文档库 最新最全的文档下载
当前位置:文档库 › CANON工艺脱氮处理二沉池出水的研究

CANON工艺脱氮处理二沉池出水的研究

CANON工艺脱氮处理二沉池出水的研究
CANON工艺脱氮处理二沉池出水的研究

随着北方缺水现象日益严重,开发利用再生

水是缓解水资源短缺的重要途径,对于减轻环境污染和改善生态环境也是非常有益的[1]。再生水水源可取自生活污水、市政排水、城市污水处理厂出水或工业排水。根据GB/T 18920-2006规定,再生水水中氨氮质量浓度5.0mg ·L -1,而一般污水处理厂的氨氮质量浓度为30mg ·L -1,脱氮效率难以保证。针对这一情况,人们开发了许多新型、高效的脱氮工艺。例如,同步硝化反硝化、短程硝化反硝化、厌氧氨氧化和CANON 工艺[2-5]等。CANON 工艺(Completely autotrophic ammonium removal over nitrite )是迄今为止最简捷的一条脱氮途径。与传统的脱氮工艺相比,它具有运行费用低,无需外加碳源,耗氧量少等优点。

CANON 工艺,即生物膜内自养脱氮工艺,是一种新型生物脱氮工艺,该工艺是指在单个反应器或者生物膜内通过控制溶解氧实现亚硝化和厌氧氨氧化,从而达到脱氮的目的。在微氧条件下,亚硝酸菌将氨氮部分氧化成亚硝酸,消耗氧化创造ANAM-MOX 过程所需的厌氧环境;产生的亚硝酸与部分剩余的氨氮发生ANAMMOX 反应生成氮气[6]。

目前,CANON 工艺仍然处于试验研究阶段,

Sliekers 等[7]通过接种ANAMMOX 污泥,采用SBR

工艺流程首先实现了CANON 工艺。试验在厌氧状态下启动ANAMMOX 反应器,通过控制溶解氧,使ANAMMOX 工艺向CANON 工艺转化,并研究温度和pH 对CANON 工艺的影响,以期为CANON 反应器的快速启动和影响因素等提供依据。

1试验部分

1.1试验装置

CANON 工艺反应器由硬质玻璃制成,呈圆柱形,反应器内径27mm ,有效容积150mL ;反应区装有生物页岩陶粒作为生物载体,采用水浴循环加热的方式使反应器温度维持(32±0.5)℃左右并用黑布包裹以避免光Anammox 菌的影响;同时进水瓶上连接一个气囊装置,使反应器处于持续的厌氧状态,进水管采用PharMed 材质以减弱O 2的渗透影响。反应器装置与流程如图1所示。1.2接种污泥与载体

接种污泥均取自南开大学环境工程实验室所培养的厌氧氨氧化污泥(其最早的接种污泥为好氧污泥和厌氧颗粒污泥),接种污泥沉降比SV 为38%,污泥为棕灰色。反应器接种污泥的挥发性悬浮固体

CANON 工艺脱氮处理二沉池出水的研究

付丽霞,吴立波,蒋军,彭新红

(南开大学环境科学与工程学院,天津300071)

摘要:采用一套有效容积为150mL 的上向流生物滤池反应器,接种实验室所培养的厌氧氨氧化污泥,在反应器停止运行约1年后,以自配的含NH 4+-N 和NO 2--N 废水为进水,恢复启动CANON 工艺。反应器启动成功后,以二沉池出水为对象,进行脱氮处理研究。试验结果表明,通过控制进水基质溶解氧的方法,经厌氧氨氧化过程转化,成功启动了CANON 工艺,共耗时38d ,NH 4+-N 的容积负荷为168g ·m -3·d -1,NH 4+-N 的去除率在90%左右,TN 的去除率在70%左右。在二沉池出水NH 4+-N 质量浓度为25~35mg ·L -1,COD 为40~60mg ·L -1,UV 254为0.6~0.9cm -1,HRT 为3h ,DO 质量浓度在0.4mg ·L -1左右的条件下,稳定运行25d ,NH 4+-N 的去除率在95%左右,TN 的去除率在65%左右,

COD 和UV 254的平均去除率分别为17%与4%。关键词:CANON ;脱氮;二沉池出水中图分类号:

X703.1文献标识码:

A 文章编号:

1000-3770(2011)03-0079-005收稿日期:2010-04-20

基金项目:国家自然科学基金项目(50308012)第37卷第3期2011年3月

水处理技术

TECHNOLOGY OF WATER TREATMENT

Vol.37No.3Mar.,2011

79

MLVSS 质量浓度为1.90g ·L -1

,悬浮固体MLSS 质

量浓度为4.43g ·L -1。

反应器中装填生物页岩陶粒作为填料,该陶粒粒径1~3mm ,孔隙率约58%,生物陶粒用超纯水洗

涤3次,

水浴加热煮沸,并于105℃烘箱中烘24h ,然后进行高压灭菌处理以备试验中使用。

1.3试验用水

CANONA 工艺启动时,试验用水采用人工配水,即在自来水中加入一定比例的无机盐,各成分的质量浓度分别为[8]

:KHCO 3500mg ·L -1

,KH 2PO 427.2mg ·L -1,MgSO 4·7H 2O 120mg ·L -1,CaCl 2136mg ·L -1,

微量元素Ⅰ和Ⅱ各1mL

·L -1;NaNO 2和NH 4Cl 以摩尔比1:1按需投加,并用NaHCO 3调节pH 到7.6~8.2之间。

微量元素Ⅰ的质量浓度分别为:EDTA 5000mg ·L -1,FeSO 4·7H 2O 5000mg ·L -1;微量元素Ⅱ的质量浓度分别为:EDTA 15000mg ·L -1

,ZnSO 4·7H 2O 430mg ·L -1,CoCl 2·6H 2O 240mg ·L -1,MnCl 2·4H 2O

990mg ·L -1,CuSO 4·5H 2O 250mg ·L -1,Na 2MoO 4·2H 2O 220mg ·L -1,NiCl 2·6H 2O 190mg ·L -1,Na 2SeO 4·10H 2O 210mg ·L -1,H 3BO 414mg ·L -1。CANON 工艺处理二沉池出水时,试验用水采用天津市纪庄子污水处理厂的二沉池出水,主要组成部分为:NH 4+-N ,质量浓度为25~35mg ·L -1;NO 2--N ,质量浓度为1~5mg ·L -1;NO 3--N ,质量浓度为1~7mg ·L -1;COD ,40~60mg ·L -1;UV ,0.6~0.9cm -1。

1.4分析项目与测定方法

采用纳氏试剂光度法测定氨氮;用离子色谱法测定亚硝酸盐氮、硝酸盐氮和总氮;使用便携式pH 计测定pH ;采用标准质量法测定悬浮固体和挥发性悬浮固体[9];采用微波密闭消解COD 测定仪测定COD 。

2结果与讨论

2.1厌氧氨氧化启动期

控制进水的NH 4+-N 和NO 2--N 质量浓度在14mg ·L -1左右,DO 质量浓度保持在0.2mg ·L -1左右,pH 在7.8左右,初始的HRT 为24h 。在保证NH 4+-N 和NO 2--N 去除率达到90%之后减少HRT ,促进厌氧氨氧化菌的富集生长。当HRT 降低为4h 后,保持HRT 不变,每2天NH 4+-N 和NO 2--N 质量浓度上升1.5mg ·L -1,最终达到30mg ·L -1。结果如图2和图3所示。

控制进水的NH 4+-N 和NO 2--N 质量浓度在14mg ·L -1左右,从图2和图3中可以看出,第1天的

HRT 为24h ,NH 4+-N 和NO 2--N 的去除率均在90%以上,第2天缩短HRT 为12h ,运行2d 后,NH 4+-N 的去除率为80%,NO 2--N 的去除率为98%。第4天控制HRT 为6h ,NH 4+-N 的去除率急剧下降。其原因在于ANAMMOX 菌生长代谢缓慢(世代时间长达11d [10]),随着HRT 的突然减小,ANAMMOX 菌

图2厌氧氨氧化启动期基质浓度与HRT 变化Fig.2Chang of substrate concentration and HRT during

start-up anaerobic ammonium oxidation

/d

/m g L

á

H R T /h

图3厌氧氨氧化启动期基质去除率与HRT 变化

Fig.3Chang of substrate removal rate and HRT during start-up

anaerobic ammonium

oxidation

/d

/%

áH R T /h

图1试验装置

Fig.1Experimental apparatus

水处理技术第37卷第3期

80

没有足够的时间对剩余的NH 4+-N 和NO 2--N 进行去除并且出水ANAMMOX 菌流失量也增加,ANAMMOX 菌的繁殖速度无法及时补充其流失量[11]。同时TN 容积负荷增加,由60.5g ·m -3·d -1增加为121g ·m -3·d -1,对厌氧氨氧化菌的稳定性造成了影

响,使NH 4+-N 去除率下降到75%左右。

运行至第7天NH 4+-N 和NO 2--N 的去除率趋于稳定,NH 4+-N 去除率在85%以上,NO 2--N 的去除率在98%以上。到第8天缩短HRT 为4h ,经过短暂适应之后,NO 2--N 与NH 4+-N 去除率稳步上升,第10d 均达到100%,于第11天、第17天和第19天3次提升进水质量浓度,至21mg ·L -1左右,NH 4+-N 与NO 2--N 仍保持着

较高的去除率(90%以上),

第21天进水的NH 4+-N 和NO 2--N 质量浓度在30mg ·L -1左右,TN 容积负荷360g ·m -3·d -1左右,NH 4+-N 去除量、NO 2--N 去除量与NO 3--N 生成量之间的比值为1:1.08:0.16,与Strous [10]提出的1:1.32:0.26相比,NO 2--N 的去除量略低,推测进水中溶解氧未除尽,厌氧氨氧化菌混培物中含有好氧氨氧化菌消耗了一定数量的基质NH 4+-N ,反应器内部存在微弱的硝化反应。NH 4+-N 和NO 2--N 的去除率仍然在98%以上,系统处于稳定期。

2.2CANON 工艺启动阶段

CANON 工艺的启动采用由厌氧氨氧化工艺向其转变的方式来获得厌氧氨氧化菌的营养基质为NH 4+-N 和NO 2--N ,而好氧氨氧化菌的营养基质为NH 4+-N ,试验过程中为了减缓NO 2--N 变化对厌氧氨氧化菌的冲击影响,采用进水NO 2--N 梯度减少的方式,来培养好氧氨氧化菌,进而创造好氧氨氧化菌和厌氧氨氧化菌共同的生长环境,通过控制溶解氧量,使厌氧氨氧化工艺向CANON 工艺转化。结果如图4和图5所示。

CANON 工艺转化初期控制进水的NH 4+-N 质

量浓度为31.5mg ·L -1,NO --N 质量浓度为20.75

mg ·L -1,溶解氧质量浓度为0.3mg ·L -1,水力停留时间为3h ,基质的pH 用1.0mmol ·L -1HCl 调节至7.8左右,系统处于32℃的恒温环境中。由图4和图5可知,NH 4+-N 和NO 2--N 的去除率均在90%以上,第26天减小NO 2--N 的进水质量浓度为14mg ·L -1左右,增加溶解氧质量浓度为0.4mg ·L -1,反应器的出水稳定,NH 4+-N 的去除率在90%左右,NO 2--N 的去

除率在85%以上,

继续降低进水的NO 2--N 质量浓度为6mg ·L -1左右,NH 4+-N 和NO 2--N 的去除率略有下

降。第32天进水中只含有NH 4+-N ,质量浓度维持在28mg ·L -1左右,溶解氧质量浓度为0.5mg ·L -1,NH 4+-N 的去除率在90%左右,TN 的去除率为70%左右。由图5可知,进、出水中的氮平衡存在缺失,TN 存在明显的减少。由于进水中没有加入有机碳源,所以可以断定TN 的去除不是由于传统的反硝化形成,生物反应过程中可能存在的菌种只有好氧氨氧化菌、硝化菌和厌氧氨氧化菌,倘若试验过程中只有好氧氨氧化菌和硝化菌起作用,那么进、出水中就不可能存在氮的缺失,因为这2种细菌只能够使

氮氧化,从而转化为氮的氧化物,但却不会引起氮的减少,由此可知,试验过程中厌氧氨氧化菌存在并发挥着重要的作用。TN 的去除与出水中NO 2--N 的生成说明了厌氧氨氧化菌和好氧氨氧化菌都在起作

用,又由于CANON 工艺中ΔTN :ΔNO 3--N 的理论值为8[11],试验中当进水中只有NH 4+-N 时,ΔTN :ΔNO 3--N 的均值为7.1且TN 的去除率较稳定,保持在70%左右,从这2个角度来说CANON 工艺的启动取得了成功。

2.3CANON 工艺处理二沉池出水2.

3.1NH 4+-N 和TN 的去除效果

CANON 工艺启动成功后,以天津市纪庄子污水处理厂的二沉池出水作为进水,进水NH 4+-N 质量浓度为30mg ·L -1左右。在保持HRT 为3h ,溶解氧

图4CANON 工艺转化过程中基质浓度和DO 的变化Fig.4Chang of substrate concentration and DO during conversion

of CANON process

ΔΔ/d

/m g L

(D O )/m g áL

á

? (T N )/m g L

/d

/%

图5CANON 工艺转化过程中基质浓度与去除率变化Fig.5Chang of substrate concentration and removal rate during

conversion of CANON process

付丽霞等,CANON 工艺脱氮处理二沉池出水的研究81

质量浓度在0.4mg ·L -1左右,pH 为7.8的条件下,对

二沉池的出水进行脱氮研究,结果如图6所示。第1天二沉池进水的NH 4+-N 质量浓度为34.5mg ·L -1,NO 2--N 质量浓度为5mg ·L -1,NO 3--N 浓度为2.6mg ·L -1,NH 4+-N 的去除率为79.71%,TN 的去除率为59.73%。经短暂适应后,氮的去除率不断提高,反应器的出水较稳定,第3天NH 4+-N 的去除率达到

了91.67%,

TN 的去除率为67%。由图6可知,二沉池进水的NH 4+-N 和NO 2--N 质量浓度不断的减少,

而NO 3--N 的质量浓度在不断的升高,

这主要是因为二沉池的出水中含有硝化菌、反硝化菌和厌氧氨氧化菌,产生了传统的硝化反硝化反应,二沉池出水中含有一定的溶解氧,硝化菌利用溶解氧将NH 4+-N 转化为亚硝酸盐或硝酸盐,当溶解氧逐渐消耗完时,亚硝酸盐或硝酸盐通过反硝化菌生成氮气。厌氧氨氧化菌利用NH 4+-N 和亚氮生成硝氮。第12天取新的二沉池进水,其中NH 4+-N 质量浓度为36.9mg ·L -1,NO 2--N 质量浓度为6.7mg ·L -1

,NO 3

--N 质量浓度为0.2mg ·L -1

,稳定运行14d ,反应器的出水也较稳定,NH 4+-N 的去除率

为95%左右,TN 的去除率为65%左右。

2.3.2COD 和UV 254的去除效果

在温度为30℃,HRT 为3h ,pH 为7.8,溶解氧

质量浓度在0.4mg ·L -1

左右的试验条件下,每天测定

进出水的COD 和UV 254,结果如图7和图8所示。

由图7可知,CANON 工艺对COD 的去除率较

低,最大去除率为37%,最小去除率为2%,CANON 工艺稳定运行期间,COD 的平均去除率为17%。由

图8可知,

CANON 工艺对UV 254的去除率也较低,在2%~6%左右。反应器中可能存在的菌种为厌氧氨氧化菌、亚硝化菌和反硝化菌。COD 和UV 254去除率低主要是因为反应器中的细菌主要为厌氧氨氧化菌与亚硝化菌。厌氧氨氧化菌是一类自养菌,在严格

缺氧条件下,它们以NH 4+-N 作为电子供体,以亚硝酸氮作为电子受体,直接生成气态氮而实现脱氮,不需

要消耗有机碳源[12]。亚硝化菌大部分为化能无机营养型,在有氧条件下,亚硝化菌将NH 4+-N 氧化为亚硝酸,从中获得能量供给合成细胞和固定CO 2,也不需要消耗有机碳源。二沉池出水中的COD 和UV 254主要是通过反应器中的反硝化菌去除的,由于CANON 工艺是完全自养脱氮系统,反应器中反硝化菌的数量很少,因此,COD 和UV 254的去除率很低。

3结论

以上向流生物滤池作为CANON 工艺的反应器,接种具有厌氧氨氧化活性的混合污泥,时隔1年

时间后,在不添加新的接种污泥的条件下,共耗时

38d 成功恢复启动了CANON 工艺。反应器启动成

功后NH 4+-N 的去除率在90%左右,TN 的去除率为70%左右。

采用控制进水基质溶解氧的方法,在上向流生

物滤池中成功完成了厌氧氨氧化工艺向CANON 工

艺的转化,转化过程中为减缓亚氮变化对厌氧氨氧化菌的影响,使得进水亚氮浓度梯度减少至零,同时也使得好氧和厌氧氨氧化菌在较短时间内成为优势菌,为快速启动CANON 工艺提供借鉴。证实了CANON 工艺对二沉池出水脱氮处理的可行性,处理效果稳定,NH 4+-N 的去除率为95%左右,

TN 的去除率为65%左右,COD 和UV 254的平均

C O

D /m g L

/d

/%

图7进出水COD 及其去除率变化

U V /c m

/d /%

图8UV 254的进出水浓度和去除率变化Fig.8Chang of UV 254concentration and removal rate

/d

/m g L

/%

图6CANON 工艺处理二沉池出水的脱氮效果Fig.6Change of the nitrogen concentration treatment the

sedimentation tank effluent by CANON process

水处理技术第37卷第3期

82

RESEARCH ON THE REUSE OF PRINTING AND DYEING WASTEWATER USING

ULTRAFILTRATION AS THE PRETREATMENT OF NANAFILTRATION

Wang Jun,Huang Ruimin,Huang Liming,Li Yongxia

(College of Environmental Science and Engineering ,South China University of Technology,Guangzhou 510006,China )

Abstract:The contrast experiments of ultrafiltration as a pretreatment of nanofiltration or not was conducted from the printing and dyeing wastewater tr eated by secondar y biodegr ation+BAF+micr ofloculation on a pilot scale.The pollutant r emovals of ultr afiltr ation and nanofiltr ation wer e investigated.The r esults showed that the flux and water quality of nanofiltr ation can be enhanced with the use of ultr afiltr ation,and the oper ational time of nanofiltr ation also lengthened.The removal of turbility,SDI and COD of ultrafiltration were 85%,68%and 5%respectively,the permeate of ultrafiltration enhanced the feed water quality of nanofiltr ation when NTU ≤1,SDI ≤3.And the use of ultr afiltr ation had a good pr otection for the tr eatment with nanofiltr ation.

(上接第78页)

≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤≤

STUDY ON NITROGEN REMOVAL OF EFFLUENT OF SECONDARY SEDIMENTATION TANK BY

CANON PROCESS

Fu Lixia,Wu Libo,Jiang Jun,Peng Xinhong

(College of Environmental Science and Engineering,Nankai University,Tianjin 300071,China )

Abstract:The re-start-up of completely autotrophic ammonium removal over nitrite (CANON)process were investigated in a 150mL up-flow biofilter reactor that had been halted for about a year seeding with anaerobic ammonium oxidation sludge from laboratory,which were fed with artificial waste-water composed of NH 4+-N and NO 2--N at a proper ratio.

After the start-up of the CANON reactor,

taking the effluent of the secondary

sedimentation tank as the,the nitrogen removal of the object is discussed.The results showed that ,by controlling the dissolved oxygen of influent substrate,The authors spent 38days in successfully transited starting up.The CANON was from the anaerobic ammonium oxidation process and the volumetric loading rate was up to 168g ·m -3·d -1with the removal rate of 90%for NH 4+-N and 70%for TN ,respectively.Under the condition of NH 4+-N of 25to 35mg ·L -1in the effluent of the secondary sedimentation tank,COD of 40~60mg ·L -1,UV 254of 0.6~0.9cm -1,HRT of 3h and DO of about 0.4mg ·

L -1,the removal rate of NH 4+-N is about 95%and TN is above 65%.The average of removal rate of COD and UV 254is 17%and 4%respectively.Keywords :CANON;nitrogen removal;effluent of the secondary sedimentation tank

参考文献:

[1]刘巍,刘翔,辛佳.再生水地下回灌过程中溶解性有机物的去除研

究[J].农业环境科学学报,2009,28(11):2354-2358.

[2]Qi R,Yang K,Yu Z X.Treatment of coke plant wastewater by

SND fixed biofilm hybrid system [J].Journal of Environmental Sciences,2007,19(2):153-159.

[3]Volcke EIP,Loccufier M,Noldus EJL,et al.Operation of a

SHARON nitritation

reactor:practical

implications

from

a

theoretical study [J].Water Science and Technology,2007,56(6):

145-154.

[4]Joss A,Salzgeber D,Eugster J,et al.Full-scale nitrogen removal

from digester liquid with partial nitritation and anammox in one SBR [J].Environmental Science and Technology,2009,43(14):5301-5306.

[5]Vazquez Padin J R,Pozo M J,Jarpa M,et al.Treatment of anaerobic

sludge digester effluents by the CANON process in an air pulsing SBR[J].Journal of Hazardous Materials,2009,166(1):336-340.

[6]彭新红,吴立波,宫玥.CANON 工艺研究的新进展[J].水处理技术,2008,34(2):9-11.

[7]A Olav Sliekers N https://www.wendangku.net/doc/7811896837.html,pletely autotrophic nitrogen removal over

nitrite in one single reactor[J].Water Research,2002,36:2475-2482.[8]张少辉,郑平.厌氧氨氧化反应器启动方法的研究[J].中国环境科

学,2004,24(4):496-500.

[9]国家环保局.水和废水监测分析方法[M].4版.北京:中国环境科

学出版社,2002.

[10]Strous M,Heijnen J J,Kuenen J G,et al.The sequencing batch

reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J].Applied Microbiology Biotechnology,1998,50(4):589-596.

[11]胡永春,周少奇,钟红春.水力负荷对厌氧氨氧化反应器运行影响

的研究[J].环境污染与防治,2008,30.

[12]Mulder A,van de Graaf AA,Robertson LA,et al.Anaerobic

ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiol Ecol.,1995,16:177-184.

付丽霞等,CANON 工艺脱氮处理二沉池出水的研究83

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

污水处理厂的脱氮除磷改造

-- ●Vol.27,No.62009年6月 中国资源综合利用 China Resources Comprehensive Utilization 1 概况 漯河市污水处理厂,系“九五”期间淮河流域水污染防治规划重点项目之一,一期工程设计规模日处理城市混合污水80000m 3,工艺流程如图1所示。该工程采用carrousel 氧化沟工艺,设计出水标准为GB8978-1996二级排放标准。服务面积约28km 2,服务区人口35万人。该污水处理厂1997年12月开工建设,2000年7月进水试运行,同年10月底达标排放。 图1工艺流程图 该污水处理厂运行八年来,累计净化城市综合污水2亿多t ,日均进水量为70000~85000m 3,出水水质基本符合原设计出水要求,出水COD Cr 均低于120mg /L ,其去除率均在80%以上,有时甚至高于 90%;出水BOD 5均低于30mg /L ,去除率均在90%以上;只有SS 时有超标现象发生。同时,carrousel 氧 化沟具有较好的除磷功能,但脱氨氮功能有限。 随着环境保护形势的日益严峻,国家对重点流域出水断面的水质要求在进一步提高,尤其更加关切氮、磷污染物的污染问题。根据豫发改城市[2008]579号文件要求,10座省辖市污水处理厂需要进行脱氮改造,其中要求漯河市污水处理厂出水NH 3-N ≤10mg /L ,TN ≤15mg /L ,COD Cr ≤60mg /L 。从原厂检测数据看,出水NH 3-N 没有达到水质排放要求,出水COD Cr 虽然与排放指标接近,但不稳定。 2问题分析 2.1 进水水质超标。 原设计进水COD Cr 标准为500mg /L ,污水处理厂实际进水COD Cr 大多超过设计指标,有时甚至超设计标准数倍,导致污泥负荷过高,氧化沟内没有足够的氧气氧化分解污染物质,影响污水处理效果。另外,原设计进水SS 为200mg /L ,而实际进水大都在400mg /L 以上,进水SS 高,会导致氧化沟内污泥含量MLSS 快速上升,影响氧气的传递吸收[1]。由于污 收稿日期:2009-02-25作者简介:王 斌(1974-),男,河南漯河人,学士,工程师,从事污水治理方面的研究工作。 污水处理厂的脱氮除磷改造 王 斌1,朱学红1,赵若尘2 (1.漯河市水务投资有限公司,河南 漯河 462000;2.南京市排水管理处江心洲污水处理厂,南京210019) 摘要:结合城镇污水处理厂脱氮除磷改造工程实例,对老氧化沟进行功能区划分、设备改造:增加好氧区溶解氧浓度,降低缺(厌)区溶解氧浓度;同时适当增容,延长氧化沟水力停留时间和污泥泥龄。运行结果表明,系统出水主要指标稳定达到GB18918-2002一级A 标准。关键词:污水处理;脱氮除磷;功能区改造中图分类号:X703.1 文献标识码:A 文章编号:1008-9500(2009)06-0032-03 Reconstruction in N and P Removal in Wastewater Treatment Plants Wang Bin 1,Zhu Xuehong 1,Zhao Ruochen 2 (1.Luohe Water Co.Ltd.Luohe 46200,China ; 2.Jiangxinzhou Wastewater Treatment Plant of Nanjing Discharge Water Conducting Center ,Nanjing 210019,China ) Abstract :According to the reconstruction case in the town ,classing function zone and improving equipment on oxidation channel.At the same time enforcing the DO concentration of aerobic zone ,while decreasing the DO concentration of anoxic zone;meantime,cementing the capacity of oxidation channel to extend HRT an d SRT.The results show that the key output indicators of the system stably achieve GB18918-2002first-degree emission standards. Keywords :N and P removal;class zone ;increase the DO concentration ;increase the volume 污水治理32

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

水处理中脱氮原理及工艺

水处理中脱氮原理及工艺 张路 摘要:水资源短缺和水污染严重已经成为严重制约我国社会经济持续发展、危害环境生态、影响人民生活和身体健康的突出问题,迫切需要加以解决。本文论述了我国水处理的概况以及脱氮的原理及传统脱氮工艺和新的脱氮工艺。 关键字:水处理;脱氮工艺 1 氮污染概况 我国水资源总量较为丰富,总量28124亿m3,位居世界第六,然而人均占有水资源量仅2340 m3,约为世界人均占有量的1/4。并且我国水资源主要来源于降水,受大气环流、海陆位置、地形及地势等因素影响严重,在地域及时间上分布都极不均匀。尤其近年来水资源短缺危机日益严重,如何合理配置现有水资源、在最大程度上避免水资源的浪费成为亟待解决的重大问题。与此同时,全国年排污水量为350亿m3,城市污水集中处理率仅为百分之七,百分之八十的污水未经有效处理就排入江河湖海,使我国的水污染状况和水质富营养化十分严重,并进一步加剧了水资源的短缺。可以说水资源短缺和水污染严重已经成为严重制约我国社会经济持续发展、危害环境生态、影响人民生活和身体健康的突出问题,迫切需要加以解决。 我国缺水的东北、华北和沿海地区,每年可回收污水量约五十多亿立方米,通过污水回用可以在相当程度上缓解全国的水资源紧缺状况,成为江,河,湖,地下水之外的新水源,从而促进工农业产值的大幅度提高。 污水的再生利用往往离不开脱氮除磷技术,这是因为传统的污水二级生物处理技术氮磷去除能力低,氮磷含量较高的再生污水回用于城市水体、工业冷却水、工业生产用水或者市政杂用水时将造成危害。因此,当利用城市污水处理厂作为第二水源开发时,在污水再生利用过程中,对于某些回用对象,必须对氮和磷的含量加以控制。

污水脱氮除磷

中小城镇污水处理厂生物除磷脱氮工艺的选择 一概述 改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6.8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。从发展眼光看,今后我国的大部分人口将生活在中小城镇。 目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康。 从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视。针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起”的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。 考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978-1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。 二可供选择的工艺 各种除磷脱氮工艺一般都是除碳、除氮、除磷三种流程的有机组合,得利满公司提出了“SARAOE”概念,来描述用于除磷脱氮的不同区域。 1.选择区(Selectorzone) 设置选择区的目的主要是为了避免污泥膨胀。 2.厌氧区(Anaerobiczone) 设置厌氧区是为了提供一个使聚磷菌释放磷的环境,为后续的好氧吸磷创造条件。 3.再活化区(Reactivationzone) 设置再活化区用于再活化回流污泥。 4.缺氧区(Anoxiczone) 设置缺氧区,提供一个缺氧环境,使硝酸盐氮被还原为氮气。 5.好氧区(Oxidationzone) 该区为主反应区,在该反应区内完成碳的氧化和氨氮的硝化。 6.内源呼吸区(Endogenouszono) 在该区内进一步完成硝酸盐氮的反硝化。 在实际的工程设计中,根据受纳水体的要求和其它一些实际情况,生物除磷脱氮工艺可以分成以下几个层次: 1、去除有机物、氨氮和硝酸盐氮,因对总氮无要求,可以采用生物硝化工艺,生物硝化工艺与传统活

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺水污染课程设计

城镇污水处理厂工艺设计(生物脱氮除磷工艺)水污染课程设 计

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

污水处理工艺脱氮

污水处理A/O工艺脱氮除磷 一般的活性污泥法以去除污水中可降解有机物和悬浮物为主要目的,对污水中氮、磷的去除有限。随着对水体环境质量要求的提高,对污水处理厂出水的氮、磷有控制也越来越严格,因此有必要采取脱氮除磷的措施。一般来说,对污水中氮、磷的处理有物化法和生物法,而生物法脱氮除磷具有高效低成本的优势,目前出现了许多采用生物脱氮除磷的新工艺。 一、生物脱氮除磷工艺的选择 按生物脱氮除磷的要求不同,生物脱氮除磷分为以下五个层次: (1)去除有机氮和氨氮; (2)去除总氮; (3)去除磷; (4)去除氨氮和磷; (5)去除总氮和磷。 对于不同的脱氮除磷要求,需要不同的处理工艺来完成,下表列出了生物脱氮除磷5个层次对工艺的选择。 生物脱氮除磷5个层次对工艺的选择 对于不同的TN出水水质要求,需要选择不同的脱氮工艺,不同的TN出水水质要求与脱氮工艺的选择见下表。 不同TN出水水质要求对脱氮工艺的选择 生物除磷工艺所需B0D5或COD与TP之间有一定的比例要求,生物除磷工艺所需BOD5或COD与T比例P的要求见下表。 生物除磷工艺所需BOD5或COD与TP的比例要求 二、A/O工艺生物脱氮工艺 (一)工艺流程 A/0工艺以除氮为主时,基本工艺流程如下图1。 图1 缺氧/好氧工艺流程 A/O工艺有分建式和合建式工艺两种,分别见图2、图3。分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。 合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的 要求,但受以下闲素影响:溶解氧 ~L)、污泥负荷[0. 1~ 0. 15kgBOD5/ (kgMLVSS?d)]、C/N 比(6 -7)、pH值( 7. 5~ ,而不易控制。 对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NOz-N还原成N2 ,不需外加碳源。反硝化池还原1gNOx -N 产生碱度,可补偿硝化池中氧化1gNH3-N 所需碱度(7. 14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH 值,反硝化池残留的有机物可在好氧硝化池中进一步去除。 一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。 图2 分建式缺氧一好氧活性污泥脱氮系统

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

污水处理生物除磷工艺

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

污水处理中的AO脱氮工艺

污水处理中的AO脱氮工艺 基本原理 A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O 段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到终脱氮的自的。 硝化反应: NH4++2O2→NO3-+2H++H2O 反硝化反应: 6NO3-+5CH3OH(有机物)→5CO2↑+7H2O+6OH-+3N2↑ A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: 1.效率高 该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD 值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 2.流程简单,投资省,操作费用低 反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;A段搅拌,只起使污泥悬浮,而避免DO的增加。O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 3.缺氧反硝化过程对污染物具有较高的降解效率 如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是为经济的节能型降解过程。 4.容积负荷高

污水处理厂A-A-O生物脱氮除磷工艺简介

龙源期刊网 https://www.wendangku.net/doc/7811896837.html, 污水处理厂A-A-O生物脱氮除磷工艺简介 作者:孟永进 来源:《硅谷》2009年第15期 中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产 生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有

活性砂滤池脱氮除磷工艺

李俊生,活性砂过滤器在城镇污水厂节能减排中的应用.中国给水排水,2010,26(1):57~59 李俊生采用活性砂过滤器应用于某市污水厂二沉池出水,结果表明,该设备对SS和TP去除效果较好,平均去除率能高达80%以上,但对氨氮去除作用有限,建议当原出水厂出水氨氮浓度大大超过一级A标准时,需采用其他强化脱氮工艺进行处理。 尉凤珍,李新凯,訾金伟.连续流砂反硝化过滤器在污水深度处理中的应用.中国给水排水,2011,27(5):86~88 尉凤珍等人于2009年5月~7月在某污水处理厂进行了连续流砂反硝化过滤器的深度处理中试试验,试验期间污水处理厂二沉池出水TN水平在9.68~19.8mg/l之间,为使TN<10mg/l,在试验中添加了乙酸和乙酸钠作为碳源,结果表明,连续流砂反硝化器对TN去除较高,达到预期要求。其中,设备运行参数如下: 处理水量:4~10m3/h 滤速;5.7~14.3m/h 进入提砂泵的空压:0.4~0.5MPa 清洗水流量:总进水量1%~3% 滤料直径:1.2~2.0mm 石英砂 滤料装填量:2.5t 李微,梁建勋,裴剑等.气提式连续砂滤池生物预处理试验研究,给水排水,2011,37(11):42~45 李微等人采用了上海帕克环保公司提供的AS-500-40标准规格的气提式连续砂滤池进行了中试研究,试验进水为东江南支流,最大氨氮浓度达 5.97mg/l,设备的设计参数主要如下: 砂床截面积:5m2; 砂层厚度:2.5m、3.2m;石英砂粒径1.2~2mm; 气提量:0.04m3/(m3d); 气水比:0.2~0.3;

床层阻力:0.3~0.5m; 滤速:10~12m/h; 空床接触时间:12.5~21min。 试验过程中,原水氨氮基本在4mg/l以下,去除率较高,一是由于温度较高,二是中试进行一段时间后,试验将气提式连续砂滤池有效砂床高度从2.5m加高至3.2m,增加了硝化微生物量,另外试验中及时调整了气水比、气提量等工艺参数,这些都使得气提式连续砂滤池出水保持了相对理想的氨氮去除效果,平均去除率为70%,即进水氨氮≤3mg/l时,经过气提式连续砂滤池处理,出水氨氮平均在0.5mg/l以下。 王阿华,城镇污水处理厂提标改造技术路线探讨.水工业市场.2010,9:8~11 对于悬浮物浓度不是很高的原水,应根据实际进水水质情况,适当提高初沉池表面负荷,缩短停留时间,通常为0.5~1.0h为宜;采用运行优化技术后,原有生物池处理能力仍无法满足尾水排放标准,且新增池容困难时,可在生物池中投加填料;曝气设备能力允许时,可通过提高溶解氧浓度,提高溶解氧对生物絮体的穿透力,维持较高的硝化速率;冬季低温时,宜在秋季提前提高整个污水处理系统的活性污泥总量,增加实际运行泥龄,累积硝化菌和反硝化菌总量。 陈晓安,桂丽娟.成熟污水处理厂提标改造工程实例.工业用水与废水,2011,42(2):82~83 本工程采取了气水冲洗石英砂滤料滤池对原污水处理厂进行提标改造,其中生物强化处理措施包括了增加曝气量和内回流量核算两部分,控制好氧区DO浓度在2mg/l以上,缺氧区控制在0.2~0.5mg/l,厌氧区控制在0.2mg/l以内;污水处理厂N的去除主要在二级处理中实现,设计进水TN质量浓度未35mg/l,设计出水TN质量浓度为15mg/l/,去除率为57%,生物池内回流比为130%。 陈立,李成江,郭兴方等.城镇污水处理厂提标改造的几点思考.水处理技术,2011,11(9):120~122 外投碳源时,相对来说乙酸钠适应性强,效果优,而甲醇适应期长,价格优,二者作为外加碳源较为合适;外加碳源可优先考虑小分子有机酸、醇类和糖类的工业废水如酒业废水、制药废水等,不足部分再辅以乙酸盐、甲醇、乙醇等商业碳源。

污水处理厂中MBR工艺脱氮除磷效果研究

污水处理厂中MBR工艺脱氮除磷效果研究 膜生物反应器MBR主要是以高效膜分离技术代替了传统生物处理中的二沉池,将其膜分离技术和污水生物处理的技术进行结合,本文主要结合作者专业知识,简要的分析MBR 技术在市政污水处理厂脱氮除磷效果,以供借鉴。 1 MBR的性质 MBR主要是将膜分离的技术和生物反应器进行结合。由于膜高效固液分离的作用及强化生物处理的作用,所以它有其他生物处理技术难以比拟的优势。下面将对其进行阐述。 第一,可以高效的进行固液的分离,分离的效果就远远好于传统沉淀池,出水水质的良好,出水悬浮物、浊度也就接近0,能够直接的回用,实现污水的资源化。 第二,膜高效截留的作用,实现反应器的水力停留时间(HRT)与污泥龄(SRT)完全的分离,使得运行的稳定性更好。 第三,反应器中微生物的浓度较高,耐冲击的负荷较强。 第四,污泥龄可以随意的控制,膜分离就使得污水大分子难以降解成分,在体积中有限生物反应器有着足够地停留的时间,有效的提升难降解有机物降解的效果。反应器在高容积负荷、低污泥的负荷、长泥龄条件运行,进而实现了基本无剩余的污泥排放。 第五,结构的紧凑,占地面积相对较小,工艺设备的集中,能够进行一体化的自动化控制。 2 MBR生物脱氮处理的效果 2.1 效果的分析 按照硝化与反硝化是否在同一个反应器中发生,能够把MBR脱氮工艺分为了单一反应器间歇曝气MBR脱氮工艺、厌氧一好氧MBR脱氮工艺。 单一反应器的间歇曝气MBR脱氮工艺主要是采用了序批式反应器(SBR)的运行方式,经过限制曝气与半曝气的运行方式,在时间序列上实现了缺氧和好氧组合,而厌氧与好氧MB

R脱氮技术就与传统厌氧-好氧脱氮的技术十分类似,前置反硝化缺氧运行下,含碳有机物去除、含氮有机物氧化、氨氮硝化在好氧的条件下运行。 SBR运行的方式MBR脱氮稳定性比传统的MBR脱氮效果更好。在好氧的条件下,氨氮在经过了硝化作用后,转变硝态氮、亚硝态氮,废水中的总氮含量不会出现任何的变化,为有效的提升总氮去除效率,在MBR前增加设置了缺氧区、回流装置形成了厌氧--好氧的运行方式,总氮去除效率最高就达到了96%,在未增设的缺氧区与回流的装置下,总氮去除效率仅仅是60%,厌氧--好氧MBR中的厌氧反应器与好氧反应器对其氨氮去除效率分别是3 1%—43%和47%—64%,好氧反应器运行的状况对氨氮去除的效果影响是最大的,因为厌氧--好氧MBR之前就增设了缺氧池,为系统的反硝化创造出良好地条件,所以厌氧—好氧MBR脱氮工艺的脱氮效果就好一点,但是厌氧与好氧MBR脱氮工艺的流程相对较长,不能关切需要增加回流设备与能耗。 SBR形式的MBR脱氮工艺间歇曝气可以有效的促使细菌胞外的聚合物降解,缓解了膜组件生物的污染,延长了膜组件使用的寿命,但是和处理能力相同的厌氧--好氧MBR脱氮技术相比,膜的面积就增加了不少。 诸多的研究人员,对MBR脱氧的工艺进行新的探索,在好氧MBR中加入了填料的载体,能够为硝化与反硝化创造更好地条件,其工艺氨氮与总氮平均的去除率分别是100%、93. 06%,填料的内部出现反硝化的杆菌,荧光假单胞菌等把硝酸盐还原成亚硝酸严、氮气,促进氨氮分解,是膜反应器填充料能够有效的提升脱氮效率。 基于MBR里的污泥絮体比较松散地特点,加入了粉末活性炭(PAC)能够有效的促进污泥絮体颗粒的增大,使得絮体的内部形成了缺氧区,避免反硝化发生、减缓膜污染,其去除的氨氮与亚硝酸盐去除的效率分别是95.50%、99.15%。 对硝化菌、氧化有机物异氧菌有着较强抑制的作用。就保证亚硝化菌在活性污泥中主导的地位,实现亚硝化菌反硝化的功能,提升硝化过程脱氮效果而言,其过程节约DO约50%,节省碳源约80%。 2.2 得出的结论

2019年脱氮除磷工艺发展

2019年脱氮除磷工艺发展 污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物

方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要 有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是BOD5和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次

相关文档
相关文档 最新文档