文档库 最新最全的文档下载
当前位置:文档库 › 医用CR、DR的区别

医用CR、DR的区别

医用CR、DR的区别
医用CR、DR的区别

CR、DR的区别

一:如何区别CR、DR?

CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。

DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。

CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。降低病人受照剂量,更安全。CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;

用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。

CR是数字X线摄影DR是计算机X线摄影

1.CR

CR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。目前的CR系统可提供与屏---片摄影同样的分辨率。CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理

(post-processing)功能,增加显示信息的层次;可降低X 线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学

(tele-medicine)。

2.DR

DR是在X线电视系统的基础上,利用计算机数字化处理,使模拟视频信号经过采样、模/数转换(analog to digit,A/D)后直接进入计算机中进行存储、分析和保存。X线数字图像的空间分辨率高、动态范围大,其影像可以观察对比度

低于1%、直径大于2MM的物体,在病人身上测量到的表面X 线剂量只有常规摄影的1/10。量子检出率(detective quantum efficicncy;DQE)可达60%以上。X线信息数字化后可用计算机进行处理。通过改善影像的细节、降低图像噪声、灰阶、对比度调整、影像放大、数字减影等,显示出未经处理的影像中所看不到的特征信息。借助于人工智能等技术对影像作定量分析和特征提取,可进行计算机辅助诊断。数字X线摄影包括硒鼓方式、直接数字X线摄影(direct digital radiography;DDR)、电荷耦合器件(charge coupled device;CCD)摄像机阵列方式等多种方式。数字图像具有较高分辨率,图像锐利度好,细节显示清楚;放射剂量小,曝光宽容度大,并可根据临床需要进行各种图像后处理等优点,还可实现放射科无胶片化,科室之间、医院之间网络化,便于教学与会诊。

直接数字化放射摄影(Digital Radiography,简称DR),是上世纪九十年代发展起来的X线摄影新技术,具有更快的成像速度、更便捷的操作、更高的成像分辨率等显著优点,成为数字X线摄影技术的主导方向,并得到世界各国的临床机构和影像学专家认可。近年来随着技术及设备的日益成熟,DR在世界范围内得以迅速推广和普及应用,逐渐成为医院的必备设备之一。临床界和工程界专家普遍认为,DR 设备将成为高水平数字化影像设备的终极产品。

DR主要由X-线发生器(球管)、探测器(影像板/采样器)、采集工作站(采像处理计算机/后处理工作站)、机械装置等四部分组成;DR之所以称为“直接数字化放射摄影”的实质就是不用中间介质直接拍出数字X-光像;其工作过程是:X线穿过人体(备查部位)投射到探测器上,然后探测器将X线影像信息直接转化为数字影像信息并同步传输到采集工作站上,最后利用工作站的医用专业软件进行图像的后处理。DR系统能够有效降低临床医生的劳动强度,提高劳动效率,加快患者流通速度;相对于普通的屏/胶系统来说,采用数字技术的DR,具有动态范围广、曝光宽容度宽的特点,因而允许摄影中的技术误差,即使在一些曝光条件难以掌握的部位,也能获得很好的图像;由于直接数字化的结果,拍摄的X光片信息量大大丰富,可以根据临床需要进行各种图像后处理,如各种图像滤波、窗宽窗位调节、放大漫游、图像拼接以及距离、面积、密度测量等丰富的功能,为影像诊断中的细节观察、前后对比、定量分析提供技术支持,改变了以往X光平片固定影像的局限性,提供了大量临床诊断信息;由于其大尺寸、多像素成像板的贡献,大大提高了X光胶片的清晰度及细节分辨率,成像综合水平远远超过普通X 光平片;同时有助于实现普通X线摄影图像的数字化存储和远距离调阅、交流等方便应用。

依据探测器的构成材料和工作原理,DR主要分为三大技术:CCD、一线扫描、非晶体平板(非晶硒、非晶硅+碘化铯/非晶硅+氧化钆)。

一、CCD:由于物理局限性,专家们普遍认为大面积平板采像CCD 技术不胜任,而且CCD设备在图像质量上较非晶硅/硒平板设备有一定差距,但是相对有价格优势;世界上还有几个厂家用此技术如Swissray。

二、一线扫描:也称一维线扫描技术,由俄罗斯科学院核物理研究所发明,也就是国内中兴航天在生产的DR;有受照剂量低、设备造价相对平板技术更低廉的优点,但也存在成像时间长(数秒)、空间分辨率低(刚推出时是1mm/lp)以及X线使用效率低的致命缺陷;成像质量较差而且病人会接受大量不必要的辐射。

三、非晶平板:非晶硒/非晶硅;主要由非晶硒层(a-Se)/非晶硅层(a-Si)加薄膜半导体阵列(TFT)构成。

1.a-Si (非晶硅平板探测器) -- 两步数字转换技术,X-光子先变成可见光然后用光电管探测而转化为数字信号。主流厂商包括飞利浦、西门子、GE等。因为涂层技术不同又分为非晶硅+碘化铯平板和非晶硅+氧化钆平板。

2.a-Se (非晶硒平板探测器) -- 一种所谓直接探测技术,X-光子在硒涂料层变成电信号被探测而直接转化为数字信号。目前世界上只有美国Hologic公司拥有此技术的核心,柯达,国内友通等厂家的DR就使用这种探测器。

DR的技术进步是紧紧与影像板技术的发展相联系的。平板的技术发展体现在两个方面:尺寸的大小及动态反应时间。碘化铯/非晶硅型平板在这两方面都具有其他技术不可比拟的优势,是目前最成熟最主流的技术,目前世界上主要领先厂家都用这种技术。

*碘化铯/非晶硅( CsI ) + a-Si + TFT :X 射线入射到CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光子发射,可见光激发光电二极管产生电流,这电流就在光电二极管自身的电容上积分形成储存电荷;每个象素的储存电荷量和与之对应范围内的入射X 射线光子能量与数量成正比;成像速度、影像质量、工作效率等综合水平教高。

*氧化钆/非晶硅(Gd2O2S) + a-Si + TFT :工作过程与上相似,只是碘化铯被氧化钆取代;由于技术原因其原始图像为12 Bit/4096灰阶,A/D转换为14Bit;工艺成本较低,但综合技术水平比碘化铯板差。

*非晶硒a-Se+TFT:入射的X 射线光子在硒层中产生电子空穴对,在外加偏压电场作用下,电子和空穴对向相反的方向移动形成电流,电流在薄膜晶体管中积分成为储存电荷;每一个晶体管的储存电荷量对应于入射的X 射线光子的能量与数量;工艺成本较低,但对入射X线吸收不佳,成像速度及稳定性等综合技术水平较非晶硅平板差。

各类探测器参数比较:

注:目前,世界相关专家普遍认可成熟的非晶硅+碘化铯平板探测器技术;Trixell公司生产的平板探测器,因其稳定优秀的成像特质和良好的环境适应性成为DR设备的首选;由于采用世界最佳的平板探测器技术,辅以高质量球管和出色机械性能,加上功能强大的专业级后处理工作站,飞利浦/西门子成为世界公认的DR系统顶级品牌。

1、探测器:对于直接数字化X射线摄影技术来讲,决定其图像质量不仅仅是平板所采用的技术类型,同时还有平板的DQE、采集矩阵、采集灰阶、空间分辨率、最小像素尺寸等重要因素,每个因素都很重要;在相同的图像尺寸时,采集矩阵越大,像素尺寸越小,图像分辨率越高,细小组织结构才能更好显示。

(1)材料/技术类型:碘化铯/非晶硅为主流;其中以Trixell 平板为最佳。

(2)有效尺寸:主流为17×17in或14×17in;17×17in可满足99%的病人包扩体胖病人,可一次暴光成像;而14×17in 有23%的病人不能满足,需二次曝光,增加病人射线损伤, 增加技术人员工作强度。

(3)像素矩阵:主流为2.5K×3K或3K×3K。

(4)像素尺寸:143μm/200μm;像素尺寸大小直接影响图像细腻度。

(5)空间分辨率:决定因素是探测器的尺寸和量子噪声,这从物理意义上是决定因素(当然从软件上可以内插算法得到更小的像素数,但这不是真实的像的信号,是推算的结果);此外,射线的质量是一个不可忽视的因数。所有平板中Trixell 平板尺寸最大,量子噪声最小。

(6)灰阶:主流是14 Bit/16,384灰阶,只有Canon等少数公司的探测板为原始图像为12 Bit/4096灰阶,A/D转换为14Bit。

(7)探测量子效率(DQE):是输入信号转导成输出信号的效率,高探测量子效率是潜在剂量降低的基础。数字平板探测板都具有的特性是相对于屏-片X线摄影都有较高的DQE。同等放射剂量下,非晶硒的DQE比非晶硅的低;非晶硅探测板在剂量降低上优于非晶硒探测板。

(8)外接装置:是否需要水冷装置或其他装置

2、球管:射线质量和寿命;以OPTIMUS 65 SRO 33100为最佳。

(1)焦点

(2)热容量

(3)高速旋转、阳级转速

(4)束光器

3、高压发生器:

(1)功率、频率

(2)输出范围

(3)KV 调节

(4)最短曝光时间

4、控制台:

(1)自动曝光控制、解剖部位摄影:一般都有。

(2)工作站屏幕:19in为主流;17in逐渐淘汰。

(3)操作系统:个人电脑级Windows系统或专业服务器级UNIX系统;对电脑稍有了解的人都明白,后者比前者有不可比拟的稳定性、高处理能力。

(4)硬盘:一般60~80G;有普通IDE硬盘和高速SCSI硬盘之分;后者有最快的响应速度和最长的寿命,尤其是涉及图像处理时更能显示出多通道高速度的优势。

(5)曝光到诊断图像显示时间:一般要求≤10s,少数能够达到5s以内;检验工作台计算机系统工作能力的一个很重要的指标。

(6)图像质量控制功能:或好或坏一般都有此功能。

(7)图像处理软件及升级:商家一般都提供在使用期限内免费升级服务;厂商针对医疗诊断实际需求而独家开发的图像处理软件尤显重要,也是判断DR设备档次高低的重要依据之一。

(8)DICOM3.0及功能:一般都有。

(9)外储设备:光盘刻录DVD或CD-RW。

(10)图像输出:以数字形式输出到相机及PACS系统

(11)网络传输速度:100m/ms或1000m/ms;后者有更快的传输速率。

5、球管支架及诊断床:要求人性化设计和符合临床需要。(1)球管支架

(2)球管旋转

(3)自动电磁锁定及角度和距离显示功能

(4)诊断床要求

(5)滤线栅

6、售后服务:

(1)免费维修:整机一般一年保修。

(2)探测器保修:一般为二年保修。

(3)PACS系统连接及连接所需相关软、硬件:一般免费提供。

(4)操作维修手册:要求详尽。

(5)现场应用和维修培训服务:一般免费提供。

(6)开机率:一般要求95%以上。

(7)售后服务响应时间和保修期后维修年限:一般要求接维修通知后24小时内到达故障现场;保修期后提供超过8年的维修服务。

(8)省内装机情况和省内维修站:一般要求省内有装机和专业维修部。

7、放射线安全防护

要求符合国际放射线安全防护标准,具有放射线安全防护检测证书或美国FDA或欧共体权威机构的认证;虽然市场上所有设备都有相关认证,但不同的平板技术和球管在这一点上相差悬殊,其中PHILIPS为最佳,是所有DR产品中曝光剂量最低的,能够给患者及工作人员最大限度保护。

二:DR系统设备的选购原则

(一)、整体评价原则:DR的真正使命,是在保证影像质量的前提下,通过对平片工作流程的改变得到的革命性的高效率;用户对设备的评价,也应该基于此,考虑设备的可维护性,故障率、价格、总体成本及后期成本等实际因素。作为一台系统设备,需要综合整体评价,不为厂商标榜的某部

件或某指标或某名词而迷惑;要综合考虑影像质量、工作效率、使用成本、售后服务等方面。

1、影像质量:高质量高稳定的成像质量是我们购置DR设备的初衷之一,也是提高诊疗水平的物理基础;涉及放射影像的失真度、信噪比、分辩率、清晰度、细节显示等方面;主要由平板技术、球管射线质量、计算机及图像软件处理能力决定;其中平板技术是核心因素(材料类型、有效尺寸、像素矩阵、像素大小、灰阶、DQE、空间分辨率、稳定性等)。

2、工作效率:降低劳动强度、改变普放工作流程以提高效率是DR的最主要功能之一,更是购置此类设备的重要参考依据;涉及动态范围、成像速度、数据传输/处理速度等很多方面;因为省略了许多不必要的工作程序,正常产出率应该是传统屏/胶系统的2~3倍。

3、使用成本:最大的成本就是平板的维护使用成本;非晶硒平板的技术不成熟导致其平板报废率太高,维护成本昂贵;成像时间也较长,期间有太多的信息损耗,时间成本也较高。

4、售后服务:要求及时、完备;购置前一定要考虑其技术及品牌差异带来的售后服务质量差异;要尽可能地选择世界

公认的大厂商主流成熟产品;非晶硒设备由于其技术的不成熟导致高维修频率是购置前必须考虑的因素。

(二)、实际需求:不被厂商所描绘或标榜的某部件的?优异性能?/某?出色技术指标?/某?独有应用?等迷惑,要以满足本院本科室实际需求为出发点,综合考虑设备的整体性能和

图像质量及使用成本、售后服务等。

1、如果你们是当地较大规模的医院,病人流量很大,购买设备一向看重名牌品牌,技术上也倾向领先或超前的产品,那么建议飞利浦双板、西门子双板二者选一(当然这两个牌子的单板DR也是首选)。飞利浦全系列、西门子大部分都是使用Trixell 4600平板(17×17″碘化铯/非晶硅平板),是公认的顶级产品。

2、如果你们医院对设备价格相对敏感,但对技术方面又有一定追求,不妨考虑GE,还可以考虑除飞利浦、西门子之外其他使用碘化铯/非晶硅平板的厂家,如北京万东、上海中科、美国长青等。GE的板子也是碘化铯/非晶硅平板,14×17″,但不是Trixell的而是GE购买某工业板技术而自产的;其主要缺点是因板子发热量高,须水冷,故障率、量子噪声也会因此升高。

CR与DR的博弈 ——普放数字化成像领域的选择 DR的

CR与DR的博弈 ——普放数字化成像领域的选择 关于放射科普通检查X线数字化成像领域的两种看法近年来一直备受关注:一种看法认为目前处理能力更大的直接数字放射成像(DR)系统由于工作效率高,而有望取代计算机放射成像(CR)系统;另一种看法则认为性价比更高的CR才是更为实际的选择,原因是DR 系统过高的价格会增加病人的负担,且我国大多数中小型医院患者就诊量并不大,因此很难发挥DR在提高工作效率上的益处。到底CR和DR中哪一方能在这场角逐中取胜?其实,CR 与DR各有各的优势。了解业内人士的一些看法,也许能给我们一些启示。 DR的问世挑战CR 目前,医院放射科要实现数字化有两个选择:CR和DR。CR系统被推出已有十几年的时间了。CR用可重复使用的磷光体成像板替代了传统X线成像系统中的胶片,而其X线部分完全利用原有设备,因此医院采用CR系统后不需要对原有X线系统作任何改动。在曝光后,操作人员要将成像板送入阅读器进行扫描,从而生成数字化影像,随后将图像提供给医务人员处理。由于CR系统经济、影像质量佳、曝光宽容度高,而且使用的是现有x 线系统,可把数字成像输送到普通放射科和低患者流量区域,因此近年来CR 系统一直被认为是普通放射成像检查中数字影像捕获的“主力”。 但是,近年来,DR的问世,带来了更高的量子检测效率(DQE)、更快的成像速度(CR 的一半)、更高的图像质量。DR是通过平板薄膜晶管(TFT)或者电荷耦合装置(CCD)板和X线吸收器,共同完成由内置磷光板或光导体板生成影像的抓取,所抓取的影像随后被内部转化为数字形式。DR系统最突出的技术优势在于高效性。“DR因为不使用暗盒而影像板直接成像,减少了暗盒的放取时间损耗,同时得益于直接转换技术,其成像速度较快。而且,较高的DQE也保证了影像的高质量。这种高效、全数字化影像周期提高了工作效率,可以帮助医疗机构处理更大容量的病人”业内人士对于DR的优势做了如此的评述。当前,一些专家甚至断言:随着DR系统日渐成熟,价格降低,它将大部分取代CR,在近10~20年内DR和CR共存,但最终DR将完全取代CR。 执行成本,DR的劣势 “最好的未必就是最适合的”。目前,DR系统较之CR系统的“过人之处”是高效性,但是DR系统昂贵的价格却使它面临困境。记者了解到,目前DR系统的价格在20~30万美元不等,且DR探测器的生产工艺非常复杂,一块探测器的更换需要花费十万美元以上。由于探测器生产厂家屈指可数,这种垄断使DR系统的价格在数年内都不会有很大改变。 与之相比,CR系统的成本优势不容忽视,主要体现在购买成本和运行成本上。目前每套CR的价格约10万美元左右,一些小型CR的价格在5万美元左右。仅就X线成像介质成本来讲,一张CR成像板的价格仅一千美元左右。另外,目前人们过于关注技术的发展,而常常忽略了执行成本问题。有调查显示,合理地配置操作人员,安排CR工作流程,可使CR 达到与DR相同或更高的生产力,并且CR可以兼容使用医院原有的各种X光机,因此CR在很多中小型医院成为衔接传统成像与数字成像的首选。而采用DR系统则需要一套全新的X 线成像系统。有关文献报道显示,美国旧金山加州大学一项研究表明,CR和DR都可以极大地改善医院的工作流程,提高生产率,但是DR系统价格昂贵这一负面影响,只有在医院能够满足设备100%生产力的利用率,并保证设备的持续使用时,才能得以抵消。所以,在成本上,CR系统占了上风,这也使DR取代CR的期限被延长了。 在我国大城市的大型医院里,医学数字化影像的应用已经相当普遍,但这些大医院只是我国众多医疗机构的“冰山一角”。目前,我国大多数中小型医院并不是“患者在排队等着

医用CR、DR的区别

CR、DR的区别 一:如何区别CR、DR? CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。 DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。 CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。降低病人受照剂量,更安全。CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;

用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。 CR是数字X线摄影DR是计算机X线摄影 1.CR CR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。目前的CR系统可提供与屏---片摄影同样的分辨率。CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理 (post-processing)功能,增加显示信息的层次;可降低X 线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学 (tele-medicine)。 2.DR DR是在X线电视系统的基础上,利用计算机数字化处理,使模拟视频信号经过采样、模/数转换(analog to digit,A/D)后直接进入计算机中进行存储、分析和保存。X线数字图像的空间分辨率高、动态范围大,其影像可以观察对比度

医用CR、DR的区别、档次划分及选购技巧

医用“CR、DR的区别”和 “DR的档次划分及选购技巧” 一:如何区别CR、DR? CR(Computed Radiography)的工作原理:X线曝光使IP(imaging plate)影像板产生图像潜影;将IP板送入激光扫描器内进行扫描,在扫描器中IP板的潜影被激化后转变成可见光,读取后转变成电子信号,传输至计算机将数字图像显示出来,也可打印出符合诊断要求的激光相片,或存入磁带、磁盘和光盘内保存。 DR( Digital Radiography), 数字化X线摄影,系统由数字影像采集板专用滤线器BUCKY数字图像获取控制X线摄影系统数字图像工作站构成。在非晶硅影像板中,X线经荧光屏转变为可见光,再经TFT薄膜晶体电路按矩阵像素转换成电子信号,传输至计算机,通过监视器将图像显示出来,也可传输进入PACS网络。 CR相比DR系统结构相对简单,易于安装;IP影像板可适用于现有的X线机上,直接实现普通放射设备的数字化,提高了工作效率,为医院带来很大的社会效益和经济效益。降

低病人受照剂量,更安全。CR对骨结构,关节软骨及软组织的显示明显优于传统的X片成像;易于显示纵膈结构,如血管和气管;对肺结节性病变的检出率高于传统X线成像;在观察肠管积气、气腹和结石等含钙病变优于传统X线图像;用于胃肠双对比造影在显示胃小区,微小病变和肠粘膜皱襞上,CR(数字胃肠)优于传统X线图像。 CR是数字X线摄影DR是计算机X线摄影 1.CR CR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。目前的CR系统可提供与屏---片摄影同样的分辨率。CR 系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。2.DR DR是在X线电视系统的基础上,利用计算机数字化处理,使模拟视频信号经过采样、模/数转换(analog to digit,A/D)后直接进入计算机中进行存储、分析和保存。X线数字图像的空间分辨率高、动态范围大,其影像可以观察对比度低于1%、直径大于2MM的物体,在病人身上测量到的表面X线剂量只有常规摄影的1/10。量子检出率(detective quantum efficicncy;DQE)可达60%以上。X线信息数字化后可用计算机进行处理。通过改善影像的细节、降低图像噪声、灰阶、对比度调整、影像放大、数字减影等,显示出未经处理的影像中所看不到的特征信息。借助于人工智能等技术对影像作定量分析和特征提取,可进行计算机辅助诊断。 数字X线摄影包括硒鼓方式、直接数字X线摄影(direct digital radiography;DDR)、电荷耦合器件(charge coupled device;CCD)摄像机阵列方式等多种方式。数字图像具有较高分辨率,图像锐利度好,细节显示清楚;放射剂量小,曝光宽容度大,并可根据临床需要进行各种图像后处理等优点,还可实现放射科无胶片化,科室之间、医院之间网络化,便于教学与会诊。 直接数字化放射摄影(Digital Radiography,简称DR),是上世纪九十年代发展起来的X线摄影新技术,具有更快的成像速度、更便捷的操作、更高的成像分辨率等显著优点,成为数字X线摄影技术的主导方向,并得到世界各国的临床机构和影像学专家认可。近年来随着技术及设备的日益成熟,DR在世界范围内得以迅速推广和普及应用,逐渐成为医院的必备设备之一。临床界和工程界专家普遍认为,DR设备将成为高水平数字化影像设备的终极产品。 DR主要由X-线发生器(球管)、探测器(影像板/采样器)、采集工作站(采像处理计算机/后处理工作站)、机械装置等四部分组成;DR之所以称为“直接数字化放射摄影”的实质就是不用中间介质直接拍出数字X-光像;其工作过程是:X线穿过人体(备查部位)投射到探测器上,

DR与CR的对比分析

CR与DR的对比分析 1、两套设备的系统对比: 2、操作流程比较: 1)CR拍片处理的工作流程:手工上板--拍片--手工取板--手工装板--扫描--擦板--处理显示--诊断--相机拍片--洗片--晾干 2)DR X线机工作过程:拍片--处理显示--诊断--出干式片DR简化了拍片过程,医生不需做任何参数设置,只需登记,按闸,

拍片时间仅需10秒钟。降低工作人员的劳动强度,大大提高了病人检查速度;(即使再来一次像SARS一样的检查,医生再也不会忙的手忙脚乱了) DR比CR整体优势: 1.1、更好的图像质量,更低的照射剂量; 1.2、更快的成像速度,更便捷的临床应用; 1.3、更经济的维护成本; 3、价格 随着中国DR市场的发展,北京中科美伦做为民族企业率先在放射领域突破DR成像技术,打破了国外品牌在中国DR市场上的垄断,大大的降低了产品价格。目前,国外CR的市场价格仍在60万左右,而我们的DR价格在直接用户的成交价已降至70万左右的水平。(可能对有的医院还会因为CR与DR这十几万的差价而犹豫设备的选择,作为我们服务医院的公司来说,一定要表明DR的优势,CR始终是一种间接、过渡的产品,复杂的操作和后期的耗材对医院这是不能不考虑的)。中科美伦DR系民族自主品牌,核心部件均采用国外知名品牌产品,在保障性能的同时,还能提供最佳优惠的价格。 4、收益比较: DR年收益:96万

CR年收益:64万 X光机年收益:16万 每年下来,DR比CR多出几十几万的收入;有的医院一年不到就能收回成本。 5、售后服务 我公司已在全国多处设有维修服务中心。比如广东、云南、四川、重庆、新疆、江苏、河北、北京、黑龙江等地设有多家售后服务中心,在接到故障信息2小时内提供解决方案,24小时之内解决问题或动身前往故障现场,快速响应服务体系。相较于大多CR均属国外生产并面临退出市场的发展趋势,CR的后期服务将会受到很大的影响。无论是性能、操作还是价格和售后服务,DR无疑是最佳的选择!

DR与CR优势

本文只是一个比较粗略的评估,只侧重于CR系统和DR系统之间的成本对比,许多两者基本相同的运行成本未纳入,实际的检查成本可变因素还很多。本文意在通过计算CR系统与DR系统之间的成本费用与工作效率之间关系,综合分析其投资成本和运行成本,并折算为患者的人均检查成本,在分析时也考虑到了工作量对成本的影响因素。 在实际工作中,检查时间还受如下因素影响:科室的工作流程、工作人员的熟练程度、患者的数量和到达时间的分布情况、科室的建筑布局等。还有一些不确定因素,比如患者需更换衣服、冬天脱衣服或身体虚弱不能站立,以及患者语言不通等都会造成检查时间的延长。 分析表明,DR系统工作效率高,可以大大降低每次检查的平均时间,在设备的有效工作时间为80%的情况下,每天(按工作7 h计算)可检查154人,而CR则只可检查82人(每次检查按平均两次曝光计)。如果工作量少于100人/d,CR系统的综合运行成本略低于DR系统;如果工作量大于100人/天,使用CR系统需要增加额外的资源,比如增加工作时间或增加一个操作人员,这时使用DR的成本要比CR更低。也就是说,工作量越大,DR越能凸显其优势。 DR系统要比CR系统具有更多的优点,比如可以减少患者排队等候时间,由此可以减少候诊空间,患者在放射科的停留时间大大降低;操作人员工作效率大有提高。由于等候检查时间短,检查时间快,获取报告时间快,实际上大大改进了服务质量,患者更愿意选择到有DR设备的医院看病,这对提高科室的效益有着积极意义。 技术优劣对比:DR系统与CR系统之间有许多技术差别,从成像质量、成本费用到工作效率都有区别,但亦各有优点和不足[3]。(1)CR的采购成本远低于DR系统,初始投资比较少。另一个优点是可以利用原有X线设备,而不需另新购X线系统和不需因拆除老的X线系统而增加拆除成本。因不需要更新X线设备,其初始投入也就更低。(2)DR采购成本较高,以致第一年投入花费很大,但其后期的年均花费在工作量相同的条件下,相对比CR还低一些,这是由于DR工作所需的部分房间面积相对小些,所以租金和相应的消耗费用也可减少。(3)设备投资成本影响成本效益,CR和各型号之间的采购价格变化不算太大,大约为70~150万元人民币,对成本效益影响相对不大。而DR系统的价格因技术设计和配置不同差别比较大,其价格大约在240~400万,但从长远来看,随着检查人数的增加,造成设备成本的分摊,使得最终对检查成本的影响是十分有限的。(4)对成像质量来说,相对而言,DR系统的成像质量要略优于CR系统。但在一般用途上,两者的诊断质量不会有太显著的差别,都能有较好质量满足诊断要求。DR系统的工作效率及服务质量要远高于CR系统,曝光后的影像可立即显示在工作站屏幕上,而CR系统则要将IP板送达Reader上扫描后才能显像,因而CR系统的读片速度不同差别就很大。片匣的重量也是影响操作时间和质量的重要因素,特别是当操作人员需同时搬运许多片匣时,因此,CR 扫描主机应尽量靠近检查机房,如果是多槽CR系统,扫描主机应放在距各个机房都比较近的中心区域。因为DR显像速度快效率高,可以为需要重照或加照的患者节约了时间。(5)CR系统的IP板受机械损坏和寿命周期取决于使用情况,一般使用1万次,约2~3年就需计划更换。对于DR系统,由于探测器是其核心部件,如损坏后更换是非常昂贵,约需人民币80万元,但至今尚未从文献中检查到其损坏率的报道。(6)如果DR系统出现故障,

CR,DR的比较

传统X线检查与CR.DR的对比分析 CR.DR技术是X线成像方式的现代发展,它不仅利用了传统的X线设备,而且与增感屏—胶片系统相比大大降低了X线照射量,减少了X线对人体的伤害,并可获得丰富的诊断信息。它可对影像信息进行后处理,扩大诊断范围。同时,CR.DR技术取消胶片管理和归档工作,大大减轻了技术人员的工作强度。影像信息并入PACS系统实行影像信息共享,有效解决医学影像病例难题。因此,CR.DR技术的应用是传统的X线增感屏—胶片系统摄影技术的完善和发展,具有明显的优越性。 灵敏度高,动态范围宽,辐射量减少传统的X线摄影中的增感屏—胶片组合的动态范围比IP窄得多,不能有效地发挥增感屏自身光发射方面宽的动态范围优势,而IP的X线辐射量与激光束激发的光激发光(PSL)强度之间的关系在1∶10 000的范围是线性的,这种线性关系使CR.DR系统具有高的敏感性和宽的动态范围,即能够精确地检测每一种组织间小的X线吸收差别。因此在获得相同诊断信息的条件下,CR.DR系统比增感屏—胶片组合系统所需的X线量要少,同时由于IP具有很宽的动态范围,在摄片应用中,摄片条件要比普通增感屏胶片组合条件的基础上,千伏可降低5 kV左右,mAs在千伏不变的条件下可减小一半,大大降低了被检者的受线量。特别是床边摄片,IP 的宽容度显得尤为突出,摄片条件在比较大的范围内,都能够通过图像信息的调节获得比较满意照片。这样即能减少受检者的辐射

量,又能提高照片质量,减少了以往过多的浪费,还大大减轻了放射技术人员的工作强度。 强大的后处理功能,增大了诊断信息量CR.DR系统的敏感性可自动设定,即使摄影中X线量和X线质等有某些改变,在一定的敏感范围内,CR.DR系统也可以读出影像信息。因此它和传统的增感屏—胶片系统的调协特征不同。常规增感屏—胶片系统中的最终显示影像很大程度上依赖于X线曝光量,当曝光量过高或过低时,均不能得到有诊断价值的影像。 在CR.DR系统的信息协调处理中,可独立控制影像的显示特征,决定用何种密度再现影像,即根据成像的目的设置协调处理技术。例如胸部摄影中,影像信息覆盖的范围很宽,肺野和纵隔的密度相差很大,我们可分别应用不同类型的协调处理曲线技术,既可很好地显示肺野内的结构,又可防止在输出影像中纵隔密度与骨的密度过于接近,提高纵隔内不同软组织的分辨层次。胸部片和胸椎片、肋骨片两者密度相差大,使用传统的X线增感屏—胶片系统需用不同的曝光条件分别显示,而用CR.DR只要选择适当条件1次曝光,系统即可通过协调处理,清晰显示两肺野内结构和胸椎诸椎体以及肋骨结构。即用一次曝光,可同时得到几张不同需求的合格照片,这是增感屏—胶片系统所无法做到的。

DR与CR的对比分析

产品项目以色列维迪思科平板实时成 像检测系统(DR) 目前市场上的CR系统 系统配置及 运输DR系统一般配置包括成像板、控 制单元、连接线等; 任何轿车后备箱可携带,很方便。 IP成像板、成像扫描系统(扫描 IP板成像)、常规射线源、射线源; 一般使用改装的商务车携带,包括 射线机、扫描仪等。 检测方式 计算机系统控制射线源拍照后(拍 照时间远小于CR),面阵列成像板直 接将图像传至电脑显示器。成像时间 约为3~5S。整套系统的控制完全在 计算机上完成无需进入现场。图像成 像时间总共约10秒钟左右,即可观 察、分析、处理。 拍照后需取下IP板进行扫描(类 似于扫描仪),成像所需环节较多。而 且要准备很多张板,拍照后及时扫描 否则图像会逐渐消退。透照时间同常 规射线。 分辨率,检测灵敏度感光灵敏度比胶片高50到100倍,图 像灰度级动态范围14位,无光学散射 而引起的图像模糊,其清晰度主要由 射线源焦点尺寸决定,比CR系统和普 通胶片有更好的空间分辨率和对比 度,图像层次丰富、影像边缘锐利清 晰,细微结构表现出色,成像质量更 高。最高成像灵敏度达到百分之一点 二。 由于自身的结构存在光学散射,常使 图像模糊(无损检测杂志中有DR和CR 实验论文讨论),降低了图像分辨率; 同时图像灰度一般为12位,时间分辨 率较差,图像质量往往低于DR和胶 片。而且图像为扫描后的图像,易产 生失真。 操作时间只通过一块DR成像板实时成像,所有 检测图像被自动记录在电脑上;成像 时间一般只有几秒钟;现场使用时可 不用拆除管道防护层;对于整个操作 只需要一人即可。 通过IP成像板记录图像,而扫描一副 CR图至少需要几分钟。现场使用时一 般要很多IP板支持才能满足现场需 要,而且往往要多人操作。 检测条件(工件条件、外部温度、湿度)成像板接近检测结构即可,不需紧贴, 对环境要求不苛刻。 IP板需紧贴检测结构,与传统胶片使 用条件类似,因此许多结构无法检测。 另外由于IP板紧贴检测结构,如果检 测结构表面有杂质或不平坦将会对 CR成像板造成损伤并进一步划伤扫 描系统。 除胶片检测条件以外,还适用于检测 温度较高时、表面不光滑时、厚度有 差异时、个别带防护层时、内部有介 质时等情况。 基本同胶片,但要求管道表面干净。 射线源选择检测时可用连续射线源、同位素源、 电子加速器、脉冲射线源(使用脉冲 射线源可大大降低对人体的辐射,增 强安全性,详细见防护说明)等 无法用脉冲源,只能用连续源,同时 在激发电压太大时,会烧坏IP板,所 以很难兼容同位素源和大能量电子加 速器

什么是CR和DR

什么是CR 和DR? CR是数字X线摄影 DR是计算机X线摄影 1.CR CR是X线平片数字化的比较成熟技术,目前已在国内外广泛应用。CR系统是使用可记录并由激光读出X线成像信息的成像板(imaging plate;IP)作为载体,以X线曝光及信息读出处理,形成数字或平片影像。目前的CR系统可提供与屏---片摄影同样的分辨率。CR系统实现常规X线摄影信息数字化,使常规X线摄影的模拟信息直接转换为数字信息;能提高图像的分辨、显示能力,突破常规X线摄影技术的固有局限性;可采用计算机技术,实施各种图像后处理(post-processing)功能,增加显示信息的层次;可降低X线摄影的辐射剂量,减少辐射损伤;CR系统获得的数字化信息可传输给较低存档与传输系统(picturearchiving and communicating system;PACS),实现远程医学(tele-medicine)。 2.DR DR是在X线电视系统的基础上,利用计算机数字化处理,使模拟视频信号经过采样、模/数转换(analog to digit,A/D)后直接进入计算机中进行存储、分析和保存。X线数字图像的空间分辨率高、动态范围大,其影像可以观察对比度低于1%、直径大于2MM的物体,在病人身上测量到的表面X线剂量只有常规摄影的1/10。量子检出率(detective quantum efficicncy;DQE)可达60%以上。X线信息数字化后可用计算机进行处理。通过改善影像的细节、降低图像噪声、灰阶、对比度调整、影像放大、数字减影等,显示出未经处理的影像中所看不到的特征信息。借助于人工智能等技术对影像作定量分析和特征提取,可进行计算机辅助诊断。 数字X线摄影包括硒鼓方式、直接数字X线摄影(direct digital radiography;DDR)、电荷耦合器件(charge coupled device;CCD)摄像机阵列方式等多种方式。数字图像具有较高分辨率,图像锐利度好,细节显示清楚;放射剂量小,曝光宽容度大,并可根据临床需要进行各种图像后处理等优点,还可实现放射科无胶片化,科室之间、医院之间网络化,便于教学与会诊。

相关文档