3)营养元素叶绿素的形成必须有一定的营养元素。氮和镁是叶绿素的组成成分,铁、锰、铜、锌等则在叶绿素的生物合成过程中有催化功能或其它间接作用。因此,缺少这些元素时都会引起缺绿症(chlorosis),其中尤以氮的影响最大,因而叶色的深浅可作为衡量植株体内氮素水平高低的标志。 (4)氧缺氧能引起Mg-原卟啉IX或Mg-原卟啉甲酯的积累,影响叶绿素的合成。 (5)水缺水不但影响叶绿素生物合成,而且还促使原有叶绿素加速分解,所以干旱时叶片呈黄褐色。 通过对室外旱池处理条件下的甘薯叶片叶绿素含量变化的研究,结果表明,水分胁迫下甘薯品种叶片中叶绿素a、b及总叶

叶绿体色素的提取分离理化性质和叶绿素含量的测定

实验报告 植物生理学及实验(甲)实验类型:课程 名称:实验名称:叶绿体色素的提取、分离、理化性质和叶 绿素含量的测定姓名:专业:学 号:指导老师:同组学生姓名: 实验日期:实验地点: 二、实验内容和原理一、实验目的和要求装 四、操作方法与实验步骤三、主要仪器设备订 六、实验结果与分析五、实验数据记录和处理 七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和 性质鉴定、定量分析的原理和方法。1 和b的方法及其计算。a2、熟悉在 未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为 材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。 原理如下:80%的乙醇或95%叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。、皂化反应。叶绿素是二羧酸酯,与强碱反应, 形成绿色的可溶性叶绿素2. 盐,就可与有机溶剂中的类胡萝卜素分开。- COOCHCOO3 Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH

HONC43230+C20H39OH 、3H+可依次被在酸性或加温条件下,叶-COOCOOCH39 20 绿素卟啉环中的Mg++取代反应。Mg2+, Cu2+ 取代Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。(H+和H+ ) 取代(Zn2+) 绿色褐色 、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。4645其中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。 652可直接用于总量分析。663用于定量叶绿素a,b及总量,而和C最大吸收光谱不同的两个组分的混合液,它们的浓度根据朗伯-比尔定律, *k+C*kOD=Ca*k与吸光值之间有如下的关系: OD=Ca*k+C b2 1g/L和b的80查阅文献得,2b1 b1a1a2b时,比吸收系%丙酮溶液,当浓度为 叶绿素a 值如下。数k k 比吸收系数波长/nm b 叶绿素a 叶绿素 9.27 82.04 663 45.60 645 16.75

叶绿素吸收光谱

叶绿素吸收光谱公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

叶绿素光合作用吸收光谱简述 一 光合作用叶绿素简介 叶绿素是广泛存在于绿色植物中的最主要色素,是光合作用的捕光物质,在光合作用中发挥着重要的生理功能,光合作用是将太阳能转换为化学能,并利用它把CO 2和H 20等无机物合成为有机物,同时放出02的过 程,是“地球上最重要的化学反应”。因此长期以来,叶绿素和光合作用的研究一直是人们极关心的课题。例如在蛋白质进入叶绿体内的过程中Tic 联合体所起的作用,主要生态因子对叶绿素a 含量的影响及在不同水域各因子所起的作用,利用高光谱数据对作物群体叶绿素密度的估算等等。 叶绿素是一种复杂的有机大分子,它含有一个极性的卟啉“头”和一条非极性的叶醇“尾”。叶绿素的基本结构为卟吩,镁卟啉是绿色的基本源。叶绿素是镁卟啉的羟酸衍生物,它与叶绿醇、甲醇酯化生成叶绿素。目前人们发现的叶绿素已有许多种,包括叶绿素a ,b ,c ,d 和细菌叶绿素a ,b ,c 等。 叶绿素a 的分子式为C 55H 72O 5N 4Mg ,分子质量约为89kD(1 D=×10-24g), 它是一个在C-7和C-8位置上带有2个氢原子的二氢卟啉与镁离子的配合物。叶绿素b 的分子式为C 55H 70O 6N 4Mg ,分子质量约为90kD ,它也是二氢卟 啉,与叶绿素a 的差别在于C-3位置上的甲基被醛基所取代。叶绿素a ,b 都是脂类化合物,不溶于水,溶于己烷、石油醚、丙酮等有机溶剂。当用有机溶剂提取叶绿素时,二者同时被提取出来。叶绿素a 呈蓝绿色,叶绿素b 呈黄绿色。在可见光范围内,二者的吸收光谱相互重叠较大,其吸收峰位于可见光的红光与蓝紫光。 二 叶绿素吸收光谱 叶绿素吸收光的能力很强,如果把叶绿素溶液放在光源和分光镜之间,就可以看到有些波长的光线被吸收了。在光谱中就出现了暗带,这种光谱叫吸收光谱。

叶绿素理化性质及含量

实验报告 课程名称: 植物生理学(乙)指导老师: 廖敏 成绩: 实验名称: 叶绿素理化性质和含量 实验类型: 定量探究型 同组学生姓名: 方昊 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填) 一、实验目的和要求 掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法; 二、实验内容和原理 以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量 分析。原理如下: 1. 叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取; 2. 叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素 分开; 3. 在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素; 4. 叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光; 5. 叶绿素吸收红光和蓝紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a 、b 及总量,而652可直接用于总量分析。 专业:农业资源与环境 姓名: 吴主光 学号: 3110100403 日期: 2013.10.17 地点: 生物实验中心 装 订 线

三、主要仪器设备 1. 天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等 四、操作方法、实验步骤以及实验现象 定性分析: 鲜叶5g+95%30ml(逐步加入),磨成匀浆 过滤入三角瓶中,观察荧光现象:透射光绿色,反射光红色。 皂化反应(3ml):加KOH数片剧烈摇均,加石油醚5ml和H2O1ml分层后观察:上层呈黄色,为类胡萝卜素,吸收蓝紫光;下层呈绿色,为叶绿素,吸收红光和蓝紫光。 取代反应(1):加醋酸约2ml,变褐(去镁叶绿素);取1/2加醋酸铜粉加热,变鲜绿色,为铜代叶绿素。 取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热,观察: 3 min变为褐绿色的去镁叶绿素, 5 min后,变为深绿色的铜代叶绿素。 叶绿素和类胡萝卜素的吸收光谱测定: 皂化反应的上层黄色石油醚溶液(稀释470nm OD 0.5-1) 反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)(稀释663nm OD 0.5-1) 在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰. 叶绿素定量分析:鲜叶0.1g,加1.9mlH2O,磨成匀浆,取0.2ml加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。 五、实验数据记录和处理

叶绿素含量的测定

叶绿素含量的测定 一.实验原理 根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。 根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL.式中:α比例常数。当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。 如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。就是吸光度的加和性。如欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三特定波长下的吸光度A,并根据叶绿素a、b 及类胡萝卜素在该波长下的吸光系数即可求出其浓度。在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。 植物叶绿素含量测定----丙酮提取法 高等植物光合作用过程中利用的光能是通过叶绿体色素(光合色素)吸收的。叶绿体色素由叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。叶绿体色素的提取、分离和测定是研究它们的特性以及在光合中作用的第一步。叶片叶绿素含量与光合作用密切相关,是反眏叶片生理状态的重要指标。在植物光合生理、发育生理和抗性生理研究中经常需要测定叶绿素含量。叶绿素含量也是指导作物栽培生产和选育作物品种的重要指标。 ● 叶绿素不溶于水,溶于有机溶剂,可用多种有机溶剂,如丙酮、乙醇或二甲基亚砜等研磨提取或浸泡提取。叶绿色素在特定提取溶液中对特定波长的光有最大吸收,用分光光度计测定在该波长下叶绿素溶液的吸光度(也称为光密度),再根据叶绿素在该波长下的吸收系数即可计算叶绿素含量。 ●利用分光光计测定叶绿素含量的依据是Lambert-Beer定律,即当一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。其数学表达式为: ●A=Kbc 式中:A为吸光度;K为吸光系数;b为溶液的厚度;c为溶液浓度。 ●叶绿素a、b的丙酮溶液在可见光范围内的最大吸收峰分别位于663、645nm处。叶绿素a 和b在663nm处的吸光系数(当溶液厚度为1cm,叶绿素浓度为g·L-1时的吸光度)分别为82.04和9.27;在645nm处的吸光系数分别为16.75和45.60。根据Lambert-Beer定律,叶绿素溶液在663nm和645nm处的吸光度(A663和A645)与溶液中叶绿素a、b和总浓度(a+b)(Ca、Cb 、Ca十b,单位为g·L-1),的关系可分别用下列方程式表示: ●A663=82.04C a+9.27C b (1) ●A645=16.76C a+45.60C b(2) ●C a=12.7 A663—2.59 A645(3) ●C b=22.9 A645—4.67 A663 (4) ●C a十b=20.3 A645—8.04 A663 (5) ●

水体叶绿素a测定方法

叶绿素a的测定方法一一乙醇+分光光度法 1、水样的保存 水样注入水样瓶后,应放置在阴凉处,并避免阳光直射。若水样的进一步处理需要较长时间(大于12h),则应置于0°C?4 °C低温下保存。水样量视水体中浮游植物多少而定,一般应采0.5~2L 。 2、抽滤 在抽滤装置的滤器中放入GF/C滤膜。抽滤时负压应不大于50kPa。抽滤完毕后,用镊子小心地取下滤膜,将其对折(有藻类样品的一面向里),再用普通滤纸吸压,尽量去除滤纸上的水分。如不立即提取,应将滤膜放在黑暗低温条件下保存。在普通冰箱冷冻室中可存放几天,在-20C低温冰箱中可保存30天。 3、提取 研磨可用玻璃研钵。将滤膜剪碎放入研钵,加入90%乙醇溶液7?8ml,研磨3~5分钟直至变为匀浆。将研磨后的匀浆移入具塞带刻度的离心管中。用少量提取液冲洗研钵或匀浆器,冲洗液并入离心管中,使终容积略小于10ml o盖上关塞,摇动后置于黑暗低温处进行提取至少6-24h 。 4、离心 将装有提取液的离心管放入离心机中,转速3500?4000rpm,离心10?15min。将上层叶绿素提取液移入定量试管中,再用少量提取液清洗、离心二次取得提取液。最后将提取液定容到10ml。如果大批样品需同步操作时,可减少离心步骤,直接在提取液中浸泡滤膜6-24h ,取其清液即可。 5、测定 用90%乙醇溶液作为参照液(参照比色皿中盛放90%乙醇溶液,并用90%乙醇调分光光度

计零点)。测定定容后的提取液在665nm和750nm处的吸光度,并计算两个吸光度的差记为A; 然后向比色皿中加入1滴1mol/L的盐酸酸化,酸化5—10min(可以用不同时间实验再进行调整)后再次测定酸化后的提取液在665和750nn处的吸光度,并且把酸化后的两个吸光度的差记为A 则提取液中叶绿素a的浓度为: Chla=27.9 x( A- A) x V是取液/V 脱镁叶绿素浓度为: Chla=27.9 x( 1.7 A 2-A) x V是取液/V 其中Chla为水样中的叶绿素a含量,单位为ug/L ; V提取液为提取液的最终定容体积,单位为 mL; V为抽滤水样的体积,单位为L。

植物生理学实验-叶绿素a b测定

叶绿素a,b含量测定 [实验目的]熟悉在未经分离的叶绿素溶液中测定叶绿素a和b的方法及其计算。 [实验原理]在叶绿素a和b的吸收光谱曲线中,红波波长范围内,叶绿素a的最大吸收峰在663nm,叶绿素b的最大吸收峰在645nm。吸收曲线彼此又有重叠。 根据Lambert—Beer定律,最大吸收峰不同的两个组分的混合液,它们的浓度C与光密度OD之间有如下关系:OD1=Ca·ka1+Cb·kb1 (1) OD2=Ca·ka2+Cb·kb2 (2) Ca为组分a的浓度(g/L) Cb为组分b的浓度(g/L) OD1为在波长λ1(即组分a的最大吸收峰波长)时,混合液的光密度OD值。 OD2为在波长λ2(即组分b的最大吸收缝波长)时,混合液的光密度OD值。 ka1,kb1,ka2,kb2分别为组分a,b的比吸收系数,即组分a(b)的浓度为(1g/L)时,其在相应波长(λ1,λ2)时的光密度OD值。 叶绿素A和B的80%丙酮溶液,当浓度为1时,比吸收系数K值如下表: 将表中数值代入上式(1),(2)并整理的: Ca=0.0127OD663-0.00269OD645 Cb=0.0229OD645-0.00468OD663 若把Ca,Cb的浓度单位从原来的g/L改为mg/L,则上式可改写为下列形式: Ca=12.7OD663-2.69OD645 (3) Cb=22.9OD645-4.68OD663 (4) Ct=Ca+Cb=8.02OD663+20.21OD645 (5) Ct为叶绿素总浓度,单位为g/L。 利用(3),(4),(5)式即可计算出叶绿素A和B及总叶绿素的浓度(g/L)。 [器材与试剂] 1.实验仪器:高级型分光光度计,离心机,台天平,剪刀,研钵,漏斗,移液管 2.实验试剂:丙酮,碳酸钙 3.实验材料:植物叶片 [实验步骤] 1.色素的提取:取新鲜叶片,剪去粗大的叶脉并剪成碎块,称取0.5G放入研钵中加纯丙酮5ML,少许碳酸钙和石英砂,研磨成匀浆,再加80%丙酮5ML,将匀浆转入离心管,并用适量80%丙酮洗涤研钵,一并转入离心管,离心后弃沉淀,上清液用80%丙酮定容至20ML。 2.测定光密度:取上述色素提取液1ml,加80%丙酮4ml稀释和转入比色杯中,以80%丙酮为对照,分别测定663nm,645nm处的光密度值。 3.按公式分别计算色素提取液中叶绿素A,B及叶绿素总浓度。再根据稀释倍数分别计算每克鲜重叶片中色素的含量。 [注意事项] 1.由于植物子叶中含有水分,故先用纯丙酮进行提取,以色素提取液中丙酮的最终浓度近似80%。 2.由于叶绿素A,B的吸收峰很陡,仪器波长稍有偏差,就会使结果产生很大的误差,因此最好能用波长较正确的高级型分光光度计。 [实验作业] 1.试比较阴生植物和阳生植物的叶绿素A和叶绿素B的比值有无不同。 2.分光光度法和比色法有何不同? 3.叶绿素A和叶绿素B在红光区和蓝光区都有最大吸收峰,能否用蓝光区的最大吸收峰波长进行叶绿素A和叶绿素B 的定量分析,为什么?

叶绿素含量测定方法(精)

叶绿素含量测定方法---丙酮法 由于微藻的生长周期比较复杂,包括无性繁殖阶段和有性繁殖阶段,其在不同阶段的生理形态不同,有时藻细胞会聚集在一起,以片状或团状形式存在,在显微镜下难以确定其所包含的细胞数量。 藻细胞中叶绿素的含量(特别是叶绿素a的含量)通常随与细胞的生长呈较好的线性关系,因此可通过测定藻细胞中叶绿素含量变化来反映微藻的生长情况。叶绿素测定采用丙酮研磨提取法。 取适量藻液于10 mL离心管中在4000 rpm转速下离心10 min,弃去上清液,藻泥中加入适量的100 %的丙酮。采用丙酮提取法时在试管研磨器中冰浴研磨5 min,4000 rpm离心后,上清液转入10 mL容量瓶中。按上述方法对藻体沉淀进行萃取,直至藻体沉淀呈白色为止。定容后,采用722S型可见分光光度计分别测定645 nm和663 nm下萃取液的吸光值,叶绿素含量用以下公式进行计算(Amon,1949): 叶绿素a含量用以下公式进行计算: Chlorophyll a (mg/L) = (12.7×A663 nm-2.69×A645 nm)×稀释倍数 叶绿素b含量用以下公式进行计算: Chlorophyll b (mg/L) = (22.9×A645 nm-4.64×A663 nm)×稀释倍数 叶绿素总含量用以下公式进行计算: Chlorophyll a+b (mg/L) = (20.2×A645 nm+8.02×A663 nm)×稀释倍数 由于丙酮的沸点较低,较高温度下挥发很快。此外,叶绿素稳定性较差,见光易分解,因此,本实验中叶绿素的提取和测定均在低温黑暗条件下进行,以减少提取过程中的损失。 叶绿素提取方法 提取液:本试验用DMSO/80%丙酮(l/2,v/v)提取的叶绿素,谭桂英周百成底栖绿藻叶绿素的二甲基亚砜提取和测定法* 海洋与湖沼 1987 18(3)295--300. 一、直接浸提法: 1、准确量取10ml藻液,加到15ml离心管中,放在台式离心机离心,3500r/min (根据不同的藻选择不同那个的离心转速)离心5min倒上清;留藻泥。随后在盛有藻泥的离心管中加入蒸馏水,与藻泥混匀后再次离心,目的是除去藻细胞表面的盐份,此清洗过程重复三次。 2、往藻泥中加二甲基亚砜3.33ml,65℃水浴9h,20h; 3、然后离心,将上清转移到10ml棕色瓶中, 4、添加6.67ml80%丙酮到离心管中,混匀,离心,再将上清转移到10ml棕色瓶中。 5、定容,待测。

相关文档