文档库 最新最全的文档下载
当前位置:文档库 › abaqus混凝土徐变计算子程序2.0

abaqus混凝土徐变计算子程序2.0

abaqus混凝土徐变计算子程序2.0
abaqus混凝土徐变计算子程序2.0

此为1.0版的修正版,可以考虑混凝土弹性模量随时间,应力变化等情况下的徐变。可以考虑徐变恢复。注意,getvrm中的变量编号与坐标系有关。否则,结果不正确。

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,

1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,

2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,

3 LACCFLA)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME,ORNAME

CHARACTER*3 FLGRAY(15)

DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),

1 T(3,3),TIME(2)

DIMENSION ARRAY(10),JARRAY(10),JMAC(*),JMATYP(*),

1 COORD(*)

C

C Reading instantaneous thermal strain in direction 11(x axial)

C Storing the thermal strain in state variable

C

CALL GETVRM('THE',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

1 MATLAYO,LACCFLA)

STATEV(1)= ARRAY(1)

C

C Reading instantaneous elastic x axial strain

C Storing the thermal strain in state variable

C NOTE: ARRAY(1)--X AXIAL

C ARRAY(2)--Y AXIAL

C ARRAY(3)--Z AXIAL

C

CALL GETVRM('EE',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

1 MATLAYO,LACCFLA)

STATEV(2)= ARRAY(3)

C

C

C Modifying Field variables to model development of Young’s

C modulus with age.

C

c IF(TIME(2).GT.1) THEN

c FIELD(1)=TIME(2)

c ELSE

c FIELD(1)=0

c END IF

RETURN

END

C

C

C

SUBROUTINE UEXPAN(EXPAN,DEXPANDT,TEMP,TIME,DTIME,PREDEF,

1 DPRED,STATEV,CMNAME,NSTATV,NOEL)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME

C

DIMENSION EXPAN(*),DEXPANDT(*),TEMP(2),TIME(2),PREDEF(*),

1 DPRED(*),STATEV(NSTATV),ARRAY(15)

REAL CINI(4,8),T0(8),CLAMDA(4),AN(4)

REAL CCLOAD(4),EMOD(8)

C

C SWITCH, II=1, CREEP; II=2, SHRINKAGE, II=3, CREEP+SHRANKAGE

C

KK=3

C

C===================== INTIAL VALUES =========================

C ******* FOR CREEP (USING 1STOPT) *********

C

C INITIAL FUNCTION IS Y=1.9*T0^(-0.118)*(T-T0)/(61-0.51*FC+T-T0)

C

C MODELING FUNCTION (SOFTWARE OF 1STOPT) IS

C Y=C1*(1-EXP(-LAMDA1*(X-T)))+C2*(1-EXP(-LAMDA2*(X-T)))+

C C3*(1-EXP(-LAMDA3*(X-T)))+C4*(1-EXP(-LAMDA4*(X-T)));

C

C WHERE T IS THE CALCULATING TIME, T0 IS THE LOADING TIME

C THE FACTORS ARE LISTE

D AS FOLLOWING

C LOADING TIME ARE 7,30,50,100,365,1000,3000(DAYS)

C ---------------------------------------------------------------

C | A | 7 | 30 | 50 | 100 | 365 | 500 | 1000 | 3000 |

C | C1 |C(1,1)|C(1,2)|C(1,3)|C(1,4)|C(1,5)|C(1,6)|C(1,7)|C(1,8)|

C | C2 |C(2,1)|C(2,2)|C(2,3)|C(2,4)|C(2,5)|C(2,6)|C(2,7)|C(2,8)|

C | C3 |C(3,1)|C(3,2)|C(3,3)|C(3,4)|C(3,5)|C(3,6)|C(3,7)|C(3,8)|

C | C4 |C(4,1)|C(4,2)|C(4,3)|C(4,4)|C(4,5)|C(4,6)|C(4,7)|C(4,8)|

C --------------------------------------------------------------- IF((CMNAME.EQ."MAT-GIRDER").OR.(CMNAME.EQ."MAT-SLAB"))THEN

C ELASTIC MODULUS

c EMOD=1.0

C VALUES OF LAMDA

CLAMDA(1)=0.0193907053463775

CLAMDA(2)=0.00537298967078406

CLAMDA(3)=0.00105487934454054

CLAMDA(4)=0.0597818282775493

C INITIAL VALUES OF COEFFICIENT C1

CINI(1,1)=0.255636119E-4

CINI(1,2)=0.179033082E-4

CINI(1,3)=0.163880576E-4

CINI(1,4)=0.147710753E-4

CINI(1,5)=0.124416704E-4

CINI(1,6)=0.119344460E-4

CINI(1,7)=0.110286669E-4

CINI(1,8)=0.096165142E-4

C INITIAL VALUES OF COEFFICIENT C2

CINI(2,1)=0.157591725E-4

CINI(2,2)=0.110425824E-4

CINI(2,3)=0.101134277E-4

CINI(2,4)=0.091232941E-4

CINI(2,5)=0.077200858E-4

CINI(2,6)=0.074402105E-4

CINI(2,7)=0.068149034E-4

CINI(2,8)=0.060733782E-4

C INITIAL VALUES OF COEFFICIENT C3

CINI(3,1)=0.053080102E-4

CINI(3,2)=0.037166275E-4

CINI(3,3)=0.034018732E-4

CINI(3,4)=0.030634778E-4

CINI(3,5)=0.025744519E-4

CINI(3,6)=0.024744322E-4

CINI(3,7)=0.022776919E-4

CINI(3,8)=0.018527641E-4

C INITIAL VALUES OF COEFFICIENT C4

CINI(4,1)=0.120382947E-4

CINI(4,2)=0.084348462E-4

CINI(4,3)=0.077257019E-4

CINI(4,4)=0.069613683E-4

CINI(4,5)=0.058953358E-4

CINI(4,6)=0.056904171E-4

CINI(4,7)=0.051955726E-4

CINI(4,8)=0.045768253E-4

C

C LOADING AGE(DAYS)

T0=(/7,30,50,100,365,500,1000,3000/)

C MODULUS OF ELASTIC AT T0'S AGE

EMOD=(/2.546295,3.061405,3.147964,3.217927,

* 3.271749,3.277386,3.285052,3.290193/)

C

C ======== FOR SHRINKAGE =======

C TGSH-- TIME OF SHRINKAGE CALCULATION FOR "GIRDER" (DAYS)

C TDSH-- TIME OF SHRINKAGE CALCULATION FOR "DECK" (DAYS)

C 480E-6-- ULTIMATE SHRINKAGE STRAIN IN AASHRO 2007(SI)

C FC --SPECIFIE

D COMPREI\SSIV

E STRENGTH O

F CONCRETE AT TIME OF

C PRESTRESSING FOR PRESTRESSIONE

D MEMBERS AND AT TIM

E OF

C INITIAL LOADING FOR NONPRESTRESSIONE

D MEMBERS, fci'IN AASHTO(2007)

C STANDAR

D VALU

E IS 28MPa

C CKF --FACTOR FOR THE EFFECT OF CONCRETE STRENGTH

C CKTD--TIME DEPENDENT(DEVELOPMENT) FACTOR (THE FIRST TWO TURMS) C RHSH--AMBIENT RELERTIVE HUMIDITY CORRECION FACTOR FOR SHRINKAGE TGSH=1.0

TDSH=50.0

SHU=480E-6

RH=70.0

FC=28.0

CKF=35.0/(7.0+FC)

CKTD=61.0-0.58*FC

RHSH=2.0-0.014*RH

IF (CMNAME.EQ."MAT-SLAB") THEN

CKF=35.0/(7.0+0.8*FC)

CKTD=61.0-0.58*0.8*FC

END IF

C

C=================INTERPOSITION=====================

C ****COMPUTING THE COEFFICIENTS OF KABIR SERIES****

C

C STATEV(1)--THERMAL STRAIN

C STATEV(2)--ELASTIC STRAIN OF CURRENT INCREMENT

C STATEV(3)--ELASTIC STRAIN OF PREVIOUS INCREAMENT

C STATEV(4)--DTIME OF PREVIOUS INCREAMENT

C DELTEE --INCREMENT OF ELASIC STRAIN

TCUR=TIME(2)

THE=STATEV(1)

EECUR=STATEV(2)

EEPRE=STATEV(3)

DTPRE=STATEV(4)

C

IF((TCUR.GE.T0(1)).AND.(TCUR.LT.T0(2)))THEN

JJ=1

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(2)).AND.(TCUR.LT.T0(3)))THEN

JJ=2

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(3)).AND.(TCUR.LT.T0(4)))THEN

JJ=3

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(4)).AND.(TCUR.LT.T0(5)))THEN

JJ=4

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(5)).AND.(TCUR.LT.T0(6)))THEN

JJ=5

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(6)).AND.(TCUR.LT.T0(7)))THEN JJ=6

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

ELSE IF((TCUR.GE.T0(7)).AND.(TCUR.LT.T0(8)))THEN JJ=7

TA=T0(JJ)

TB=T0(JJ+1)

EMA=EMOD(JJ)

EMB=EMOD(JJ+1)

END IF

C COMPUTNG REAL COEFFICIENT OF C, STORING IN CCLOAD(I)

C

IF(TCUR.LT.T0(1))THEN

DO 5 I=1,4

CCLOAD(I)=CINI(I,1)

5 CONTINUE

ELSE IF((TCUR.GE.T0(1)).AND.(TCUR.LT.T0(8)))THEN

DELTAT=TB-TA

C VARING MODULUS OF ELASTIC

EMODL=(TCUR-TA)/DELTAT*(EMODA-EMODB)+EMODA

C COMPUTING COEFFICIENT OF C

DO 10 I=1,4

CA=CINI(I,JJ)

CB=CINI(I,JJ+1)

C INTERPOSITION FOR ANY LOADING TIME

CCLOAD(I)=(TCUR-TA)/DELTAT*(CB-CA) +CA

10 CONTINUE

ELSE

DO 20 I=1,4

CCLOAD(I)=CINI(I,8)

20 CONTINUE

END IF

C

DELTEE=EECUR-EEPRE

DELTSTR=DELTEE*EMODL

C =================================================

C COMPUTING THE COEFFICIENT INCLUDING STRESS AN(I)

C OPEN(2,ACCESS='APPEND',FILE='C:\CREEP.TXT')

C

IF((TCUR-1.0).LT.1E-5)THEN

DO 30 I=1,4

STATEV(I+4)=0.0

30 CONTINUE

END IF

C

DO 40 I=1,4

AN(I)=STATEV(I+4)*EXP(-CLAMDA(I)*DTPRE)+

* DELTSTR*CCLOAD(I)

STATEV(I+4)=AN(I)

40 CONTINUE

C

C WRITE(2,'(10X,5F10.6)')TIME(2),(STATEV(I+4),I=1,4)

c WRITE(2,*)' TIME(2) CCLOAD(I)'

C WRITE(2,'(2X,4F10.6)')((CINI(I,J),J=1,8),I=1,4)

c WRITE(2,*)' TIME(2) DTIME DTPRE DELTSTR'

C WRITE(2,'(6X,4F10.6)')TIME(2),DTIME, DTPRE, DELTSTR

c WRITE(2,*)' STATEV(I)'

C WRITE(2,'(10X,5F10.6)')TIME(2),(STATEV(I+4),I=1,4)

c WRITE(2,*)

C

EXPANCR=STATEV(5)*(1-EXP(-CLAMDA(1)*DTIME))+ STATEV(6)*

* (1-EXP(-CLAMDA(2)*DTIME))+STATEV(7)*(1-EXP(-CLAMDA(3)*

* DTIME))+STATEV(8)*(1-EXP(-CLAMDA(4)*DTIME))

C

IF(TCUR.LT.T0(1))THEN

EXPANCR=0.0

END IF

C

END IF ! CORESPONG TO LINE 78'S IF

C

C ======================SHRINKAGE=========================

C

C COMPUTING SHRINKAGE (FORMULA 5.4.2.3.3-1 IN AASHTO(2007)) C

C

IF (CMNAME.EQ."MAT-GIRDER") THEN

IF (TIME(2).GT.TGSH)THEN

TSH=TIME(2)-TGSH

TPSH=TSH-DTIME

IF(TPSH.LT.0) THEN

TPSH=0.0

END IF

EXPANSH=SHU*RHSH*CKF*(-TSH/(CKTD+TSH)+TPSH/(CKTD+TPSH)) END IF

END IF

C

IF (CMNAME.EQ."MAT-SLAB") THEN

IF (TIME(2).GT.TDSH)THEN

TSH=TIME(2)-TDSH

TPSH=TSH-DTIME

IF(TPSH.LT.0) THEN

TPSH=0.0

END IF

EXPANSH=SHU*RHSH*CKF*(-TSH/(CKTD+TSH)+TPSH/(CKTD+TPSH)) END IF

END IF

C WRITE(2,'(10X,4F10.6)')RHSH,CKF,TSH,TPSH,EXPANSH

C

C FOR OUTPUT, KK=1 FOR CREEP ONLY

C KK=2 FOR SHRINKAGE ONLY

C KK=3 FOR SUM OF CREEP AN

D SHRINKAGE

IF((KK-1).LT.1E-6) THEN

EXPAN(1)=EXPANCR

ELSE IF((KK-2).LT.1E-6)THEN

EXPAN(1)=EXPANSH

ELSE

EXPAN(1)=EXPANCR+EXPANSH

END IF

C

C STORING CURRENT STRAIN INTO STATEV(3)

C STORING CURRENT DTIME INTO STATEV(4)

C

STATEV(3)=EECUR

STATEV(4)=DTIME

C CLOSE(2)

RETURN

END

C

ABAQUS中Fortran子程序调用方法

第一种方法: / o/ J5 @6 U/ ^- o$ 1. 建立工作目录/ ]" 2. 将Abaqus安装目录\6.4-pr11\site下的aba_param_dp.inc或aba_param_sp.inc拷贝到工作目录,并改名为aba_param.inc; # ~/ |0 I0 E6 {, @4 X3 q: W3. 将编译的fortran程序拷贝到工作目录; 4. 将.obj文件拷贝到工作目录; 5. 建立好输入文件.inp; 6. 运行abaqusjob=inp_name user=fortran name即可。 第二种方法: 在Job模块里,创建工作,在EditJob对话框中选择General选项卡,在Usersubroutine file中点击Select 按钮,从弹出对话框中选择你要调用的子程序文件(后缀为.for或.f)。 , D8 i7 d/r c6 @" | 以下是网上摘录的资料,供参考:. |$ t/ }$W7 Y6 m4 h6 D6 j 用户进行二次开发时,要在命令行窗口执行下面的命令: 4 O. R+ ^,@( ? abaqus job=job_name user=sub_name ABAQUS会把用户的源程序编译成obj文件,然后临时生成一个静态库standardU.lib和动态库standardU.dll,还有其它一些临时文件,而它的主程序(如standard.exe和explicit.exe等)则没有任何改变,由此看来ABAQUS是通过加载上述2个库文件来实现对用户程序的连接,而一旦运行结束则删除所有的临时文件。这种运行机制与ANSYS、LS-DYNA、marc等都不同。 : j6 g' R-o( {0 [* N2 J3 X这些生成的临时文件要到文件夹C:\Documentsand Settings\Administrator\Local Settings\Temp\中才能找到,这也是6楼所说的藏了一些工作吧,大家不妨试一下。 1子程序格式(程序后缀是.f; .f90; .for;.obj??) 答:我试过,.for格是应该是不可以的,至少6.2和6.3版本应该是不行,其他的没用过,没有发言权。在Abaqus中,运行abaqusj=jobname user=username时,默认的用户子程序后缀名是.for(.f,.f90应该都不行的,手册上也有讲过),只有在username.for文件没有找到的情况下,才会去搜索username.obj,如果两者都没有,就会报错误信息。 如果username包括扩展名for或obj,那么就根据各自的扩展名ABAQUS会自动选择进行操作。 2CAE中如何调用?Command下如何调用? 答:CAE中在creat job的jobmanager中的general中可以指定子程序; Command下用命令:abaqus j=jobnameuser=userfilename (无后缀); 3若有多个子程序同时存在,如何处理 答:将其写在一个文件中即可,然后用一个总的子程序调用(具体参见手册) 4我对VF不是很熟,是否可以用VC,C++编写子程序? A: 若要在vf中调试,那么应该根据需要把SITE文件夹中的ABA_PARAM_DP.INC(双精度)或ABA_PARAM_SP.INC(单精度)拷到相应的位置,并改名为ABA_PARAM.INC即可。 据说6.4的将可以,6.3的你可以尝试着将VC,C++程序编译为obj文件,没试过。在你的工作目录下应该已经存在ufield.obj和uvarm.obj这两个文件(这两个文件应该是你分别单独调试ufield.FOR和uvarm.FOR时自动编译生成的,你可以将他们删掉试试看),但是由于你的FOR文件中已经有了UV ARM 和UFIELD这两个subroutine,显然会造成重复定义,请查实。 用户子程序的使用 假设你的输入文件为:a.inp b.for 那么在ABAQUS Command 中的命令应该是这样的: abaqusjob=a user=b

CEB-FIP有关混凝土的收缩徐变模式和计算方法

有关混凝土的收缩徐变模式和计算方法很多,当前国内外常用的模式主要有:CEB -FIP 模式,BP -2模式,ACI -209模式以及F ·Tells 的解析法等。 CEB -FIP 模式是欧洲混凝土协会(CEB )和国际预应力混凝土协会(FIP )1978年建议的,为我国交通部公路预应力混凝土桥梁设计规范(1985)所采用。它采用滞后弹性变形(可恢复的徐变)与塑性变形(不可恢复的徐变)相加的徐变系数表达式,并将塑性变形分为初始流变和延迟塑性变形两部分。 BP -2模式是美国的Z .P .Bazant 教授在对世界范围内庞大的实验数据经过最优拟合后而得出的徐变函数的数学表达式,他将徐变分为基本徐变和干燥徐变两大类。 ACI -209模式是美国混凝土协会建议的,徐变系数由五个系数相乘组成,但有几点不同于CEB -FIP 模式之处:(1)每个系数都有具体的数学表达式,易于电算;(2)更多更细致地考虑了混凝土的配合比;(3)不区分滞后弹性变形和塑性变形;(4)采用双曲线函数的时间系数。 一种徐变系数采用混凝土28天龄期的瞬时弹性应变定义,令时刻τ开始作用于混凝土的单轴向应力()t σ至时刻t 所产生的徐变为()c t ετ,,即: ()() ( ) ,,28 c t t E τ ττσ?ε= (2-1) 欧洲混凝土委员会和国际预应力混凝土协会CEB-FIP 标准规范(1978及1990年版)及英国标准BS5400(1984年版)采用了这种定义。 2.CEB-FIP (1990)模型 徐变 规范CEB-FIP (1990)模型建议的混凝土徐变系数的计算公式适用范围为:应力水平()c c 0/f t 0.4σ<,暴露在平均温度5-30度和平均相对湿度RH=40%-100%的环境中。 混 凝 土 徐 变 系 数 为 : ()()()00c 0t,t ,t t t φφβ=∞- (4.2.2-5) ()()()0c 0RH ,t f t φββφ∞=,( )c f 16.76/β=()()0.200t 1/0.1t β=+

ABAQUS子程序

Home 浅谈ABAQUS用户子程序 李青清华大学工程力学系 摘要本文首先概要介绍了ABAQUS的用户子程序和应用程序,然后从参数,功能两方面详细论述了DLOAD, UEXTERNALDB, URDFIL三个用户子程序和GETENVVAR,POSFIL,DBFILE三个应用程序,并详细介绍了ABAQUS的结果文件(.FIL)存储格式。 关键字ABAQUS,用户子程序,应用程序,结果文件 一、前言: ABAQUS为用户提供了强大而又灵活的用户子程序接口(USER SUBROUTINE)和应用程序接口(UTILITY ROUTINE)。ABAQUS 6.2.5一共有42个用户子程序接口,13个应用程序接口,用户可以定义包括边界条件、荷载条件、接触条件、材料特性以及利用用户子程序和其它应用软件进行数据交换等等。这些用户子程序接口使用户解决一些问题时有很大的灵活性,同时大大的扩充了ABAQUS的功能。例如:如果荷载条件是时间的函数,这在ABAQUS/CAE 和INPUT 文件中是难以实现的,但在用户子程序DLOAD中就很容易实现。 二.在ABAQUS中使用用户子程序 ABAQUS的用户子程序是根据ABAQUS提供的相应接口,按照FORTRAN语法用户自己编写的代码。在一个算例中,用户可以用到多个用户子程序,但必须把它们放在一个以.FOR为扩展名的文件中。运行带有用户子程序的算例时有两种方法,一是在CAE中运行,在EDIT JOB菜单的GENERAL子菜单的USER SUBROUTINE FILE对话框中选择用户子程序所在的文件即可;另外是在ABABQUS COMMAND用运行,语法如下: ABAQUS JOB=[JOB] USER?[.FOR]?C 用户在编写用户子程序时,要注意以下几点: 1.用户子程序不能嵌套。即任何用户子程序都不能调用任何其他用户子程

abaqus简单umat子程序

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,RPL,DDSDDT, 1 DRPLDE,DRPLDT,STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED, 2 CMNAME,NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT, 3 PNEWDT,CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) include 'aba_param.inc' CHARACTER*8 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV),DDSDDE(NTENS,NTENS), 1 DDSDDT(NTENS),DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), 2 TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS),COORDS(3),DROT(3,3), 3 DFGRD0(3,3),DFGRD1(3,3) C UMAT FOR ISOTROPIC ELASTICITY C CANNOT BE USE D FOR PLAN E STRESS C ---------------------------------------------------------------- C PROPS(1) - E C PROPS(2) - NU C ---------------------------------------------------------------- C IF (NDI.NE.3) THEN WRITE (*,*) 'THIS UMAT MAY ONLY BE USED FOR ELEMENTS 1 WITH THREE DIRECT STRESS COMPONENTS' CALL XIT ENDIF open(400,file='D:\test.txt') C ELASTIC PROPERTIES EMOD=PROPS(1) ENU=PROPS(2) EBULK3=EMOD/(1-2*ENU) EG2=EMOD/(1+ENU) EG=EG2/2 EG3=3*EG ELAM=(EBULK3-EG2)/3 write(400,*) 'temp=',temp C ELASTIC STIFFNESS C DO K1=1, NDI DO K2=1, NDI DDSDDE(K2, K1)=ELAM END DO DDSDDE(K1, K1)=EG2+ELAM

ANSYS混凝土收缩徐变

ANSYS和MIDAS混凝土徐变模拟比较 简述:本文主要对比ANSYS和MIDAS这两种有限元软件在模拟混凝土收缩徐变上的差异,包括计算精度、计算方式、计算时间等方面。计算模型为10m长的C50方形柱顶施加1kN 的集中力,柱截面为Im x im。 1.混凝土徐变 混凝土徐变是混凝土结构在长期荷载作用下随着时间的增长混凝土中产生的应变变化 目前尚未对混凝土徐变有比较统一的说法,在此不去讨论具体有何说法,关键在于理解混凝 土徐变与应力是有关系的。而通常我们计算结构时大部分是按照线性徐变处理的。 2■混凝土徐变本构关系 2.1老化理论本构关系 根据迪辛格尔法可知徐变函数可定义为在t。时刻作用于混凝土的单位应力(即氐=1)至时刻t所产生的总应变。如采用徐变系数叙?,??)的第一种定义,则可表示为: 1叽 勺M3*F£■ C如 如米用第二种定义,则可表示为: %心 3. ANSYS立柱计算模型 由于ANSYS并没有专门板块来混凝土徐变模拟,故而需要借助金属蠕变的计算机理来等效模拟混凝土徐变效应。ANSYS提供两种方法计算徐变:显式计算和隐式计算。显式计 算需要细分较多的时间步长,计算时间长;隐式计算计算精度高,计算时间短。但是在实践 中也发现,涉及到单元生死情况时,隐式计算可能出现异常现象。下面将会对这两种方法进 行详细的比较。 3.1 ANSYS显式计算 显式计算对时间步长是有要求的,尤其是在徐变系数曲线变化剧烈的时间段需要细分子步以减小误差和帮助收敛。因而,时间步长的划分方式、时间点的数目对计算结果都会有较 大的影响。 (1)等间距时间步长和对数时间步长 假设混凝土的龄期是7天,徐变变化速率为0.005,考虑收缩徐变10年(3650天),若3650天时刻的徐变系数为1,那么按照等间距时间步长划分,则时间步长间距,(3650-7)

ABAQUS用户子程序

当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS 调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1.F为用户定义的是每个积分点所作用的荷载的大小; 2.KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值;3.TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值;4.NOEL,NPT为积分点所在单元的编号和积分点的编号; 5.COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER*80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)*PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)**2*PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)**3*PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)**4*PLOAD END IF RETURN END UMAT 子程序具有强大的功能,使用UMAT 子程序: (1) 可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩

混凝土收缩徐变

武汉理工大学 《高等桥梁结构理论》读书报告混凝土徐变收缩理论 学院(系): 专业班级: 学生姓名: 学号: 指导教师:

混凝土徐变收缩理论 1 概述 桥梁结构分析这门课程是研究生阶段的必修课,只有通过这门课的学习,我们才能对高等桥梁结构理论有所了解,摆脱本科阶段对桥梁设计和结构分析的困惑,也为我们以后的科学研究和参与实际项目做一些伏笔。该门课程中我们主要学习了薄壁箱梁剪力滞效应、混凝土的徐变、收缩及温度效应理论、混凝土的强度、裂缝及刚度理论以及结合梁和大跨径桥梁计算理论等知识点。本文主要为我对混凝土收缩徐变的一些理解和读书报告。 在20世纪初,混凝土的收缩徐变现象就被人们所发现,但是直到20世纪30代才引起人们的重视,开始对混凝土的收缩徐变展开研究。经过大半个世纪对混凝土收缩徐变的试验研究和理论分析,人们已经掌握了大量的资料和经验,对混凝土收缩徐变的认识以及其对结构的影响效应的分析方法得到了很大发展。目前为止,许多国家、组织都提出了关于混凝土收缩徐变效应的设计规范及计算理论和方法,但由于各国和组织对收缩徐变机理的认识有所不同,提出的混凝土收缩徐变计算表达式存在一定的差异,繁简各异,精度上也各不相同。因此,混凝土收缩徐变的理论以及计算方法仍然处在发展阶段,还需要大量的研究和探讨。 2 混凝土收缩徐变基本概念和理论 2.1 混凝土收缩徐变的定义 混凝土是以水泥为主要胶结材料,拌合一定比例的砂、石和水,有时还加入少量的添加剂,经过搅拌、注模、振捣、养护等工序后,逐渐凝固硬化而成的人工混合材料。各组成材料的成分、性质和相互比例,以及制备和硬化过程中各种条件和环境因素,都对混凝土的力学性能有不同程度的影响。所以,混凝土比其它单一性结构材料(如钢、木等)具有更为复杂多变的力学性能,但它却是工程中最常用的建筑材料之一。混凝土的收缩是指混凝土体内水泥凝胶体中游离水蒸发而使本身体积缩小的一种物理化学现象,它是一种不依赖于荷载而与时间、气候等因素有关的干燥变形。混凝土的收缩应变值超过其轴心受拉峰值应变 )的 3~5 倍,成为其内部微裂缝和外表宏观裂缝发展的主要原因。混凝( ,t p 土的徐变是指在持续荷载作用下,混凝土结构变形将随时间增长而不断增加的现

Abaqus材料用户子程序UMAT基础知识与手册例子完整解释

1、为何需要使用用户材料子程序(User-Defined Material, UMAT )? 很简单,当ABAQUS 没有提供我们需要的材料模型时。所以,在决定自己定义一种新的材料模型之前,最好对ABAQUS 已经提供的模型心中有数,并且尽量使用现有的模型,因为这些模型已经经过详细的验证,并被广泛接受。 UMAT 子程序具有强大的功能,使用UMAT 子程序: (1)可以定义材料的本构关系,使用ABAQUS 材料库中没有包含的材料进行计算,扩充程序功能。 (2) 几乎可以用于力学行为分析的任何分析过程,几乎可以把用户材料属性赋予ABAQU S 中的任何单元。 (3) 必须在UMAT 中提供材料本构模型的雅可比(Jacobian )矩阵,即应力增量对应变增量的变化率。 (4) 可以和用户子程序“USDFLD ”联合使用,通过“USDFLD ”重新定义单元每一物质点上传递到UMAT 中场变量的数值。 2、需要哪些基础知识? 先看一下ABAQUS 手册(ABAQUS Analysis User's Manual )里的一段话: Warning: The use of this option generally requires considerable expertise(一定的专业知识). The user is cautioned that the implementation (实现) of any realistic constitutive (基本) model requires extensive (广泛的) development and testing. Initial testing on a single eleme nt model with prescribed traction loading (指定拉伸载荷) is strongly recommended. 但这并不意味着非力学专业,或者力学基础知识不很丰富者就只能望洋兴叹,因为我们的任务不是开发一套完整的有限元软件,而只是提供一个描述材料力学性能的本构方程(Constitutive equation )而已。当然,最基本的一些概念和知识还是要具备的,比如: 应力(stress),应变(strain )及其分量; volumetric part 和deviatoric part ;模量(modul us )、泊松比(Poisson’s ratio)、拉梅常数(Lame constant);矩阵的加减乘除甚至求逆;还有一些高等数学知识如积分、微分等。 3、UMAT 的基本任务? 我们知道,有限元计算(增量方法)的基本问题是: 已知第n 步的结果(应力,应变等)n σ,n ε,然后给出一个应变增量1+n d ε,计算新的应力1+n σ。UMAT 要完成这一计算,并要计算Jacobian 矩阵DDSDDE(I,J) =εσΔ?Δ?/。σΔ是应力增量矩阵(张量或许更合适),εΔ是应变增量矩阵。DDSDDE(I,J) 定义了第J 个应变分量的微小变化对

ABAQUS用户子程序

ABAQUS用户子程序 转自https://www.wendangku.net/doc/7512139926.html, 当用到某个用户子程序时,用户所关心的主要有两方面:一是ABAQUS提供的用户子程序的接口参数。有些参数是ABAQUS传到用户子程序中的,例如SUBROUTINE DLOAD中的KSTEP,KINC,COORDS;有些是需要用户自己定义的,例如F。二是ABAQUS何时调用该用户子程序,对于不同的用户子程序ABAQUS调用的时间是不同的。有些是在每个STEP的开始,有的是STEP结尾,有的是在每个INCREMENT的开始等等。当ABAQUS调用用户子程序是,都会把当前的STEP和INCREMENT利用用户子程序的两个实参KSTEP和KINC传给用户子程序,用户可编个小程序把它们输出到外部文件中,这样对ABAQUS何时调用该用户子程序就会有更深的了解。 (子程序中很重要的就是要知道由abaqus提供的那些参量的意义,如下) 首先介绍几个子程序: 一.SUBROUTINE DLOAD(F,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, JLTYP,SNAME) 参数: 1. F为用户定义的是每个积分点所作用的荷载的大小; 2. KSTEP,KINC为ABAQUS传到用户子程序当前的STEP和INCREMENT值; 3. TIME(1),TIME(2)为当前STEP TIME和INCREMENT TIME的值; 4. NOEL,NPT为积分点所在单元的编号和积分点的编号; 5. COORDS为当前积分点的坐标; 6.除F外,所有参数的值都是ABAQUS传到用户子程序中的。 功能: 1.荷载可以被定义为积分点坐标、时间、单元编号和单元节点编号的函数。 2.用户可以从其他程序的结果文件中进行相关操作来定义积分点F的大小。 例1:这个例子在每个积分点施加的荷载不仅是坐标的函数,而且是随STEP变化而变化的。SUBROUTINE DLOAD(P,KSTEP,KINC,TIME,NOEL,NPT,LAYER,KSPT,COORDS, 1 JLTYP,SNAME) INCLUDE 'ABA_PARAM.INC' C DIMENSION TIME(2),COORDS(3) CHARACTER80 SNAME PARAMETER (PLOAD=100.E4) IF (KSTEP.EQ.1) THEN !当STEP=1时的荷载大小 P=PLOAD ELSE IF (KSTEP.EQ.2) THEN !当STEP=2时的荷载大小 P=COORDS(1)PLOAD !施加在积分点的荷载P是坐标的函数 ELSE IF (KSTEP.EQ.3) THEN !当STEP=3时的荷载大小 P=COORDS(1)2PLOAD ELSE IF (KSTEP.EQ.4) THEN !当STEP=4时的荷载大小 P=COORDS(1)3PLOAD ELSE IF (KSTEP.EQ.5) THEN !当STEP=5时的荷载大小 P=COORDS(1)4PLOAD

混凝土桥梁徐变计算的有限元分析

收稿日期:2008208204 作者简介:赵品(1981)),女,硕士研究生,研究方向为大型结构健康诊断与控制 zh aop81@https://www.wendangku.net/doc/7512139926.html, 混凝土桥梁徐变计算的有限元分析 赵 品, 王新敏 (石家庄铁道学院土木工程分院,河北石家庄050043) 摘 要:基于按龄期调整的有效模量法结合有限单元逐步分析法,对ANSYS 程序进行了计算混凝土桥梁徐变的二次开发。详细介绍了按龄期调整的有效模量法的具体计算步骤,并将计算结果与理论值进行比较,结果吻合的很好,且符合有砟轨道预应力混凝土箱梁的设计要求;验证了程序的正确性同时得出一些有益的结论:徐变对混凝土桥梁的影响不容忽视,必须予以重视。关键词:混凝土;桥梁;徐变 中图分类号:U441;U448.35 文献标识码:A 文章编号:167223953(2008)0620036204 一般混凝土的徐变变形大于其弹性变形,在不变的长期荷载下,混凝土结构的徐变变形值可达到瞬时变形值的1~6倍[1] 。对于静定结构,徐变会导致很大的变形,从而引起结构内部裂缝的形成和扩展,甚至使结构遭受破坏;对于超静定结构,徐变不但会引起变形,还会产生徐变次内力;在钢筋混凝土或预应力混凝土中,随时间变化的徐变,由于受到内部钢筋的约束会导致内力的重分配并引起预应力损失;分阶段施工的混凝土结构由于徐变的不同而导致内力的变化;连续梁、刚架、斜拉桥、拱桥等在施工过程中发生结构体系转换时,前期继承下来的应力状态所产生的应力增量受到后期结构的约束,而导致支座反力和结构内力变化:总之,徐变对混凝土结构的影响是非常大的。因此,对预应力混凝土桥梁在不同荷载工况下的徐变研究具有重要的现实意义。 1徐变计算所用的系数公式 按5铁路桥涵钢筋混凝土和预应力混凝土结构设 计规范6[2]中关于徐变系数的规定,其表达式如下:U (t,S )=B a (S )+0.4B d (t -S )+U f [B f (t)-B f (S )] (1) 为了便于计算机分析计算,对徐变系数进行拟合,得: U (t,S )=B a (S )+ E 4 i=1 C i (S )[1-e - q i (t-S ) ]+0.4B d (0) (2) 式中,B a (S )=0.8[1- 11.276(S 4.2+0.85S )3/2 ];C 1(S )=0.4A;C 2(S )=0.4B;C 3(S )=C #U f # e -q 3(S -3);C 4(S )=D #U f #e -q 4(S -3);B d (0)=0.27;A =0.43;B =0.30;q 1=0.0036;q 2=0.046。具体参数取值见表1。 表1 徐变系数计算中的参数取值理论厚度h /mm C D q 3q 4@10-3 U f 2<500.500.390.033 1.5 2.01000.470.420.0335 1.3 1.702000.410.480.034 1.1 1.554000.330.540.0350.85 1.406000.290.600.0380.65 1.33>1600 0.20 0.69 0.05 0.53 1.12 理论厚度h =K 2A h L ,K =1.5,A h 为构件截面面 积,L 为构件与大气接触的周边长度及箱梁内的长度。 2 逐步计算的方法[3] 2.1 结构单元和计算时间的划分 (1)时段划分。将计算时间从施工开始到竣工 后徐变完成,划分为若干阶段。对于一次现浇的简支梁桥而言,通常划分为浇筑混凝土、初张拉、终张拉、施加二期恒载四个阶段,根据每个施工状态,将计算时间划分成几个时间小段,也就是按施工工况进行划分。把施工阶段、加载时刻,作为各阶段与时间间隔的分界点,由初瞬时t =t 1起,以后各计算时刻依次为t 2,,t i ,,t n +1,相应时段则为:v t 1=t 2-t 1,,,v t i =t i+1-t i ,,,v t n =t n +1-t n 。 研究Research and De sign 与设计

ABAQUS子程序UMAT的应用

A B A Q U S子程序U M A T 的应用 This model paper was revised by the Standardization Office on December 10, 2020

目录

摘要 ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。 本文主要研究了ABAQUS用户子程序UMAT的开发方法,采用FORTRAN语言编制了各向同性硬化材料模型的接口程序,研究该类材料的弹塑性本构关系极其实现方法。 本文紧紧围绕UMAT的二次开发技术,首先对其接口原理做了详细介绍,然后针 对非线性有限元增量理论中的常刚度法和切线刚度法的算法理论做了深入的剖析,推导出了常刚度法和切线刚度法的算法理论的具体表达式,然后分别编制了两种算法的UMAT程序,最后建立了一个具体的验算模型,通过与ABAQUS自带弹塑性本构关系的计算结果相比较,验证两者的正确性。 本文还对常刚度法和切线刚度法得算法效率做了对比,得出了在非线性程度较高 时切线刚度法效率高于常刚度法的结论。 关键字: ABAQUS、UMAT、有限元、材料非线性、FORTRAN、切线刚度 ABSTRACT ABAQUS software powerful, especially to simulate complex non-linear problem, which includes a wide range of material constitutive model and failure criteria, and has a good open, providing a number of user subroutine interface that allows users to code form to expand the functions of the main program.

混凝土的收缩徐变分析

混凝土的收缩徐变 Q:这两个概念其实应该分开理解,但是由于平时总是放在一起念。所以有时候容易混淆二者差别。 徐变概念:在长期荷载作用下,混凝土的变形随时间而不断增大的的现象。 产生徐变的原因还没有定论,通常情况下可那么理解: 1.混凝土内部的水泥凝胶体在外荷载作用下产生粘性流动,把压力传递给集料,使集料的变形逐渐增大,而导致混凝土的变形。(应力较小是占主要作用) 2.混凝土内部的微裂缝在荷载长期作用下逐渐放大,形成宏裂缝。而导致混凝土变形。(应力较大时占主要作用) 影响混凝土徐变的主要因素: 1.长期作用应力的大小。 2.受荷时混凝土的龄期(硬化强度)。受荷时混凝土龄期越短,混凝土中尚未完全结硬的水泥胶体越多导致徐变越大。因此混凝土过早的受荷(即过早的拆除底板)对混凝土是不利的。 影响徐变其他因素: 1.混凝土组成。水灰比越大,水泥用量越多,徐变越大。 2.外部环境。养护温度越高,湿度越大,水泥水化作用越充分,徐变越小。 3.构件的体积与表面积。与水分的逸发有关。 收缩概念:混凝土在空气中结硬时,体积会缩小。 收缩比膨胀要大得多,所以一般只考虑收缩。 产生收缩的原因:1.水泥凝胶体本身体积减小(干缩) 2.混凝土失水(湿缩) 影响收缩主要因素:混凝土内部组成跟外部环境。 收缩应力机理:混凝土收缩导致体积有减小的趋势,但是结构约束会限制这个趋势。因此当自由收缩受到限制的时候,混凝土会产生拉应力。 在钢混结构中,收缩会使钢筋产生压应力,混凝土产生拉应力。如果结构截面配筋过多,有可能会导致收缩裂缝。 在预应力混凝土结构中,收缩会导致预应力失效。 得出结论: 1.徐变于桥梁结构使用阶段的外部荷载作用情况密切相关。外荷载产生的应力的大小将直接影响徐变的大小。由于桥梁在运行阶段所受到的应力一般大于0.5fc。所以结构徐变与应力呈非线形变化,因此徐变的问题属于非线形问题。 2.外荷载对徐变影响占主导作用,因此可近似理解为没有外荷载即不考虑徐变影响。而显然这种假设是不可能成立的。任何一个结构如果没有承受外荷载的能力即没有使用价值。 3.收缩可认为是混凝土即使是不受外荷载作用下,也能对结构产生很大影响的不利因子。因

ABAQUS子程序USDFLD

Abaqus/CAE User's Manual 12.8.5 Defining field variables at a material point (在一个材料点定义场变量) In Abaqus/Standard you can introduce dependence on solution variables with user subroutine USDFLD. This subroutine allows you to define field variables at a material point as functions of time, of any of the available material point quantities listed in “Abaqus/Standard output variable identifiers,” Section 4.2.1 of the Abaqus Analysis User's Manual, and of material directions. Material properties defined as functions of these field variables may, thus, be dependent on the solution. User subroutine USDFLD is called at each point for which the material definition includes a reference to the user subroutine. (在ABAQUS里面,你能够用子程序USDFLD来求解变量。USDFLD允许你将一个材料点上的场变量定义为时间函数,能够使用到的材料点在用户使用手册4.2.1节中“abaqus输出变量的标识码”中被提及到。材料的特性被定义作为场变量的函数,因此依赖于求解方法。) (在每个被定义材料性能的点USDFLD能够被调用) To include a reference to user subroutine USDFLD in a material definition: 1.From the menu bar in the Edit Material dialog box, select General User Defined Field. (For information on displaying the Edit Material dialog box, see “Creating or editing a material,” Section 12.7.1.) 2.Click OK to close the Edit Material dialog box. Alternatively, you can select another material behavior to define from the menus in the Edit Material dialog box (see “Browsing and modifying material behaviors,” Section 12.7.2, for more information). Abaqus/CAE User's Manual (子程序USDFLD在材料中的定义过程可参考下面:

预应力混凝土收缩徐变损失

关于预应力混凝土收缩徐变损失的分析与讨论 在工程实践过程中,由于混凝土的抗拉性能很差,便使得钢筋混凝土存在着两个无法解决的问题: 一是在使用荷载作用下,钢筋混凝土受拉,受弯等构件通常是带裂缝工作的; 二是从保证结构耐久性出发,必须限制裂缝宽度.为了要满足变形和裂缝控制的要求,则需增大构件的截面尺寸和用钢量,这将导致自重过大,使钢筋混凝土结构用于大跨度或承受动力荷载的结构成为不可能或很不经济 .于是我们便经常在工程实践中预应预应力这一工程工艺:在结构构件承受外荷载之前,对受拉混凝土施加预压应力。这样不但可以提高构件的刚度,推裂缝出现的时间,增加构件的耐久性,而且对于机械结构来说,是结构内部预先产生压应力,还可以提高构造本身刚性,减少振动和弹性变形在结构构件承受外荷载之中对结构所造成的破坏。 但是由于受施工状况、材料性能和环境条件等因素的影响,预应力结构中预应力钢筋的预拉应力在施工和使用过程中将会逐渐减少。于是我们在实际应用预应力这一施工工艺时,我们便不可避免的面临着结构预应力损失这一问题。 一般说来,由于施工工艺的不同,预应力损失的原因也不同。 对于先张法预应力混凝土构件,预应力会发生的损失有:温差损失,弹性压缩损失,钢筋松弛损失以及混凝土收缩徐变损失。 对于后张法构件,会发生的预应力损失有:摩阻损失,锚具损失,预应力钢筋分批张拉损失,钢筋松弛损失和混凝土徐变损失。 在此,我们小组将着重对预应力混凝土的收缩,以及后天的徐变作用下产生的预应力损失进行讨论。 陈磊 050688 混凝土的变形收缩 混凝土在凝结硬化过程和凝结硬化以后,均将产生一定量的体积变形。主要包

预应力混凝土收缩徐变损失

关于预应力混凝土收缩徐变损失的分析与讨论在工程实践过程中,由于混凝土的抗拉性能很差,便使得钢筋混凝土存在着两个无法 解决的问题: 一是在使用荷载作用下,钢筋混凝土受拉,受弯等构件通常是带裂缝工作的;二是从保证结构耐久性出发,必须限制裂缝宽度?为了要满足变形和裂缝控制的要求,则需增大构件的截面尺寸和用钢量,这将导致自重过大,使钢筋混凝土结构用于大跨度或承受动力荷载的结构成为不可能或很不经济 .于是我们便经常在工程实践中预应预应力这一工程工艺:在结构构件承受外荷载之前,对受拉混凝土施加预压应力。这样不但可以提高构件的刚度,推裂缝出现的时间,增加构件的耐久性,而且对于机械结构来说,是结构内部预先产生压应力,还可以提高构造本身刚性,减少振动和弹性变形在结构构件承受外荷载之中对结构所造成的破坏。 但是由于受施工状况、材料性能和环境条件等因素的影响,预应力结构中预应力钢筋的预拉应力在施工和使用过程中将会逐渐减少。于是我们在实际应用预应力这一施工工艺时,我们便不可避免的面临着结构预应力损失这一问题。 一般说来,由于施工工艺的不同,预应力损失的原因也不同。 对于先张法预应力混凝土构件,预应力会发生的损失有:温差损失,弹性压缩损失, 钢筋松弛损失以及混凝土收缩徐变损失。 对于后张法构件,会发生的预应力损失有:摩阻损失,锚具损失,预应力钢筋分批张拉损失,钢筋松弛损失和混凝土徐变损失。 弹性压缩 摩擦阻力 锚具变形 在此,我们小组将着重对预应力混凝土的收缩,以及后天的徐变作用下产生的预应力损失进行讨论。 陈磊050688 混凝土的变形收缩 混凝土在凝结硬化过程和凝结硬化以后,均将产生一定量的体积变形。主要包括化学收缩、干湿变形、自收缩、温度变形及荷载作用下的变形。 1. 化学收缩

abaqus材料子程序

各向同性材料损伤本构模型 SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, + RPL,DDSDDT,DRPLDE,DRPLDT, + STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, + NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, + CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) INCLUDE 'ABA_PARAM.INC' CHARACTER*80 CMNAME DIMENSION STRESS(NTENS),STATEV(NSTATV), + DDSDDE(NTENS,NTENS),DDSDDT(NTENS), + DRPLDE(NTENS),STRAN(NTENS),DSTRAN(NTENS), + TIME(2),PREDEF(1),DPRED(1),PROPS(NPROPS), + COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) DIMENSION STRANT(6),TSTRANT(4),PT(1) DIMENSION OLD_STRESS(6) DIMENSION DOLD_STRESS(6),D_STRESS(6) DIMENSION C(6,6),CD(6,6),DSTRESS(6),BSTRESS(6),ROOT(3), + DFMNDE(6),DDMDE(6),DCDDM(6,6),ATEMP1(6), ATEMP2(6) PARAMETER (ZERO=0.D0,ONE=1.D0,TWO=2.D0,FOUR=4.D0,HALF = 0.5D0) C start C IF (NPROPS.LT.2) THEN C WRITE(7,*) '** ERROR: UMAT REQUIRES *NPROPS=2' C STOP C EN D IF E11 =PROPS(1) V12 =PROPS(2) G12 =PROPS(1)/TWO/(ONE+PROPS(2)) C Critical values of stresses XT=PROPS(3) XC=PROPS(4) XS=PROPS(5) GX=PROPS(6) !Fracture energy in matrix ETA=0.001 C Current strain DO I = 1, NTENS STRANT(I) = STRAN(I) + DSTRAN(I) END DO C Stiffness DO I = 1, 6 DO J = 1, 6 C(I,J)=ZERO END DO END DO ATEMP = (1+V12)*(1-TWO*V12) C(1,1) = E11*(1-V12)/ATEMP C(2,2) = E11*(1-V12)/ATEMP C(3,3) = E11*(1-V12)/ATEMP C(1,2) = E11*V12/ATEMP

混凝土徐变计算分析方法

混凝土徐变计算分析方法 孙海林,叶列平,丁建彤 (清华大学土木工程系,北京,100084) 摘 要:国内外不乏桥梁工程因为混凝土的徐变而挠度过大甚至坍塌的实例。混凝土徐变问题越来越受到研究者的关注,徐变计算理论和方法不断发展。本文综述了各种有关徐变的计算方法(有效模量法、老化理论、流动率法等)以及现在常用的各种方法(徐变应力分析的全量方法、按龄期调整的有效模量法、积分退化核的方法、率型本构方程等),并对这些方法进行了简要评述,讨论了徐变计算的发展方向。 关键词:混凝土;徐变;叠加法;逐步计算法 尽管对混凝土收缩和徐变已经进行了几十年的实践和研究,对混凝土收缩和徐变的认识在不断提高,关于收缩和徐变对结构的影响分析、计算理论和方法在不断发展,但是预计和控制混凝土的收缩和徐变及其对结构物性能的影响仍然是十分复杂而又难以获得精确答案的问题。国内外不乏因为混凝土的收缩和徐变影响结构使用、乃至造成工程事故的例子。 CEB调查了27座混凝土悬臂桥(大约半数是连续跨,其它跨中带铰)的变形资料,跨度从53~195米,有些桥梁在建造完成8~10年后挠度仍有明显增长趋势,甚至有两座桥的挠度从建成起到最后报告测量时间(分别是建成后的16年和20年)一直在以相同的变形速度增加[1]。英国的Kingston桥是一座跨度为62.5+143.3+62.5m的预应力混凝土箱梁桥,主跨中央带铰,1970年建成后跨中挠度缓慢加大,至今已经超过30cm[2]。1977年建成的太平洋上的帕劳共和国Koror–Babeldaob桥,主跨241m,是当时世界上最长的后张预应力混凝土箱形梁桥,建成后挠度不断加大,1996年加固修补3个月后桥梁倒塌[2]。这些桥的变形过大都直接或者间接与徐变相关。 美国1978年完工的Parrots渡桥是当时美国采用轻骨料混凝土建造的净跨最长的悬臂拼装法预应力混凝土连续刚构桥Parrots渡桥,该桥在使用12年后,195m的主跨跨中下垂了约635mm[3]。林同炎国际公司受托诊断的结果表明,实测的徐变比按照PCA和ACI-209公式的计算值大30%。其原因主要有三方面:一是在设计和施工中采用了密封条件下测得的混凝土收缩和徐变值,而在使用中桥的箱形梁暴露在自然环境下,前者的收缩和徐变值小于后者;二是PCA和ACI-209的收缩、徐变计算模型对约2年后的收缩、徐变预测值明显偏低,且龄期越长,偏低越多;三是开裂增大挠度。改用BP2模型并考虑开裂后,计算结果与直至3000天的实测挠度相当吻合。 近年来,超静定结构的发展与预应力混凝土大跨径桥梁的应用更促使收缩和徐变影响的分析和计算成为结构设计人员越来越关心的问题。 1.线性徐变假设的条件 混凝土是一种非线性材料,徐变是混凝土材料非线性的一种表现形式。严格来说,应该采用非线性的徐变准则来预测混凝土结构的徐变变形。但是目前非线性徐变理论还没有达到实用的地步,人们常常近似地认为徐变变形与其应力之间存在着线性关系,服从Boltzman叠加原理。 在下列条件下,实测结果与叠加原理(或者线性关系)非常接近: 应力的数值低于混凝土强度的40~50%左右,或者是说在工作应力范围之内; 应变值在过程中没有减小; 徐变过程没有经历显著的干燥;

相关文档
相关文档 最新文档