文档库 最新最全的文档下载
当前位置:文档库 › 夹套反应釜设计计算

夹套反应釜设计计算

夹套反应釜设计计算
夹套反应釜设计计算

《化工机械设备基础》课程设计:

夹套反应釜设计任务书

课程:化工机械设备基础

院系:化工学院

专业:化学工程与工艺

学号:

姓名:

目录

一.设计内容 (3)

二.设计参数和指术性指标 (3)

三.设计要求 (4)

1.确定筒体和封头的几何尺寸 (4)

表1 几何尺寸 (4)

表2 强度计算 (5)

表3 稳定性校核 (6)

表4 水压试验校核 (7)

2.选择支座形式并进行计算 (8)

3.手孔、视镜选择 (9)

4.选择接管、管法兰、设备法兰: (9)

夹套反应釜设计任务书

一:设计内容:

设计一台夹套传热式配料罐。

二:设计参数和指术性指标:

简图设计参数及要求

容器内夹套内

工作压力,MPa

设计压力,MPa 0.2 0.3

工作温度,℃

设计温度,℃<100 <150

介质染料及有机

溶剂

冷却水

或蒸汽

全容积, m3 0.8

操作容积,m30.64传热面积,㎡>3 腐蚀情况微弱材料Q235-B

接管表

符号公称尺寸DN

连接面形

用途

a 25 突面蒸汽入口

b 25 突面加料口

c 80 凸凹面视镜

d 70 突面温度计管口

e 25 突面压缩空气入口

f 40 突面放料口

g 25 突面冷凝水出口

三:设计要求:

夹套反应釜设计计算说明书一、确定筒体和封头的几何尺寸

表1:几何尺寸

注:附表和计算式为设计资料蔡纪宁,张秋翔编《化工设备机械基础课程设计指导书》化学工业出版社出版2000年第1版中数据及资料,下同

表2:强度计算(按内压计算厚度)

反应釜设计

宁夏大学 课程设计说明书 题目: 夹套反应釜设计 院系:机械工程学院 专业班级:过控10-2班 学号: 学生姓名:马学良 指导教师:贺华 2013-6-27

宁夏大学课程设计(论文)任务书 机械工程学院过控教研室

年月日

目录 一、设计条件及设计内容分析 (1) 二、搅拌容器尺寸的确定及结构选型 (2) 搅拌釜直径设计计算 (2) 筒体厚度的计算 (2) 筒体封头的设计 (3) 筒体长度H的设计 (4) 外压筒体的壁厚确定 (4) 外压封头的壁厚的设计 (5) 三、夹套尺寸的设计计算 (5) 夹套公称直径DN的确定 (5) 夹套筒体壁厚的设计 (6) 夹套筒体长度H的计算 (6) 夹套封头的设计 (6) 四、反应釜附件的选型及尺寸设计 (7) 封头法兰的设计 (7) 封头法兰尺寸及结构 (7) 封头法兰密封面的选型 (8) 工艺接管 (9) 工艺接管尺寸的确定 (9) 接管垫片尺寸及材质 (11) 手孔的设计 (12) 视镜的选型 (13) 五、搅拌装置的选型与尺寸设计计算 (14) 搅拌轴直径的初步计算 (14) 搅拌轴直径的设计 (14) 搅拌轴刚度的校核 (14) 搅拌轴轴承的选择 (14) 联轴器的选择 (15) 搅拌器的设计 (16) 挡板的设计与计算 (17) 六、传动装置的选型和尺寸计算 (17)

凸缘法兰的选型 (17) 安装底盖的选型 (18) 机架的选型 (19) 安装底盖与密封箱体、机架的配置 (19) 电动机的选型 (20) 减速器的选型 (21) 搅拌轴长度的设计 (21) 搅拌轴的结构 (21) 支座的计算 (21) 密封形式的选择 (23) 七、焊接的形式与尺寸 (24) 八、开孔补强计算 (26) 封头开手孔后削弱的金属面积的计算 (26) 接管起补强作用金属面积的计算 (27) 焊缝起补强作用金属面积的计算 (27) 九、反应釜釜体及夹套的压力试验 (27) 釜体的液压试验 (27) 水压试验压力的确定 (27) 水压试验的强度校核 (28) 压力表量程 (28) 水压试验的操作过程 (28) 釜体的气压试验 (28) 气体实验压力的确定 (28) 气压试验的强度校核 (28) 气压试验的操作过程 (29) 夹套的液压试验 (29) 水压试验压力的确定 (29) 水压试验的强度校核 (29) 压力表量程 (29) 液压试验的操作过程 (29) 十、反应釜的装配图(见大图) (29) 课程设计总结 (30) 参考文献 (31)

夹套反应釜课程设计

有搅拌装置的夹套反应釜 前言 《化工设备机械基础》化学工程、制药工程类专业以及其他相近的非机械类专业,对化下设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并具有设计钢制的、典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: ⑴熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 ⑵在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可

行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 ⑶准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 ⑷用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

夹套反应釜设计

nd impr ove idl e land of utilizati on, real a chi eved envir onme nt improved a nd productivity development mut ual prom oting total wi n. Five, firmly implement, promoti ng work ahead, to create hig hlights. T hird depl oyment, impl ementation of seve n, the n it is imperative to stre ngthe n responsibility a nd impr ove the mechanisms and impleme ntation. All localities a nd departments m ust be convi nce d that goal s, goi ng all out, mustering spirit, w ork together t o ensure that thi s year's obje ctives carry out tasks, at the forefront. First, we m ust strengthen the leader shi p to implement. Departments at all level s shoul d always w ork and rural "five water treatment", "three to split" in a n important position, and carry the mai n responsibi lity, main lea der personally, leaders arre sted and layers of responsi bility rank transmissi on pre ssure e stabli she d hierarchical a ccountabilit y, and work together to pr omote the w ork of the mechani sm, a concerted effort pay attention to impleme ntation. County nong ban, flood, three to one dow n to further play a leadi ng catch total, integrate d and coordi nated role of all kinds is "long", "Sheriff" "Inspector" to 0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

搅拌反应釜课程设计(优选.)

课程设计说明书 专业: 班级: 姓名: 学号: 指导教师: 设计时间:

要求与说明 一、学生采用本报告完成课程设计总结。 二、要求文字(一律用计算机)填写,工整、清晰。所附设备安 装用计算机绘图画出。 三、本报告填写完成后,交指导老师批阅,并由学院统一存档。

目录 一、设计任务书 (5) 二、设计方案简介 (6) 1.1罐体几何尺寸计算 (7) 1.1.1确定筒体内径 (7) 1.1.2确定封头尺寸 (8) 1.1.3确定筒体高度 (9) 1.2夹套几何计算 (10) 1.2.1夹套内径 (10) 1.2.2夹套高度计算 (10) 1.2.3传热面积的计算 (10) 1.3夹套反应釜的强度计算 (11) 1.3.1强度计算的原则及依据 (11) 1.3.2按内压对筒体和封头进行强度计算 (12) 1.3.2.1压力计算 (12) 1.3.2.2罐体及夹套厚度计算 (12) 1.3.3按外压对筒体和封头进行稳定性校核 (14) 1.3.4水压试验校核 (16) (二)、搅拌传动系统 (16) 2.1进行传动系统方案设计 (17) 2.2作带传动设计计算 (17) 2.2.1计算设计功率Pc (17) 2.2.2选择V形带型号 (17) 2.2.3选取小带轮及大带轮 (17) 2.2.4验算带速V (18) 2.2.5确定中心距 (18) (18) 2.2.6 验算小带轮包角 1 2.2.7确定带的根数Z (18) 2.2.8确定初拉力Q (19) 2.3搅拌器设计 (19) 2.4搅拌轴的设计及强度校核 (19) 2.5选择轴承 (20) 2.6选择联轴器 (20) 2.7选择轴封型式 (21) (三)、设计机架结构 (21) (四)、凸缘法兰及安装底盖 (22) 4.1凸缘法兰 (22) 4.2安装底盖 (23) (五)、支座形式 (24) 5.1 支座的选型 (24) 5.2支座载荷的校核计算 (26)

乙酸乙酯间歇反应釜课程设计

乙酸乙酯间歇反应釜 工 艺 设 计 说 明 书

目录 前言 (3) 摘要 (4) 一.设计条件和任务 (4) 二.工艺设计 (6) 1. 原料的处理量 (6) 2. 原料液起始浓度 (7) 3. 反应时间 (7) 4. 反应体积 (8) 三. 热量核算 (8) 1. 物料衡算 (8) 2. 能量衡算 (9) 3. 换热设计 (12) 四. 反应釜釜体设计 (13) 1. 反应器的直径和高度 (13) 2. 筒体的壁厚 (14) 3. 釜体封头厚度 (15) 五. 反应釜夹套的设计 (15) 1. 夹套DN、PN的确定 (15) 2. 夹套筒体的壁厚 (15) 3. 夹套筒体的高度 (16) 4. 夹套的封头厚度 (16) 六. 搅拌器的选型 (17) 1. 搅拌桨的尺寸及安装位置 (17) 2. 搅拌功率的计算 (18) 3. 搅拌轴的的初步计算 (18) 结论 (19) 主要符号一览表 (20) 总结 (21) 参考书目 (22)

前言 反应工程课程设计是《化工设备机械基础》和《反应工程》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试反应釜机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 反应工程是培养学生设计能力的重要实践教学环节。在教师指导下,通过裸程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后,应达到一下几个目的: 1、熟练掌握查阅文献资料、收集相关数据、正确选择公式,当缺乏必要的 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 2、在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要 求,确定化工工艺流程,进行设备选型,并提出保证过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 3、准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 4、用精炼的语言、简洁的文字、清晰地图表来表达自己的设计思想和计算 结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

搅拌反应釜计算设计说明书

课程设计 设计题目搅拌式反应釜设 学生姓名 学号 专业班级过程装备与控制工程 指导教师

“过程装备课程设计”任务书 设计者姓名:班级:学号: 指导老师:日期: 1.设计内容 设计一台夹套传热式带搅拌的反应釜 2.设计参数和技术特性指标 简图设计参数及要求 容器内夹套 内 工作压力, MPa 设计压力, MPa 工作温 度,℃ 设计温 <100<150 度,℃ 蒸汽 介质有机溶 剂 全容积,m3 操作容积, m3 传热面积, >3 m2 腐蚀情况微弱 推荐材料Q345R 搅拌器型 推进式 式 250 r/min 搅拌轴转 速 轴功率 3 kW 接管表

3.设计要求 (1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料反应釜的总装配图;(7)绘制皮带轮和传动轴的零件图 1罐体和夹套的设计 1.1 确定筒体内径 当反应釜容积V 小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i 取小值,此次设计取i =1.1。 一般由工艺条件给定容积V 、筒体内径1D 按式4-1估算:得D=1084mm. 式中 V --工艺条件给定的容积,3m ;

i ――长径比,1 1 H i D = (按照物料类型选取,见表4-2) 由附表4-1可以圆整1D =1100,一米高的容积1V 米=0.953m 1.2确定封头尺寸 椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 V 封=0.1983m ,(直边高度取50mm )。 1.3确定筒体高度 反应釜容积V 按照下封头和筒体两部分之容积之和计算。筒体高度由计算 H1==(2.2-0.198)/0.95=0.949m ,圆整高度1H =1000mm 。按圆整后的1H 修正实际容积由式 V=V1m ×H1+V 封=0.95×1.000+0.198=1.1483m 式中 V 封m --3封头容积,; 1V 米――一米高的容积3m /m 1H ――圆整后的高度,m 。 1.4夹套几何尺寸计算 夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径2D 可根据内径1D 由 选工艺装料系数η=0.6~0.85选取,设计选取η=0.80。 1.4.1夹套高度的计算H2=(ηV-V 封)/V1m=0.758m 1.4.2.夹套筒体高度圆整为2H =800mm 。 1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F 封=1.398。 1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=3.46 1.4.5实际的传热面积F=4.166>3,由《化工设备机械基础》式4-5校核4.166〉3所以传热面积合适。

夹套反应釜设计模板

夹套反应釜设计 化学化工学院王信锐化工112班指导老师:陈胜洲

目录 一、夹套反应釜设计任务书 (4) 二、夹套反应釜设计 (5) 1、夹套反应釜的总体结构设计 (5) 2、罐体和夹套的设计 (5) 2.1、罐体和夹套的结构设计 (5) 2.2、罐体几何尺寸的计算 (5) 2.2.1、确定筒体内径 (5) 2.2.2 定封头尺寸 (6) 2.2.3 定筒体高度H1 (6) 2.3夹套的几何尺寸计算 (6) 2.4夹套反应釜的强度计算 (7) 2.4.1强度计算的原则及依据 (7) 2.4.2按内压对筒体和封头进行强度计算 (7) 2.4.3按外压对筒体和封头进行强度校核 (8) 2.4.4水压实验校核计算 (9) 2.5夹套反应釜设计计算数据一览表 (9) 2.5.1几何尺寸 (9) 2.5.2强度计算(按内压计算厚度) (10) 2.5.3稳定性校核(按外压校核厚度) (10) 2.5.4水压实验校核 (11) 3、反应釜的搅拌装置 (12) 3.1、搅拌器的安装方式及其与轴连接的结构设计 (12) 3.2、搅拌轴设计 (12) 3.3、轴的强度一览 (13) 4、反应釜的传动装置 (13) 4.1、常用电机及其连接尺寸 (13) 4.2、釜用减速器类型、标准及选用 (14) 4.3、V带减速机 (14) 4.4、凸缘法兰 (16) 4.5、安装底盘 (16) 4.6、机架 (17) 4.6.1、无支点机架 (17) 4.6.2、单支点机架 (17) 4.6.3、双支点机架 (17) 5、反应釜的轴封装置 (18) 5.1、填料密封 (18) 5.2、机械密封 (18) 6、反应釜其他附件 (19) 6.1支座 (19) 6.2、手孔和入孔 (20) 6.3、设备接口 (21) 6.3.1、接管与管法兰 (21)

夹套反应釜设计

0.95m 3 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 1.1 罐体几何尺寸计算 1.1.1 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 1.1.2 确定筒体内径 已知设备容积要求0.95m 3 ,按式(4-1)初选筒体内径: 式中,V=0.95m 3 ,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~1.3,取 i =1.3,代入上式,计算得 3 31440.95==1.032i 3.14 1.1V D π?? ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 1.1.3 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 1.1.4 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封=0.1980 m 3 ,由附表D-1查得 筒体1m 高的容积V 1m =0.950 m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =(0.950-0.198)/0.95=0.7916m 考虑到安装的方便,取H 1=0.9m ,则实际容积为 V= V 1m ×H 1+ V 封=0.950×0.9+0.198=1.053 m 3 1.2 夹套几何尺寸计算 1. 2.1 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 1.2.2 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 1.2.3 确定夹套高度 装料系数η=操作容积/全容积=0.9/0.95=0.85 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =(0.85×1.053-0.198)/0.95=0.734 m 取H 2=750mm 。选取直边高度h 2=25mm 。 1.2.4 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封=1.3980 m 2 查【2】附表D-1,一米高筒体内表面积F 1m =3.46 m 2 31 4i V D π ?罐体结构示意图

夹套反应釜设计

夹套反应釜设计计算说明书 一、罐体和夹套设计计算 罐体几何尺寸计算 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 确定筒体内径 已知设备容积要求,按式(4-1)初选筒体内径: 式中,V=,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~,取 i =,代入上式,计算得 1D ? 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封= m 3,由附表D-1查得筒体1m 高的容积V 1m = m 3,按式(4-2): H 1=(V-V 封)/V 1m =()/= 考虑到安装的方便,取H 1=,则实际容积为 V= V 1m ×H 1+ V 封=×+= m 3 夹套几何尺寸计算 3 14i V D π ?罐体结构示意图

选择夹套结构 选择【2】39页图4-4 (b)所示结构。 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 确定夹套高度 装料系数η=操作容积/全容积== 按式4-4计算夹套高度: H 2≥(ηV- V 封)/ V 1m =× m 取H 2=750mm 。选取直边高度h 2=25mm 。 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封= m 2 查【2】附表D-1,一米高筒体内表面积F 1m = m 2 校核传热面积: 实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=×+= m 2> m 2,可用。 罐体及夹套的强度计算 确定计算压力 按工艺条件,罐体内设计压力P 1=;夹套内设计压力P 2= 液体静压力P 1H =ρgH 2×10-6=1000×××10-6=,取P 1H = 计算压力P 1c =P 1+P 1H =+= 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 选择设备材料 分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t =113Mpa 。 罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为 []2 2c i d t c p D C p δσ?= +-

夹套反应釜设计

《 夹套反应釜设计计算说明书 一、罐体和夹套设计计算 罐体几何尺寸计算 选择筒体和封头的形式 选择圆柱筒体及椭圆形封头。 确定筒体内径 * 已知设备容积要求,按式(4-1)初选筒体内径: 式中,V=,根据【2】38页表4-2,常反应物料为液-液类型, i =H 1/D 1=1~,取 i =,代入上式,计算得 1D ? ( 将D 1的估算值圆整到公称直径系列,取D 1=1100mm , 确定封头尺寸 标准椭圆形封头尺寸查附表4-2,DN=1100mm ,选取直边高度h 2=25mm 。 确定筒体高度 当D 1=1100mm, h 2=25mm 时,由【2】附表D-2查得椭圆形封头的容积V 封= m 3 ,由附表D-1查得筒体1m 高的容积V 1m = m 3 ,按式(4-2): H 1=(V-V 封)/V 1m =()/= 考虑到安装的方便,取H 1=,则实际容积为 V= V 1m ×H 1+ V 封=×+= m 3 【 夹套几何尺寸计算 选择夹套结构 选择【2】39页图4-4 (b)所示结构。 确定夹套直径 查【2】表4-3, D 2= D 1+100=1100+100=1200mm 。套封头也采用椭圆形并与夹套筒体取相同直径。 确定夹套高度 装料系数η=操作容积/全容积== · 按式4-4计算夹套高度: 31 4i V D π ?罐体结构示意图

H 2≥(ηV- V 封)/ V 1m =× m 取H 2=750mm 。选取直边高度h 2=25mm 。 校核传热面积 查【2】附表D-2,由D 1=1100mm ,得罐体封头表面积F 1封= m 2 查【2】附表D-1,一米高筒体内表面积F 1m = m 2 校核传热面积: 实际总传热面积F=F 筒+ F 1封=F 1m ×H 2 +F 1封=×+= m 2> m 2 ,可用。 : 罐体及夹套的强度计算 确定计算压力 按工艺条件,罐体内设计压力P 1=;夹套内设计压力P 2= 液体静压力P 1H =ρgH 2×10-6=1000×××10-6 =,取P 1H = 计算压力P 1c =P 1+P 1H =+= 夹套无液体静压,忽略P 2H ,故P 2c =P 2。 选择设备材料 " 分析工艺要求和腐蚀因素,决定选用Q235-A 热轧钢板,其中100℃-150℃下的许用应力为:[ó]t =113Mpa 。 罐体筒体及封头壁厚计算 罐体筒体壁厚的设计厚度为 采用双面焊缝,进行局部无损探伤检查,按教材表10-9,取焊缝系数φ=,C 2=2mm ,则 []1c 1d1210.191100 = 2 1.092 3.09 21130.850.19 2t c p D C p δσ??+= +=+=??-- % 查教材表10-10,取钢板负偏差C 1=,则δd1+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn =5mm 罐体封头壁厚的设计厚度为 []11 d110.191100 = 2 1.092 3.09 21130.850.50.19 20.5c t c P D P δσ??= +=+=??-?-‘ 查教材表10-10,取钢板负偏差C 1=,则δd1’+C 1=,考虑到最小厚度 mim δ为3mm ,取名义厚度δn ’=5mm 夹套筒体及封头壁厚计算 夹套筒体壁厚的设计厚度为 - 采用双面焊缝,进行局部无损探伤检查,按【1】161页表10-9,取焊缝系数φ=(夹套封头用钢板拼焊),C 2=2mm ,则 []2 2c i d t c p D C p δσ?=+-[]2 2c i d t c p D C p δσ?= +-

反应釜设计程序.doc

反应釜设计程序 (1)确定反应釜操作方式根据工艺流程的特点,确定反应釜是连续操作还是间歇操作。 (2)汇总设计基础数据工艺计算依据如生产能力、反应时间、温度、装料系数、物料膨胀比、投料比、转化率、投料变化情况以及物料和反应产物的物性数据、化学性质等。 (3)计算反应釜体积 (4)确定反应釜设计(选用)体积和台数。 如系非标准设备的反应釜,则还要决定长径比以后再校算,但可以初步确定为一个尺寸,即将直径确定为一个国家规定的容器系列尺寸。 (5)反应釜直径和筒体高度、封头确定。 (6)传热面积计算和校核。 (7)搅拌器设计。 (8)管口和开孔设计。 (9)画出反应器设计草图(条件图),或选型型号。 3.设计要求(1)进行罐体和夹套设计计算;(2)选择接管、管法兰、设备法兰;(3)进行搅拌传动系统设计;(4)设计机架结构;(5)设计凸缘及选择轴封形式;(6)绘制配料夹套反应釜的总装配图;(7)从总装图中测绘一张零件图或一张部件图。1罐体和夹套的设计1.1 确定筒体内径表4-2 几种搅拌釜的长径比i值搅拌釜种类设备内物料类型长径比i值一般搅拌釜液-固相或液-液相物料i=1~1.3气-液相物料i=1~2发酵罐类I=1.7~2.5 当反应釜容积V小时,为使筒体内径不致太小,以便在顶盖上布置接管和传动装置,通常i取小值,此次设计取i=1.1。一般由工艺条件给定容积V、筒体内径按式4-1估算:得D=1366mm.式中V--工艺条件给定的容积,;i——长径比,(按照物料类型选取,见表4-2)由附表4-1可以圆整=1400,一米高的容积=1.539 1.2确定封头尺寸椭圆封头选取标准件,其形式选取《化工设备机械基础课程设计指导书》图4-3,它的内径与筒体内径相同,釜体椭圆封头的容积由附表4-2 =0.4362 ,(直边高度取50mm)。1.3确定筒体高度反应釜容积V按照下封头和筒体两部分之容积之和计算。筒体高度由计算H1==(2.2-0.4362)/1.539=1.146m,圆整高度=1100mm。按圆整后的修正实际容积由式V=V1m×H1+V封=1.539×1.100+0.4362=2.129 式中;——一米高的容积/m ——圆整后的高度,m。1.4夹套几何尺寸计算夹套的结构尺寸要根据安装和工艺两方面的要求。夹套的内径可根据内径由500~600700~18002000~3000 +50 +100 +200选工艺装料系数=0.6~0.85选取,设计选取=0.80。1. 4.1夹套高度的计算H2=(ηV-V封)/V1m=0.755m1.4.2.夹套筒体高度圆整为=800mm。1.4.3罐体的封头的表面积由《化工设备机械基础》附表4-2查的F封=2.345。1.4.4一米高的筒体内表面由《化工设备机械基础》附表4-1查的。F1m=4.401.4.5实际的传热面积F== 5.6665>3,由《化工设备机械基础》式4-5校核5.6665〉3所以传热面积合适。2夹套反应釜的强度计算强度计算的参数的选取及计算均符合GB150-1998《钢制压力容器》的规程。此次设计的工作状态已知时,圆筒为外压筒体并带有夹套,由筒体的公称直径mm,被夹套包围的部分分别按照内压和外压圆筒计算,并取其中较大者。...[ 过程装备夹套反应釜化工机械化工课程设计] 反应釜设计 摘要

反应釜课程设计说明书

课程设计 资料袋 机械工程学院(系、部) 2012 ~ 2013 学年第二学期 课程名称指导教师职称 学生专业班级班级学号题目酸洗反应釜设计 成绩起止日期 2013 年 6 月 24 日~ 2013 年 6 月 30 日 目录清单 . . .

过程设备设计 设计说明书 酸洗反应釜的设计 起止日期: 2013 年 6 月 24 日至 2013 年 6 月 30 日 学生 班级 学号 成绩 指导教师(签字) 机械工程学院(部) 2013年6月26日

课程设计任务书 2012—2013学年第二学期 机械工程学院(系、部)专业班级 课程名称:过程设备设计 设计题目:酸洗反应釜设计 完成期限:自 2013 年 6 月 24 日至 2013 年 6 月 30 日共 1 周 指导教师(签字):年月日系(教研室)主任(签字):年月日 目录

第一章绪论 (4) 1.1 设计任务 (2) 1.2 设计目的 (2) 第二章反应釜设计 (2) 第一节罐体几何尺寸计算 (2) 2.1.1 确定筒体径 (2) 2.1.2 确定封头尺寸 (2) 2.1.3 确定筒体高度 (2) 2.1.4 夹套的几何尺寸计算 (3) 2.1.5 夹套反应釜的强度计算 (4) 2.1.5.1 强度计算的原则及依据 (4) 2.1.5.2 筒及夹套的受力分析 (4) 2.1.5.3 计算反应釜厚度 (5) 第二节反应釜釜体及夹套的压力试验 (6) 2.2.1 釜体的水压试验 (6) 2.2.1.1 水压试验压力的确定 (6) 2.2.1.2 水压试验的强度校核 (6) 2.2.1.3 压力表的量程、水温及水中Cl-的浓度 (6) 2.2.2 夹套的水压试验 (6) 2.2.2.1 水压试验压力的确定 (6) 2.2.2.2 水压试验的强度校核 (6) 2.2.2.3 压力表的量程、水温及水中Cl-的浓度 (6) 第三节反应釜的搅拌装置 (1) 2.3.1 桨式搅拌器的选取和安装 (1) 2.3.2 搅拌轴设计 (1) 2.3.2.1 搅拌轴的支承条件 (1) 2.3.2.2 功率 (1) 2.3.2.3 搅拌轴强度校核 (2) 2.3.2.4 搅拌抽临界转速校核计算 (2) 2.3.3 联轴器的型式及尺寸的设计 (2) 第四节反应釜的传动装置与轴封装置 (1) 2.4.1 常用电机及其连接尺寸 (1) 2.4.2 减速器的选型 (2) 2.4.2.1 减速器的选型 (2) 2.4.2.2 减速机的外形安装尺寸 (2) 2.4.3 机架的设计 (3) 2.4.4 反应釜的轴封装置设计 (3) 第五节反应釜其他附件 (1) 2.5.1 支座 (1) 2.5.2 手孔和人孔 (2) 2.5.3 设备接口 (3) 2.5.3.1 接管与管法兰 (3) 2.5.3.2 补强圈 (3) 2.5.3.3 液体出料管和过夹套的物料进出口 (4) 2.5.3.4 固体物料进口的设计 (4) 第六节焊缝结构的设计 (7) 2.6.1 釜体上的主要焊缝结构 (7) 2.6.2 夹套上的焊缝结构的设计 (8) 第三章后言............................................................. 错误!未定义书签。 3.1 结束语 ......................................................... 错误!未定义书签。 3.2 参考文献....................................................... 错误!未定义书签。

夹套反应釜-课程设计

课程设计任务书 ..................................................... 错误!未定义书签。 1.1. 1. 设计方案的分析和拟定 (4) 2. 罐体和夹套的设计 (5) 2.1. 罐体和夹套的结构设计 (5) 2.2. 罐体几何尺寸计算 (5) 2.2.1. 确定筒体内径 (5) 2.2.2. 确定封头尺寸 (6) 2.2.3. 确定筒体高度H1 (6) 2.3. 夹套几何尺寸计算 (6) 2.3.1. 确定夹套内径 (6) 2.3.2. 确定夹套高度 (7) 2.3.3. 校核传热面积 (7) 2.4. 夹套反应釜的强度计算 (7) 2.4.1. 强度计算的原则及依据 (7) 2.4.2. 按内压对筒体和封头进行强度计算 (8) 2.4.3. 按外压对筒体和封头进行稳定性校核 (10) 2.4.4. 水压试验校核 (11) 3. 反应釜的搅拌器 (12) 3.1. 搅拌器的选用 (12) 3.2. 挡板 (12) 4. 反应釜的传动装置 (12) 4.1. 电动机、减速机选型 (13)

4.2. 凸缘法兰 (13) 4.3. 安装底盖 (14) 4.4. 机架 (14) 4.5. 联轴器 (14) 4.6. 搅拌轴设计 (14) 5. 反应釜的轴封装置 (16) 6. 反应釜的其他附件 (17) 6.1. 支座 (17) 6.1.1. 确定耳式支座实际承受载荷Q (17) 6.1.2. 确定支座的型号及数量 (18) 6.2. 手孔 (18) 6.3. 设备接口 (18)

设计目的:培养学生把所学“化工机械基础”及其相关课程的理论知识,在设备课程设计中综合地加以运用,把化工工艺条件与化工设备设计有机结合起来,使所学有关机械课程的基本理论和基本知识得以巩固和强化。培养学生对化工设备设计的基本技能以及独立分析问题、解决问题的能力。 设计要求:(1)树立正确的设计思想。(2)要有积极主动的学习态度和进取精神。(3)学会正确使用标准和规范,使设计有法可依、有章可循。(4)学会正确的设计方法,统筹兼顾,抓主要矛盾。(5)在设计中应注意处理好尺寸的圆整,处理好计算与结构设计的关系。 设计内容:设计一台带有搅拌装置的夹套反应釜,包括设备总装配图一张,零部件图一至二张,设计计算说明书一份。 设计任务书 设计参数及要求 容器内夹套内工作压力,Mpa 设计压力,Mpa 0.2 0.3 工作温度,℃ 设计温度,℃<120 <150 介质有机溶剂冷却水或蒸汽全容积V ,m3 2.5 操作容积V1,m3 2.0 传热面积,m37 腐蚀情况微弱 推荐材料不锈钢 搅拌器型式桨式 搅拌速度,r/min <120

反应釜设计开题报告

齐齐哈尔大学 开题报告 学院 专业班级 学生姓名 指导教师 成绩

毕业设计(论文)开题报告 一、选题的依据、意义和理论或实际应用方面的价值 反应釜是广泛应用于石油化工,化学,制药,高分子合成,冶金,环保等领域的重要设备[1]。因此在工业发展过程中研究反应釜的改进技术会使我们提高工作效率,节省资金和时间。结构简单,加工方便,传质、传热效率高,温度浓度分布均匀,操作灵活性大,便于控制和改变反应条件,适合于多种,小批量生产[2]。适合于各种不同组态组合的反应物料,几乎所有有机合成的单元操作,只要选择适当的溶剂作为反应介质,都可以在釜式反应器内进行[3]。 在实际生产中所遇到的传热过程很少是单一的传热方式,往往是几种基本方式同时出现,这使实际的换热过程很复杂。流体的性质对换热换热器类型的选择将会产生很大的影响,如流体的物理性质,化学性质,结垢情况,以及是否有磨蚀性等因素,都对传热设备的选型有影响[4]。 通过对夹套传热反应装置的研究,可以让我了解当今传热反应装置的分类,以及每一种传热器应用的场合,和对物料的物理性质和化学性质的要求,同时也让我知道了传热器在我国化学工业中的应用。这对我以后的学习打下了坚实的基础。 二、本课题在国内外的研究现状 国内:我国正处于反应釜生产和消费的高速增长期,已广泛应用于石油化工、轻工、食品、酿酒、制药、家电、水电、机械、建筑、市政和各种民用器具中[5]。越来越多的学者致力于夹套传热反应装置的研究,国内由原料能源转变为最终有效利用能源转化率目前只有27%,节能的潜力很大。夹套传热设备总是应用的非常的广泛,在日产千吨的合成氨厂中,各种传热设备约占全厂设备总数的40%左右[6]。随着我国化工业的发展化工生产对反应釜的要求越来越高:1.大容积化,这是增加产量,减少批量之间的质量误差,降低产品成本的有效途径和发展趋势。2.反应釜的搅拌器,已由单一搅拌器发展到双搅拌器或外加泵制循环。3. 以生产连续化和自动化代替笨重的间隙手工操作。4.合理利用热能,选择最佳的工艺操作条件[7]。 国外:反应釜的研究备受各国政府和机构的重视,生产必须严格按照相应的标准加工,检测并试运行。不锈钢反应釜,根据不同的生产工艺、操作条件等,反应釜的设计结构和参数不同[8]。采用新技术,在提高和保证设备质量的前提下降低难度减少维护成本。国外的自动化水平高,在大工厂当中已经实现了电脑自动化生产[9]。外国的许多研究人员也在致力于夹套传热反应装置的研究,其中由美国专家史蒂夫研制出的多孔介质夹套传热反应装置,受到了各个国家的一致好评,把传热效率大大的提升[10]。

化工课程设计--夹套反应釜课程设计 (2)

化工设备机械基础课程设计题目:1m3夹套反应釜设计 学院: 化学与材料工程学院专业: 化学工程 班级: 10化工 姓名: 学号: 10111003101 指导老师: 完成日期: 2012年6月1日

夹套反应釜设计任务书 设计者:班级:10化工学号:10111003101 指导老师:日期: 一、设计内容 设计一台夹套传热式带搅拌的配料罐。 二、设计参数和技术特性指标 见下表 三、设计要求 1.进行罐体和夹套设计计算; 2.选择支座形式并进行计算; 3.手孔校核计算; 4.选择接管、管法兰、设备法兰; 5.进行搅拌传动系统设计; (1)进行传动系统方案设计(指定用V带传动); (2)作带传动设计计算:定出带型,带轮相关尺寸(指定选用库存电机Y1322-6,转速960r/min,功率5.5kW); (3)选择轴承; (4)选择联轴器; (5)进行罐内搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计; 6.设计机架结构; 7.设计凸缘及安装底盖结构; 8.选择轴封形式; 9.绘制装配图; 10. 绘传动系统部件图。

表1 夹套反应釜设计任务书 简图设计参数及要求 容器内夹套内 工作压力, Mpa 设计压力, MPa 0.2 0.3 工作温度, ℃ 设计温度, ℃ <100 <150 介质染料及有机溶剂冷却水或蒸汽 全容积,m3 1.0 操作容积, m3 0.8全容积 传热面积, m2 >3.5 腐蚀情况微弱 推荐材料Q235-A 搅拌器型式推进式 搅拌轴转 速,r/min 200 轴功率,kW 4 接管表 符号公称尺寸 DN 连接面形式用途 a 25 蒸汽入口 b 25 加料口 c 80 视镜 d 65 温度计管 口 e 25 压缩空气入口 f 40 放料口 g 25 冷凝水出 口 h 100 手孔

化工设备机械基础课程设计-夹套反应釜

广州大学化学化工学院 本科学生化工设备机械基础课程 设计 实验课程化工设备机械基础课程设计 实验项目夹套反应釜设计 专业班级 学号姓名 指导教师及职称 开课学期 2013 至 2014 学年第一学期时间 2014 年 1 月 6 日~ 1 月 17 日

夹套反应釜设计任务书 设计者姓名: 班级:学号:指导老师姓名:日期:2014年01月10号 一、设计内容 设计一台夹套传热式的反应釜

1、进行罐体和夹套设计计算。 2、选择支座形式并进行计算。 3、选择接管、管法兰、设备法兰、手孔、视镜等容器附件。 4、绘总装配图 参考图见插页附图

前言 《化工设备机械基础》是针对化学工程、制药工程类专业以及其他相近的非机械类专业,对化学设备的机械知识和设计能力的要求而编写的。通过此课程的学习,是通过学习使同学掌握基本的设计理论并且具有设计钢制典型的中、低、常压化工容器的设计和必要的机械基础知识。 化工设备机械基础课程设计是《化工设备机械基础》课程教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是学生体察工程实际问题复杂性,学习初次尝试化工机械设计。化工设计不同于平时的作业,在设计中需要同学独立自主的解决所遇到的问题、自己做出决策,根据老师给定的设计要求自己选择方案、查取数据、进行过程和设备的设计计算,并要对自己的选择做出论证和核算,经过反复的比较分析,择优选定最理想的方案和合理的设计。 化工设备课程设计师培养学生设计能力的重要事件教学环节。在教师指导下,通过课程设计,培养学生独立地运用所学到的基本理论并结合生产实际的知识,综合地分析和解决生产实际问题的能力。因此,当学生首次完成该课程设计后应达到以下几个目的: (1)熟练掌握查血文献资料、收集相关数据、正确选择公式,当缺乏必要的数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 (2)在兼顾技术先进性、可行性、经济合理的前提下,综合分析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证该过程正常、安全可行所需的检测和计量参数,同时还要考虑改善劳动条件和环境保护的有效措施。 (3)准确而迅速的进行过程计算及主要设备的工艺设计计算及选型。 (4)用精炼的语言、简洁的文字、清晰地图标来表达自己的设计思想和计算结果。 化工设备机械基础课程设计是一项很繁琐的设计工作,而且在设计中除了要考虑经济因素外,环保也是一项不得不考虑的问题。除此之外,还要考虑诸多的政策、法规,因此在课程设计中要有耐心,注意多专业、多学科的综合和相互协调。

相关文档