文档库 最新最全的文档下载
当前位置:文档库 › MATLAB应用实例分析

MATLAB应用实例分析

MATLAB应用实例分析
MATLAB应用实例分析

Matlab 应用例题选讲

仅举一些运用MATLAB 的例子,这些问题在数学建模中时常遇到,希望能帮助同学们在短时间内方便、快捷的使用MATLAB 解决数学建模中的问题,并善用这一工具。 常用控制命令:

clc :%清屏; clear :%清变量; save :%保存变量; load :%导入变量

一、利用公式直接进行赋值计算

本金P 以每年n 次,每次i%的增值率(n 与i 的乘积为每年增值额的百分比)增加,当增加到r ×P 时所花费的时间T 为:(利用复利计息公式可得到下式)

)

01.01ln(ln )01.01(i n r

T i P P r nT +=

?+=?(12,5.0,2===n i r )

MATLAB 的表达形式及结果如下: >> r=2;i=0.5;n=12; %变量赋值 >> T=log(r)/(n*log(1+0.01*i)) 计算结果显示为:

T = 11.5813

即所花费的时间为T=11.5813 年。

分析:上面的问题是一个利用公式直接进行赋值计算问题,实际中若变量在某个范围变化取很多值时,使用MATLAB ,将倍感方便,轻松得到结果,其绘图功能还能将结果轻松的显示出来,变量之间的变化规律将一目了然。

若r 在[1,9]变化,i 在[0.5,3.5]变化;我们将MATLAB 的表达式作如下改动,结果如图1。 r=1:0.5:9; i=0.5:0.5:3.5; n=12;

p=1./(n*log(1+0.01*i)); T=log(r')*p; plot(r,T)

xlabel('r') %给x 轴加标题 ylabel('T') %给y 轴加标题

q=ones(1,length(i));

text(7*q-0.2,[T(14,1:5)+0.5,T(14,6)-0.1,T(14,7)-0.9],num2str(i'))

r

T

图1

从图1中既可以看到T 随r 的变化规律,而且还能看到i 的不同取值对T —r 曲线的影响(图中的六条曲线分别代表i 的不同取值)。

二、方程组的求解

求解下面的方程组:?????=++=++=++12

29447535

.768321

321321x x x x x x x x x

分析:对于线性方程组求解,常用线性代数的方法,把方程组转化为矩阵进行计算。

b ax =b a x 1

-=?b a x \=?

MATLAB 的表达形式及结果如下: >> a=[8 1 6;3 5 7;4 9 2]; %建立系数矩阵 >> b=[7.5;4;12]; %建立常数项矩阵 >> x=a\b %求方程组的解 计算结果显示为: x =

1.2931 0.8972 -0.6236

三、数据拟合与二维绘图

在数学建模竞赛中,我们常会遇到这种数据表格问题,如果我们仅凭眼睛观察,很难看到其中的规律,也就更难写出有效的数学表达式从而建立数学模型。因此可以利用MATLAB 的拟合函数, 即polyfit() 函数,并结合MATLAB 的绘图功能(利用plot()函数),得到直观的表示。

例:在化学反应中,为研究某化合物的浓度随时间的变化规律,测得一组数据如下表: 分析:

MATLAB 的表达形式如下:

t=[1:16]; %数据输入

y=[4 6.4 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.42 10.5 10.55 10.58 10.6]; plot(t,y,'o') %画散点图 p=polyfit(t,y,2) %二次多项式拟合 hold on

xi=linspace(0,16,160); %在[0,16]等间距取160 个点 yi=polyval(p,xi); %由拟合得到的多项式及xi ,确定yi plot(xi,yi) %画拟合曲线图 执行程序得到图2;

图2

显示的结果为

p=

-0.0445 1.0711 4.3252

p的值表示二阶拟合得到的多项式为:y= -0.0445t2+1.0711t+ 4.3252

下面是用lsqcurvefit()函数,即最小二乘拟合方法的Matlab表达:

t=[1:16];

y=[4 6.4 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.42 10.5 10.55 10.58 10.6];

x0=[0.1,0.1,0.1];

zuixiao=inline('x(1)*t.^2+x(2)*t+x(3)','x','t');

x=lsqcurvefit(zuixiao,x0,t,y) %利用最小二乘拟合

其显示的结果为:

x =

-0.0445 1.0711 4.3252

可以看出其得到的结果与polyfit函数的结果相同。这说明在多项式拟合问题上这两个函数的效果是相同的。

下面的一个例子将体现lsqcurvefit()函数的优势。

例2: 在物理学中,为研究某种材料应力与应变的关系,测得一组数据如下表:

试计算a 、b 的值。

MATLAB 的表达形式如下:

x=[925,1125,1625,2125,2625,3125,3625];

y=[0.11,0.16,0.35,0.48,0.61,0.71,0.85];

plot(x,y,'o')

[p,resid1]=polyfit(x,y,2)

hold on

xi=linspace(700,3700,3000);

yi=polyval(p,xi);

plot(xi,yi)

x0=[0.1,0.1];

fff=inline('a(1)+a(2)*log(x)','a','x'); [a,resid2]=lsqcurvefit(fff,x0,x,y) plot(xi,fff(a,xi),'r')

执行程序得到图3,图中蓝色曲线为利用polyfit()函数得到的曲线,红色曲线为利用lsqcurvefit()函数得到的曲线;

其显示的结果为: p =

-0.0000 0.0004 -0.2266 resid1 =

R: [3x3 double] df: 4 normr: 0.0331 a =

-3.5810 0.5344 resid2 = 0.0064

其中a 的值代表利用lsqcurvefit()函数得到的关系为:ε=-3.5810+0.5344σ

resid1、resid2 分别代表运用polyfit()函数、lsqcurvefit()函数得到的残差。可以看出利用lsqcurvefit()函数残差更小,即得到了更好的拟合效果。

在数学建模的实际问题中,如果问题的机理不明,我们只能采用polyfit()函数,即多项式拟合的方法,以获得近似的数据描述函数;但如果通过分析,可以得到一些机理,那么采用最小二乘的方法将得到更好的效果,而且得到的拟合函数也更有意义。

四、隐函数的图形绘制

plot()只能绘制显函数图形,对于形如

0)sin()1ln(ln 1

=-++-+-x x y y y

的复杂隐函数,很难转化为显函数并利用plot()函数绘制图形,这时就可以用ezplot()函数直接绘制其曲线。 MATLAB 的表达形式如下:

>> ezplot('1/y-log(y)+log(-1+y)+x-sin(x)') 执行程序得到图5

x

y

x

y

图5 图6

如果是形如下面的参数方程),0(,sin 3sin ,cos 3sin π∈==t t t y t t x ,同样可以利用ezplot()函数绘制其曲线。MATLAB 的表达形式如下:

>> ezplot('sin(3*t)*cos(t)','sin(3*t)*sin(t)',[0,pi]) 执行程序得到图6。

matlab小波变换

matlab小波变换 Matlab 1. 离散傅立叶变换的 Matlab实现 Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法;而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT 。这些函数的调用格式如下: A=fft(X,N,DIM) 其中,X 表示输入图像;N 表示采样间隔点,如果 X 小于该数值,那么Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为 N ;DIM 表示要进行离散傅立叶变换。 A=fft2(X,MROWS,NCOLS) 其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。别可以实现一维、二维和 N 维 DFT A=fftn(X,SIZE) 其中,SIZE 是一个向量,它们每一个元素都将指定 X 相应维进行零填充后的长度。 函数 ifft、ifft2 和 ifftn的调用格式于对应的离散傅立叶变换函数一致。 别可以实现一维、二维和 N 维 DFT 例子:图像的二维傅立叶频谱 1. 离散傅立叶变换的 Matlab实现% 读入原始图像 I=imread('lena.bmp');函数 fft、fft2 和 fftn 分 imshow(I) % 求离散傅立叶频谱 J=fftshift(fft2(I)); figure;别可以实现一维、二维和 N 维 DFT imshow(log(abs(J)),[8,10]) 2. 离散余弦变换的 Matlab 实现 Matlab

2.1. dct2 函数 功能:二维 DCT 变换 Matlab 格式:B=dct2(A) B=dct2(A,m,n) B=dct2(A,[m,n])函数 fft、fft2 和 fftn 分 说明:B=dct2(A) 计算 A 的 DCT 变换 B ,A 与 B 的大小相同;B=dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 m×n。 2.2. dict2 函数 功能:DCT 反变换 格式:B=idct2(A) B=idct2(A,m,n)别可以实现一维、二维和 N 维 DFT B=idct2(A,[m,n]) 说明:B=idct2(A) 计算 A 的 DCT 反变换 B ,A 与 B 的大小相同;B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为m×n。 Matlab 2.3. dctmtx函数 功能:计算 DCT 变换矩阵 格式:D=dctmtx(n) 说明:D=dctmtx(n) 返回一个n×n 的 DCT 变换矩阵,输出矩阵 D 为double 类型。 1. 离散傅立叶变换的 Matlab实现 3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分 3.1 一维小波变换的 Matlab 实现 (1) dwt 函数 Matlab

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

关于小波分析的matlab程序

https://www.wendangku.net/doc/7a16974152.html,/forum-viewthread-tid-9141-extra-page%3D1-page-1.html(个人收集关于小波分析的matlab程序) 小波滤波器构造和消噪程序 (1) 小波谱分析mallat算法经典程序 (7) 小波包变换分析信号的MATLAB程序 (9) 利用小波变换实现对电能质量检测的算法实现 (15) 基于小波变换的图象去噪Normalshrink算法 (17) 小波滤波器构造和消噪程序 1.重构 % mallet_wavelet.m % 此函数用于研究Mallet算法及滤波器设计 % 此函数仅用于消噪 a=pi/8; %角度赋初值 b=pi/8; %低通重构FIR滤波器h0(n)冲激响应赋值 h0=cos(a)*cos(b); h1=sin(a)*cos(b); h2=-sin(a)*sin(b); h3=cos(a)*sin(b); low_construct=[h0,h1,h2,h3]; L_fre=4; %滤波器长度 low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器 for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器 if(mod(i_high,2)==0); coefficient=-1;

else coefficient=1; end high_construct(1,i_high)=low_decompose(1,i_high)*coefficient; end high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度 n=1:L_signal; %信号赋值 f=10; t=0.001; y=10*cos(2*pi*50*n*t).*exp(-20*n*t); figure(1); plot(y); title('原信号'); check1=sum(high_decompose); %h0(n)性质校验 check2=sum(low_decompose); check3=norm(high_decompose); check4=norm(low_decompose); l_fre=conv(y,low_decompose); %卷积 l_fre_down=dyaddown(l_fre); %抽取,得低频细节 h_fre=conv(y,high_decompose); h_fre_down=dyaddown(h_fre); %信号高频细节

一个小波变换实例Matlab实现

1、 选择()t ?或?()? ω,使{}()k Z t k ?∈-为一组正交归一基; 2、 求n h 。 1,(),()n n h t t ??-= 或??()(2)/()H ω? ω?ω= 3、 由n h 求n g 。 1(1)n n n g h -=- 或()()i G e H t ωωωπ-= 4、 由n g ,()t ?构成正交小波基函数()t φ 1,()()n n t g t φ?-=∑ 或??()(/2)(/2)G φ ωω?ω= Haar 小波的构造 1)、选择尺度函数。 101()0t t ? ≤≤?=? ?其他 易知(n)t ?-关于n 为一正交归一基。 2)、求n h 1,(),()n n h t t ??- =()2t-n)t dt ??( 其中 11(2)220n n t t n ?+? ≤≤?-=?? ?其他 当n=0时, 11(2)20t t ?? 0≤≤?=?? ?其他 当n=1时,

111(21)20t t ?? ≤≤?-=?? ?其他 故,当n=0,n=1时 1()(2)0n n t t n ?? =0,=1??-=? ? 其他 当n=0时, ()(2)t t n ???-1120t ? 0≤≤?=?? ?其他 当n=1时, ()(2)t t n ???-11120t ? ≤≤?=?? ?其他 故 n h ()2t-n)t dt ?? (1/0n n ?=0,=1?=? ?? 其他 3)、求n g 。 11/0(1)1/10n n n n g h n -?=??=-=-=?? ?? 其他 4)、求()t φ。 1,()()n n t g t φ?-=∑ =0-1,011,1()()g t g t ??-+ (2)(21)t t - =110211120t t ? ≤≤???- ≤≤?? ??? 其他

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

Matlab实现小波变换

Matlab实现小波变换 本文来自: 高校自动化网(https://www.wendangku.net/doc/7a16974152.html,) 详细出处参考(转载请保留本链接):https://www.wendangku.net/doc/7a16974152.html,/html/matlab/7709.html MATLAB 小波变换2010-01-11 20:51 3. 图像小波变换的Matlab 实现函数fft、fft2 和fftn 分析 3.1 一维小波变换的Matlab 实现 (1) dwt 函数Matlab 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组Lo_D、Hi_D 对信号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数fft、fft2 和fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量cA 和细节分量cD 经小波反变换重构原始信号X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器Lo_R 和Hi_R 经小波反变换重构原始信号X 。 X=idwt(cA,cD,'wname',L) 和X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号X 中心附近的L 个点。 1. 离散傅立叶变换的Matlab实现 3.2 二维小波变换的Matlab 实现 二维小波变换的函数别可以实现一维、二维和N 维DFT ------------------------------------------------- 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换Matlab waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 1. 离散傅立叶变换的Matlab实现 detcoef2 提取二维信号小波分解的细节分量

五种常见小波基函数及其matlab实现

与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。 Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最 简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。Haar 函数 的定义如下: 1 021121(t)-10 t t ≤≤≤≤ψ=?????其他 Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也 有自己的优点: 1. 计算简单。 2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar 小波构成一组最简单的正交归一的 小波族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Daubechies(dbN)小波 Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。小波(t)ψ和尺度函数 (t)φ中的支撑区为 12-N ,(t)ψ的消失矩为N 。除1=N (Harr 小波)外,dbN 不具有对称性 (即非线性相位)。除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换 函数h 的平方模是明确的: 令 k N k k N k y p C ∑-=+=1 1-(y),其中C k N k +1-为二项式的系数,则有 )2 )p(sin 2 (cos ) (2 2 2 0ω ω ω=m 其中: e h jk N k k ω ω-120 2 1 )(m ∑-==

本科毕业设计__基于matlab的小波分析在图像处理中的应用

基于Matlab 的小波分析在图像处理中的应用 摘要:本文先介绍了小波分析得基本理论,包括连续小波变换、离散小波变换和小波包分析。小波变换具有时频局部化的特点,因此不但能对图像提供较精确的时域定位,也能提供较精确的频域定位。经过小波变换的图像具有频谱划、方向选择、多分辨率分析和天然塔式数据结构特点。基于小波变换这些特性,讨论了MATLAB 语言环境下图像压缩,图像去噪,图像融合,图像分解,图像增强的基本方法。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像分解;图像增强 1 引言 小波分析诞生于20世纪80年代, 被认为是调和分析即现代Fourier 分析发展的一个崭新阶段。众多高新技术以数学为基础,而小波分析被誉为“数学显微镜”,这就决定了它在高科技研究领域重要的地位。目前, 它在模式识别、图像处理、语音处理、故障诊断、地球物理勘探、分形理论、空气动力学与流体力学上的应用都得到了广泛深入的研究,甚至在金融、证券、股票等社会科学方面都有小波分析的应用研究。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor 变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。 2 小波分析的基本理论 2.1 连续小波变换 定义:设)()(2R L t ∈ψ,其傅立叶变换为)(?ωψ ,当)(?ωψ满足允许条件(完全重构条件或恒等分辨条件) ?=R d C ωωωψ ψ2 )(?< ∞ (1)

用MATLAB中小波函数和小波工具箱

研究生课程考试答题纸 研究生学院 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降

噪的理论依据。(25分) 四、平时成绩。(30分) 一、论述 1. 连续小波变换 将任意2 ()L R 空间中函数(t)f 在小波基下展开,称这种展开为函数(t)f 的连续小波变换(CWT), 其表达式为,T (,)(),()()()f a R t W a f t t f t dt a τττψψ-=<>=?,其中a 为尺度因子,表示与频率相关的伸缩,b 为时间平移因子。其中,()(),0,a t t a R a ττψτ-= >∈为窗口函数也是小波母函数。 任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时 间段a t ?上包含在中心频率为 0a ω、带宽为a ω?频窗内的频率分量大小。随着尺度a 的变化,对应窗口中心频率0a ω及带宽为a ω?也发生变化。小波变换是一种便分辨率的时频联合分析方法,当分析低频信号时,其时间窗很大,而分析高频信号时,其时间窗减小。这恰恰符合实际问题中高频信号的持续时间短、低频信号持续时间长的自然规律。 尺度伸缩,对波形的尺度伸缩就是在时间轴上对信号进行压缩和伸展。在不同尺度下,

基于matlab的小波分析与设计

目录 摘要 (1) ABSTRACT (3) 前言 (3) 1概述 (3) 1.1研究背景 (3) 1.2研究内容 (4) 1.3 MA TLAB的概况 (4) 1.4 MA TLAB的语言特点 (5) 2小波分析的基本理论 (6) 2.1傅里叶变换 (6) 2.2小波变换 (7) 2.2.1连续小波变换 (7) 2.2.2离散小波变换 (8) 2.2.3小波包分析 (9) 3小波分析在图像处理中的应用 (9) 3.1小波分析用于图像压缩 (9) 3.2小波分析用于图像去噪 (13) 3.3小波分析用于图像增强 (17) 3.3.1图像钝化 (19) 3.3.2图像锐化 (22) 3.4小波分析用于图像融合 (24) 4 总结 (28) 致谢 (28)

基于Matlab的小波分析与设计 摘要:小波分析是指用有限长或快速衰减的、称为母小波的振荡波形来表示信号。该波形被缩放和平移以匹配输入的信号。小波变换分成两个大类:离散小波变换和连续小波变换。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。小波分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用。平面图像可以看成是二维信号,因此,小波分析很自然地应用到了图像处理领域。图像压缩、去噪、、增强、融合是图像预处理中应用非常广泛的技术,小波变换由于其自身的优良特性而在图像处理中得到了越来越多的应用。本文从基本理论出发,首先对小波变换进行了详尽而深刻的阐述。循序渐进地介绍了从概念到小波分析等一系列相关内容,包括连续小波变换、离散小波变换和小波包分析。最终引出小波分析在Matlab中的应用的方法。对小波变换在图像处理中的应用本文作了重点研究。 关键词:小波分析;图像压缩;图像去噪;图像增强;图像融合;matlab Wavelet analysis and design based on MATLAB Nane:wanglei Tutor:jiaqun Huainan Normal University School of electrical and Information Engineering ABSTRACT:Wavelet analysis is the use of limited length or fast attenuation, known as mother wavelet representation of a signal waveform. The waveform is zooming and panning to match the input signal. Wavelet transform is divided into two categories: discrete wavelet transform and continuous wavelet transform. The essential difference between both is, continuous transformation in all possible zooming and panning operation, and discrete transform using all values of a specific subset of zooming and panning. The theory of wavelet analysis as a new time-frequency analysis tool in signal analysis and processing, has a very good application. Planar image can be viewed as a two-dimensional signal, therefore, wavelet analysis naturally is applied to the image processing field. Image compression, denoising, enhancement, fusion, image pre-processing is very extensive application of the technology of wavelet transform, because of its excellent characteristics in image processing has been applied more and more. In this paper, starting from the basic theory of wavelet transform, the first detailed and profound development. Gradual introduction from concept to the wavelet analysis and a series of related content, including continuous wavelet

小波分析入门和matlab使用

小波分析介绍以及matlab命令实现 一,小波分析的缘起 傅里叶分析是信号处理中最常用的方法,傅里叶在1807年指出任何一个周期的连续信号可以表示成一些合适的正弦波的叠加。这样一个时间域的信号就通过傅力叶变换转化成一系列的不同频率的余弦波的系数。但是傅里叶分析最大的缺点是在转化后,时间信息完全丢失,对于一般的稳定信号(stationary signal)在时间上没有重大的性质变化,这不算什么,但对于不稳定信号(non stationary signal),一些重要的信息如趋势,转折,突变点,事件的起止都丢失在频率域中。傅力叶变换不能提取这些信息。于是人们想要一种time localized分析方法。 Gabor1946年提出了一种傅力叶变换的改进方法,短时傅力叶变换。仅仅分析一小段时间的信号,就是在时间域取一个时间窗,同时要克服非周期性问题,使用了各种窗函数,使得窗内的信号从0平滑的过度到信号的真实值在过度到0,使得首尾都为0(为了满足窗内的周期性)。如常见的汉宁窗cosine taper函数,以及复杂的multitaper函数。但是这样的结果在时间和频率上存在一个折中,并且对所有的频率使用相同的窗长,不一定可以满足精度的要求。 1984年一些地球物理学家Morlet等人发现了一种新的信号处理方法,小波变换。小波变换允许在高频信息时使用更短的时间段,在低频使用长时段来获得更加精确的结果。小波变换包括连续小波变换,离散小波变换以及小波包变换。存在一系列的母小波,选定后,小波变换把原信号变成若干偏移,缩放的母波。 二,连续小波变换(continuous wavelet transform) 1,母小波与尺度,偏移子波: 小波就是满足一定条件的一些函数,母波经过尺度变换,时间偏移后就是一系列的子波。 图一:母波以及scale的母波 图二:母波以及shift的子波 2,连续小波变换: 选定母波后,通过尺度变换,时间偏移会得到许多子波,这一系列的子波于原信号相关,得到的系数就是小波变换后的结果。过程如下: (1)母波与信号相关得到相似系数c

相关文档
相关文档 最新文档