文档库 最新最全的文档下载
当前位置:文档库 › 随机过程 条件期望的性质

随机过程 条件期望的性质

随机过程 条件期望的性质
随机过程 条件期望的性质

计量经济学简答题及答案

计量经济学简答题及答案 1、比较普通最小二乘法、加权最小二乘法和广义最小二乘法的异同。 答:普通最小二乘法的思想是使样本回归函数尽可能好的拟合样本数据,反映在 图上就是是样本点偏离样本回归线的距离总体上最小,即残差平方和最小 ∑=n i i e 12min 。 只有在满足了线性回归模型的古典假设时候,采用OLS 才能保证参数估计结果的可靠性。 在不满足基本假设时,如出现异方差,就不能采用OLS 。加权最小二乘法是对原 模型加权,对较小残差平方和2i e 赋予较大的权重,对较大2i e 赋予较小的权重,消除异方差,然后在采用OLS 估计其参数。 在出现序列相关时,可以采用广义最小二乘法,这是最具有普遍意义的最小二乘 法。 最小二乘法是加权最小二乘法的特例,普通最小二乘法和加权最小二乘法是广义 最小二乘法的特列。 6、虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况? 答: 在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于 定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。 7、联立方程计量经济学模型中结构式方程的结构参数为什么不能直接应用OLS 估计? 答:主要的原因有三:第一,结构方程解释变量中的内生解释变量是随机解释变 量,不能直接用OLS 来估计;第二,在估计联立方程系统中某一个随机方程参数时,需要考虑没有包含在该方程中的变量的数据信息,而单方程的OLS 估计做不到这一点;第三,联立方程计量经济学模型系统中每个随机方程之间往往存在某种相关性,表现于不同方程随机干扰项之间,如果采用单方程方法估计某一个方程,是不可能考虑这种相关性的,造成信息的损失。 2、计量经济模型有哪些应用。 答:①结构分析,即是利用模型对经济变量之间的相互关系做出研究,分析当其 他条件不变时,模型中的解释变量发生一定的变动对被解释变量的影响程度。②经济预测,即是利用建立起来的计量经济模型对被解释变量的未来值做出预测估计或推算。③政策评价,对不同的政策方案可能产生的后果进行评价对比,从中做出选择的过程。④检验和发展经济理论,计量经济模型可用来检验经济理论的正确性,并揭示经济活动所遵循的经济规律。 6、简述建立与应用计量经济模型的主要步骤。 答:一般分为5个步骤:①根据经济理论建立计量经济模型;②样本数据的收集; ③估计参数;④模型的检验;⑤计量经济模型的应用。 7、对计量经济模型的检验应从几个方面入手。 答:①经济意义检验;②统计准则检验;③计量经济学准则检验;④模型预测检 验。

余数性质及同余定理(B级) 1

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 二、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 知识框架 余数性质及同余定理

例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4 3.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同. 一、同余定理 1、定义 整数a和b,除以一个大于1的自然数m所得余数相同,就称a和b对于模m同余或称a和b在模m下同余,即a≡b(modm) 2、同余的重要性质及举例。 〈1〉a≡a(modm)(a为任意自然); 〈2〉若a≡b(modm),则b≡a(modm) 〈3〉若a≡b(modm),b≡c(modm)则a≡c(modm); 〈4〉若a≡b(modm),则ac≡bc(modm) 〈5〉若a≡b(modm),c≡d(modm),则ac=bd(modm); 〈6〉若a≡b(modm)则an≡bm(modm) 其中性质〈3〉常被称为"同余的可传递性",性质〈4〉、〈5〉常被称为"同余的可乘性,"性质〈6〉常被称为"同余的可开方性" 注意:一般地同余没有"可除性",但是:如果:ac=bc(modm)且(c,m)=1则a≡b(modm)3、整数分类: 〈1〉用2来将整数分类,分为两类: 1,3,5,7,9,……(奇数); 0,2,4,6,8,……(偶数) 〈2〉用3来将整数分类,分为三类: 0,3,6,9,12,……(被3除余数是0) 1,4,7,10,13,……(被3除余数是1) 2,5,8,11,14,……(被3除余数是2)

余数性质及同余定理(B级)

一、 带余除法的定义及性质 1. 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r , 0≤r <b ;我们称上面的除法算式为一个带余除法算式。这里: (1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商 (2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。 2. 余数的性质 ⑴ 被除数=除数?商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数. 一、 余数定理: 1.余数的加法定理 a 与 b 的和除以 c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为 2 2.余数的加法定理 a 与 b 的差除以 c 的余数,等于a ,b 分别除以c 的余数之差。 例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1= 2. 当余数的差不够减时时,补上除数再减。 余数性质及定理 知识框架

1.同余的概念及基本性质

第三章 同余 §1 同余的概念及其基本性质 定义 给定一个正整数m ,若用m 去除两个整数a 和b 所得的余数相同,则称,a b 对模m 同余,记作()mod .a b m ≡若余数不同,则称,a b 对模m 不同余,记作 ()\mod a b m ≡. 甲 ()mod . a a m ≡ (甲:jia 3声调; 乙:yi 3声调; 丙:bing 3声调; 丁:ding 1声调; 戊:wu 声调; 己:ji 3声调; 庚:geng 1声调; 辛: xin 1声调 天; 壬: ren 2声调; 癸: gui 3声调.) 乙 若()mod ,a b m ≡则()mod .b a m ≡ 丙 若()()mod ,mod ,a b m b c m ≡≡则()mod .a c m ≡ 定理1 ()mod |.a b m m a b ≡?- 证 设()mod a b m ≡,则12,,0.a mq r b mq r r m =+=+≤<于是, ()12,|.a b m q q m a b -=-- 反之,设|.m a b -由带余除法,111222,0,,0a mq r r m b mq r r m =+≤<=+≤<,于是, ()()1221. r r m q q a b -=-+- 故,12|m r r -,又因12r r m -<,故()12,mod .r r a b m =≡ 丁 若()()1122mod ,mod ,a b m a b m ≡≡则,()1212mod .a a b b m ±≡± 证 只证“+”的情形.因()()1122mod ,mod a b m a b m ≡≡,故1122,m a b m a b --,于是()()()()11221212|m a b a b a a b b -+-=+-+,所以()1212mod .a a b b m +≡+ 推论 若()mod ,a b c m +≡则()mod .a c b m ≡-

数学期望的性质

知识点4.2 数学期望的性质

1. 随机变量函数的数学期望 定理1设Y 是随机变量X 的函数:Y =g(X)(g 是连续函数). (1)设离散型随机变量X 的分布律为 p k =P{X =x k },k =1,2,?. 若?k=1+∞g x k p k <+∞,则有E Y =E g X =?k=1 +∞g x k p k .

(2)设连续型随机变量X 的密度函数为f(x),若 ? ?∞+∞ g(x)f(x)dx <+∞, 则有 E(Y)=E g X =? ?∞+∞g(x)f(x)dx.

定理2设Z 是随机变量X,Y 的函数:Z =g(X,Y)(g 是连续函数). (1) 设离散型随机变量(X,Y)的分布律为 p ij =P(X =x i ,Y =y j ),(i,j =1,2,?), 若?j=1+∞?i=1+∞ g(x i ,y j )p ij <+∞, 则有 E(Z)=E g X,Y =?j=1+∞?i=1 +∞g x i ,y j p ij .

(2) 设连续型随机变量(X,Y)的密度函数为f(x,y), 若 ? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy <+∞, 则有 E(Z)=E g X,Y =? ?∞+∞??∞+∞ g(x,y)f(x,y)dxdy.

2. 数学期望的性质 (1)设C是常数,则有E(C)=C. (2)设X是一个随机变量, C是常数,则有E(CX)=CE(X).(3)设X,Y是两个随机变量,则有E(X+Y)=E(X)+E(Y).(4)设X,Y是两个相互独立的随机变量,则有E(XY)=E(X)E(Y). 性质3和4可以推广到有限个随机变量的和及积的情况.

4.1基本概念及一次同余式

1. 同余方程15x ≡12(mod99)关于模99的解是__ x ≡14,47,80(mod99)_。 2. 同余方程12x+7≡0 (mod 29)的解是__ x ≡26 (mod 29)_____. 3. 同余方程41x≡3(mod 61)的解是__ _ . 4. 同余方程9x+12≡0(mod 37)的解是___ x ≡11(mod 37)______ 5. 同余方程13x ≡5(mod 31)的解是_ x ≡ 29(mod 31)__ 6. 同余方程24x ≡6(mod34)的解是__ x ≡13,30(mod34)__ 7. 同余方程26x+1≡33 (mod 74)的解是__ x ≡24,61 (mod 74)_ 8. 同余方程ax +b ≡0(mod m )有解的充分必要条件是__()b m a ,_ 9. 21x ≡9 (mod 43)的解是_ x ≡25 (mod 43)__ 10. 设同余式()m b ax mod ≡有解()m x x mod 0≡,则其一切解可表示为_ _ . 11. 解同余式()15mod 129≡x 12. 同余式()111mod 1227≡x 关于模11有几个解?( ) A 1 B 2 C 3 D 4 13. 同余式3x ≡2(mod20)解的个数是( B ) A.0 B.1 C.3 D.2 14. 同余式72x ≡27(mod81)的解的个数是_9_个。 15. 同余方程15x ≡12(mod27) 16. 同余方程6x ≡4(mod8)有 个解。 17. 同余式28x ≡21(mod35)解的个数是( B ) A.1 B.7 C.3 D.0 18. 解同余方程:63x ≡27(mod72) 19. 同余方程6x≡7(mod 23)的解是__ _ . 20. 以下同余方程或同余方程组中,无解的是( B ) A.6x ≡10(mod 22) B.6x ≡10(mod 18) C.???≡≡20) 11(mod x 8) 3(mod x D. ???≡≡9) 7(mod x 12) 1(mod x 21. 同余方程12x ≡8(mod 44)的解是x ≡8,19,30,41(mod 44)____ 22. 同余方程20x ≡14(mod 72)的解是 ___ 23. 下列同余方程无解的是( A ) A.2x ≡3(mod6) B.78x ≡30(mod198) C.8x ≡9(mod11) D.111x ≡75(mod321) 24. 解同余方程 17x+6≡0(mod25) 25. 同余方程3x ≡5(mod16) 的解是___ x ≡7(mod16)____ 26. 同余方程3x ≡5(mod14)的解是_ x ≡11(mod14)的解是__。 27. 同余方程3x ≡5(mod13)的解是__ x ≡6(mod13)_________。 28. 下列同余方程有唯一解的是( C )

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

数学期望的性质

梁烨 0417

数学期望的性质 . )(,.1c c E c =则有是常数设). ()(,,.2X cE cX E c X =则有是常数是一个随机变量设). ()()(,,.3Y E X E Y X E Y X +=+则是两个随机变量设).()()(,,.4Y E X E XY E Y X =则是相互独立的随机变量设4证明()(,)d d ()()d d X Y E XY xyf x y x y xyf x f y x y +∞+∞+∞+∞-∞-∞-∞-∞== ??????+∞∞-+∞ ∞-==) ()(d )(d )(Y E X E y y yf x x xf Y X Note:性质3和4可推广到n 个随机变量的情形.

例12 (,),,().X N Y aX b E Y μσ=+设~求:解(), E X μ=()()()E Y E aX b aE X b a b μ=+=+=+所以 Note :正态分布r.v 的线性组合的期望为其期望的线性组合.

2例). (),(~X E p n b X ,求设:解引入计数随机变量 11,2,,0i i A X i n i A ?==?????第次试验中事件发生第次试验中事件不发生其中.)(p A P =则且分布为p X E X i i =-)(,)10(故.1∑==n i i X X ) ()(21n X X X E X E +???++=12()()()n E X E X E X np =++???+=Note :该解法具有一般性,引入计数变量可简化计算:将一复杂变量分解成n 个相互独立的服从(0-1)分布的变量之和.

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

同余的概念与性质

同余的概念与性质 同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。 性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。 性质2:同余关系满足下列规律: (1)自反律:对任何模m 都有)(mod m a a ≡; (2)对称律:若)(mod m b a ≡,则)(mod m a b ≡; (3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。 性质 3:若,,,2,1),(mod s i m b a i i =≡则 ).(mod ), (mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++ 推论: 设k 是整数,n 是正整数, (1)若)(mod m c b a ≡+,则)(mod m b c a -≡。 (2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。 性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。 性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。 性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。

随机变量的数学期望教案

随机变量的数学期望教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,,.i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞=∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 1 17 ()62i E i ξ==?=∑

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

第5讲同余的概念和性质

第5讲同余的概念和性质 解题思路:理解并熟记同余的性质,运用同余性质把数化小、化易。 同余定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为: a≡b(modm). 性质1:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。 ★性质2:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。 ★性质3:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m)(可乘性)。 性质4:若a≡b(mod m),那么a n≡b n(mod m),(其中n为自然数)。 性质5:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m),(记号(c,m)表示c与m的最大公约数)。 例1 判定288和214对于模37是否同余,74与20呢 例2 求乘积418×814×1616除以13所得的余数。 例3 求14389除以7的余数。

例4 四盏灯如图所示组成舞台彩灯,且每30秒钟灯的颜色改变一次,第一次上下两灯互换颜色,第二次左右两灯互换颜色,第三次又上下两灯互换颜色,…,这样一直进行下去.请问开灯1小时四盏灯的颜色如何排列 十位,…上的数码,再设M=0a +0a +…+n a ,求证:N ≡M (mod 9) 例6 求自然数1002+1013+1024的个位数字。 习题 1.验证对于任意整数a 、b ,式子a ≡b (mod1)成立,并说出它的含义。 2.已知自然数a 、b 、c ,其中c ≥3,a 除以c 余1,b 除以c 余2,则ab 除以c 余多少 年的六月一日是星期二,这一年的十月一日是星期几 4.求+被7除的余数。

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。 1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 21 3100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞ =1 k k k p x

概率论与数理统计第三、四章答案

第三章 习题参考答案 1.计算习题二第2题中随机变量的期望值。 解:由习题二第2题计算结果 01 12{0}={1}= 3 3 p p p p ξξ====, 得 122 01333 E ξ=?+?= 一般对0-1分布的随机变量ξ有{1}E p p ξξ=== 2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。 解:方法一:先按定义计算长的数学期望 290.3300.5310.229.9E ξ=?+?+?= 和宽的数学期望 190.3200.4210.320E η=?+?+?= 再利用数学期望的性质计算周长的数学期望 (22)229.922099.8E E ζξη=+=?+?= 方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望 960.09980.271000.351020.231040.0698.8 E ξ=?+?+?+?+?=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2 ()ER π来计算远面积的期望值,如果不能

用,又该如何计算?其结果是什么? 解(1)100.1110.4120.3130.211.6ER =?+?+?+?= (2)由数学期望的性质有 (2)223.2E R ER πππ== (3)因为22()()E R E R ππ≠,所以不能用2 ()E R π来计算圆面积 的期望值。利用随机变量函数的期望公式可求得 222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==?+?+?+?= 或者由习题二第31题计算结果,按求圆面积的数学期望 1000.11210.41440.31690.2)135.4E ηπππ=?+?+?+?= 4. 连续随机变量ξ的概率密度为 ,01(,0) ()0,a kx x k a x ??<<>=?? 其它 又知0.75E ξ= ,求k 和a 的值 解 由 1 010()11324 a a k x dx kx dx a k E kx x dx a ?ξ+∞ -∞== =+=?== +??? 解得 2,3 a k == 5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。 解 因为奇函数在对称区域的积分为零,所以|| 102x E x e dx ξ+∞ --∞==?, 同样由偶函数在对称区域积分的性质可计算

概率论与数理统计各章思考题

《概率论与数理统计》思考题 概率论与数理统计第一章思考题 1.何谓随机事件?事件之间有几种关系、几种运算? 2.对立事件与互斥事件有何联系与区别? 3.概率的古典定义、统计定义和公理化定义各是什么? 4.何谓古典概型?如何计算古典概型中事件的概率? 5.何谓条件概率?计算条件概率有几种方法? 6.何谓全概率公式、贝叶斯公式?如何使用? 7.何谓两事件独立?在实际应用中,如何判断两事件的独立性? 8.两事件B A ,相互独立与B A ,互不相容(互斥)这两个概念有何关系? 9.何谓n 重贝努利试验,计算有关事件概率的方法是什么? 10.计算概率的常用公式有哪些? 11.何谓实际推断原理?它有什么作用? 概率论与数理统计第二章思考题 1.何谓随机变量?为什么要引入随机变量? 2.何谓离散型随机变量?分布律?其分布律有哪些主要性质? 3.何谓随机变量的分布函数?它有哪些主要性质? 4.何谓连续型随机变量?概率密度?其概率密度有哪些主要性质? 5.如何求一维随机变量的分布函数? 6.如何求一维随机变量在某一区间的概率? 7.常见随机变量的概率分布有哪些?它们的分布律或概率密度是什么? 8.为什么说正态分布是概率论中最重要的分布? 9.标准正态分布的概率密度)(x ?、分布函数)(x Φ有哪些主要性质? 10.一般正态分布与标准正态分布的关系是什么?怎样计算正态随机变量在某一

区间的概率? 11.如何求一维随机变量函数的分布? 概率论与数理统计第三章思考题 1.何谓二维随机变量? 2.何谓二维随机变量的分布函数?它有哪些主要性质? 3.何谓二维离散型随机变量?分布律?其分布律有哪些主要性质? 4.何谓二维连续型随机变量?概率密度?其概率密度有哪些主要性质? 5.如何求二维随机变量的分布函数? 6.边缘分布与联合分布的关系如何? 7.如何由联合分布确定两个边缘分布? 8.何谓随机变量X 与Y 相互独立?如何判别X 与Y 相互独立? 9.若X 与Y 相互独立,如何求Y X Z +=的概率密度? 10.相互独立的正态随机变量的线性组合是否仍为正态随机变量?一般性的结论是什么? 11.二维均匀分布和二维正态分布的概率密度是什么? 概率论与数理统计第四章思考题 1.随机变量的数字特征有哪些? 2.随机变量的分布与数字特征有何关系? 3.何谓数学期望?它有哪些主要性质? 4.何谓是方差?它有哪主要些性质? 5.随机变量的数学期望和方差,在随机变量的研究和实际应用中,有何重要意义? 6.常用分布的期望、方差是什么? 7.何谓切比雪夫(Chebyshev )不等式?

数学期望的计算方法及其应用概要

数学期望的计算方法及其应用 摘要:在概率论中,数学期望是随机变量一个重要的数字特征,它比较集中的反映了随机变量的某个侧面的平均性,而且随机变量的其他数字特征都是由数学期望来定义的,因此对随机变量的数学期望的计算方法的研究与探讨具有很深的实际意义。本论文着重总结了随机变量的数学期望在离散型随机变量分布与连续型随机变量分布下的一些常用的计算方法,如利用数学期望的定义和性质,利用不同分布的数学期望公式等等,并通过一些具体的例子说明不停的计算方法在不同情况下的应用,以达到计算最简化的目的。本文还通过介绍了一些随机变量数学期望的计算技巧,并探讨了各种简化计算随机变量数学期望的方法,利用一些特殊求和与积分公式,利用数学期望定义的不同形式,利用随机变量分布的对称性、重期望公式以及特征函数等,并通过例题使我们更加了解和掌握这些计算技巧,已达到学习该内容的目的。 关键词:离散型随机变量 连续型随机变量 数学期望 计算方法 ABSTRACT : 第一节 离散型随机变量数学期望的计算方法及应用 1.1 利用数学期望的定义,即定义法[1] 则随机变量X的数学期望E(X)= )(1 i n i i x p x ∑=

学期望不存在 [] 2 例1 某推销人与工厂约定,永川把一箱货物按期无损地运到目的地可得佣金10元,若不按期则扣2元,若货物有损则扣5元,若既不按期又有损坏则扣16元。推销人按他的经验认为,一箱货物按期无损的的运到目的地有60﹪把握,不按期到达占20﹪,货物有损占10﹪,不按期又有损的占10﹪。试问推销人在用船运送货物时,每箱期望得到多少? 按数学期望定义,该推销人每箱期望可得 =)(X E 10×0.6+8×0.2+5×0.1-6×0.1=7.5元 1.2 公式法 对于实际问题中的随机变量,假如我能够判定它服从某重点性分布特征(如二项分布,泊松分布,超几何分布等),则我们就可以直接利用典型分布的数学期望公式来求此随机变量的期望。 (1) 二点分布:X ~??? ? ??-p p 101 ,则()p X E = (2) 二项分布:),(~p n B X ,10 p ,则np X E =)( (3) 几何分布:)(~p G X ,则有p X E 1 )(= (4) 泊松分布:) (~λP X ,有λ=)(X E (5) 超几何分布: ),,(~M N n h X ,有N M n X E =)( 例2 一个实验竞赛考试方式为:参赛者从6道题中一次性随机抽取3道题,按要求独立完成题目.竞赛规定:至少正确完成其中2题者方可通过,已知6道备选题中参赛者甲有4题能正确分别求出甲、乙两参赛者正确完成题数的数学期望. 解 设参赛者甲正确完成的题数为X ,则X 服从超几何分布,其中 6,4,3N M n ===, 设参赛者乙正确完成的题数为Y ,则 )32,3(~B Y ,23 2 3)(=?==np Y E 1.3 性质法

随机变量的数学期望教案

教 案:数学期望 试讲人 郑丽霞 教材来源:《概率论与数理统计》 袁荫棠 授课题目:数学期望 第三章第一节 教学目标:会计算数学期望;通过数学期望的学习了解数学期望的实际应用及统计意义 教学重点:数学期望的计算 教学难点:如何将实际问题转化为数学问题 教学过程: 1. 引入课题 引例:在一次射击比赛中,每个人射击10次,甲选手射了4个1分,1个2分,5个3分,问甲选手的平均得分是多少? 1.210 5 31012104110531241=?+?+?=?+?+? 则其“均值”应为11 1k k i i i i i i n n x x n n ===∑∑. 所以上面的均值是以i n n 频率为权重的加权平均。

我们前面学了随机变量,那我用随机变量ξ来表示甲射击得分情况,求ξ的分布? 平均得分=1×0.4+2×0.1+3×0.5=2.1 大体上讲,数学期望(或均值)就是随机变量的平均取值 2. 概念讲解 (一)离散型随机变量的数学期望 定义3.1 设离散型随机变量ξ的分布列为 (),1,2, ,, .i i p P x i n ξ=== 如果 1 ||.i i i x p +∞ =<+∞∑ 则称 1 ()i i i E x p ξ+∞ ==∑ 为随机变量ξ的数学期望,简称期望或均值。若级数1 ||()i i i x p x +∞ =∑不收 敛,则称ξ的数学期望不存在。 例1 投掷一颗均匀的骰子,以ξ表示掷的点数,求ξ的数学期望。 解:6 117 ()62 i E i ξ==? =∑ 例题2 设盒中有5个球,其中有2个白球,3个黑球,从中随机抽

取3个球,记ξ为抽取到的白球数,求)(ξE . (二)连续型随机变量的数学期望 当遇到随机变量为无限不可数的情形,如连续型随机变量,该如何定义该随机变量的数学期望。 设ξ是连续型随机变量,其密度函数为()p x ,在数轴上取得很密的点 012,x x x <<< ,则ξ落在小区间1[,)i i x x +的概率是 1 1()()()()i i x i i i i i x p x dx p x x x p x x ++≈-=?? 由于i x 与i x 很接近,所以区间1[,)i i x x +中的值可用i x 来近似地替代, 因此,ξ与以概率()i i p x x ?取值i x 的离散型随机变量近似。该离散型随机变量的数学期望是1()i i i i x p x x +∞ =?∑,这正是()xp x dx +∞ -∞?的渐近和式。 从该启示出发,我们引进如下定义: 定义3.2 设连续性随机变量ξ的密度函数为()p x ,如果 ||().x p x dx +∞ -∞ <+∞?

第五讲__同余的概念和性质

同余的概念和性质 你会解答下面的问题吗? 问题1:今天是星期日,再过15天就是“六·一”儿童节了,问“六·一”儿童节是星期几? 这个问题并不难答,因为,一个星期有7天,而15÷7=2…1,即15=7×2+1,所以“六·一”儿童节是星期一。 问题2:1993年的元旦是星期五,1994年的元旦是星期几? 这个问题也难不倒我们。因为,1993年有365天,而365=7×52+1,所以,1994年的元旦应该是星期六。 问题1、2的实质是求用7去除一总的天数后所得的余数。在日常生活中,时常要注意两个整数用某一固定的自然数去除,所得的余数问题。这样就产生了“同余”的概念。如问题1、2中的15与365除以7后,余数都是1,那么我们就说15与365对于模7同余。 余同定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为: a≡b ( mod m ) ( * ) 上式可读作: a同余于b,模m。 同余式( * )意味着(我们假设a≥b): a-b=mk,k是整数,即m︱(a-b). 例如:①15≡365(mod 7),因为365-15=350=7×50。 ②56≡20(mod 9),因为56-20=36=9×4。 ③90≡0(mod 10),因为90-0=90=10×9。 由例③我们得到启发,a可被m整除,可用同余式表示为: a≡0( mod m ). 例如,表示a是一个偶数,可以写a≡0(mod 2) 表示b是一个奇数,可以写b≡1( mod 2 ) 补充定义:若m不能整除(a-b),就说a、b对模m不同余,用式子表示是: a b(mod m)

我们书写同余式的方式,使我们想起等式,而事实上,同余式与等式在其性质上相似。同余式有如下一些性质(其中a、b、c、d是整数,而m是自然数)。 性质1:a≡a(mod m),(反身性) 这个性质很显然,因为a-a=0=m·0. 性质2:若a≡b(mod m),那么b≡a(mod m),(对称性)。 性质3:若a≡b(mod m),b≡c(mod m),那么a≡c(mod m),(传递性)。 性质4:若a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),(可加减性)。 性质5:若a≡b(mod m),c≡d(mod m),那么ac≡bd(mod m),(可乘性)。 性质6:若a≡b(mod m),那么a n≡b n(mod m),(其中n为非0自然数)。 性质7:若ac≡bc(mod m),(c,m)=1,那么a≡b(mod m)。 注意:同余式性质7的条件(c,m)=1,否则像普通等式一样,两边约去,就是错的。 例如6≡10(mod 4),而35(mod 4),因为(2,4)≠1。 请你自己举些例子验证上面的性质。 同余是研究自然数的性质的基本概念,是可除性的符号语言。 例1判定288和214对于模37是否同余,74与20呢? 例2 求乘积418×814×1616除以13所得的余数。 (若先求乘积,再求余数,计算量太大。利用同余的性质可以使“大数化小”,减少计算量。)

相关文档
相关文档 最新文档