文档库 最新最全的文档下载
当前位置:文档库 › 第十三章 线性规划与数学建模的简介

第十三章 线性规划与数学建模的简介

第十三章 线性规划与数学建模的简介
第十三章 线性规划与数学建模的简介

第十三章线性规划与数学建模简介

【授课对象】理工类专业学生

【授课时数】6学时

【授课方法】课堂讲授与提问相结合

【基本要求】1、了解数学模型的基本概念、方法、步骤;

2、了解线性规划问题及其数学模型;

3、了解线性规划问题解的性质及图解法.

【本章重点】线性规划问题.

【本章难点】线性规划问题、线性规划问题解的性质、图解法.

【授课内容】

本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。

§1 数学建模概述

一、数学建模

数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。

二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、

量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。

通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学

式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。

三建立数学模型的方法和步骤

建立数学模型没有固定模式。下面介绍一下建立模型的大体过程:

1.建模准备

建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使

认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。

2.模型假设

作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。

合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。

3.构造模型

在模型假设的基础上,开始构建数学模型。首先分析变量类型,恰当使用数学工具。一般而言,如果实际问题中的变量是确定型变量,数学工具可采用微积分、微分方程、线性或非线性规划、投入产出、确定性库存论等。如果变量是随机变量,数学工具可采用概率与统计、排队论、对策论、决策论、随机微分方程、随机性库存论等。其次,抓住问题本质,简化变量之间的关系。可以说,数学的任一分支在构造模型时都可能有用,而同一实际问题也可以构造不同的数学模型。一般而言,在能够达到建模目的前提下,所用的数学工具应力求简单、易解,但要保证模型的解的精确在允许的范围内。

4.模型求解

不同的模型要选择或设计不同的数学方法和算法求解,许多模型还可以通过编写计算机程序软件包,借助计算机快速完成对模型的求解。

5.模型分析

对模型的求解结果进行分析,主要包括稳定性分析,参数的灵敏度分析,误差分析等。通过分析,若发现不符合建模要求,就要修改或增减建模假设条款,重新构造模型,直到符合要求。若模型符合要求,则可以对模型进行评价是、预测民、优化等方面的探析,力争得到最优模型。

6.模型检验

对于经过分析后符合要求的模型,还要把它放回到实际对象中去进行检验,看它是否符合实际,能否解决相应的实际问题。若不符合实际,就要修改前提假设,重新建模,重新分析,直到获得符合实际的模型。

7.模型应用

建模最终目的,是用模型来分析、研究和解决实际问题。因此,一个成功和数学模型必须能够在实践中得到成功的应用,甚至形成一套科学和理论。图13――1

是上述各步骤的直观图:

图13――1数学建模步骤示意图

一、数学模型的分类

数学模型按照不同的分类标准有许多种类:

1.按照模型的数学方法分,有几何模型、代数模型、图论模型、微分方程模型概率模型、最优控制模型、随机模型等等。

2.按模型的特征分,有静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等。

3.按模型的应用领域分,有人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。

4。按建模的目的分,有预测模型、优化模型、决策模型、控制模型等。

5.按夺模型结构的了解程度分,有白箱模型、灰箱模型、黑箱模型等。

§2线性规划问题及其数学模型

线性规划作为运筹学的一人重要分支,是研究较早,理论较完善,应用最广泛的一门科学。它所研究的问题主要包括两个方面:一是在一项任务确定后,如何以最低限度和成本(如人力、物力、资金和时间等)去完成这一任务;二是如何在现有条件下进行组织和安排,以完成更多的工作。因此,线性规划就是求一组变量的值,使它满足一组线性式子,并使一个线性函数的值最大(或最小)的数学方法。

一、运输问题

例1 设有A1,A2两个香蕉基地,产量分别为60吨和80吨,联合供应B1,B2,B3三个销地的销售量经预测分别为50吨、50吨和40吨。两个产地到三个销地的单位运价如下表所示:

表13――1运价表(单位:元/吨)

问每个产地向每个销地各发货多少,才能使总的运费最少?

解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。设X ij (i =1,2; j =1,2,3)分别表示由产地A i 运往销地B i 的数量。 (2)在解决问题的过程中,要受到如下条件限制,即约束条件: 各产地运出的数量应等于其产量,即

80

6023

22

21

131211=++=+

+

x

x

x

x x x

②各销地运进的数量应等于其当地预测的销售量,即

40

50502313

22122111=+=+=+x x

x x

x x

③从各产地运往各销地的数量不能为负值,即

)3,2,1;2,1(0==≥j i x

ij

(3)该问题的目的是运价最低,所以运价是目标函数,即

x x x x x x S 232221121211300700400400300600+++++=因此,该问题的数学模型为:求x x x x x x S 232221131211300700400400300600min +++++=

结束条件

40

5050

80

6023

13

2212211123

22

21

13

12

11

=+=+=+=++=++x x x x x x x x x x x x 例1的一般形式是:设某种物资有m 个产地

A A A m

??,

,2

1

产量分别为

a

a a m

??,,2

1

,有n 个销地B B B n ,,,21 ,销量分别为。吨,)(,,321b b b ??如果由

产地A i 运往销地B j 的单位运价为C ij (元/吨),在产销平衡的情况下,应如何调运才能使运费最省?

解 设x ij 表示由产地A i 运往销地B j 的数是(i=1,……,m ;j=1,2,……,n) 则该问题数学模型为:

求变量x ij 的一组值,使它们满足

),...,

2,1;,...,2,1(0...........

................................................

(212)

222

12

1121112

1

112

11n j m i x

b x x x b x x

x b x x x a x x x a x x

x ij

n

mn n n m m m

mn m m n ==≥=+++=+++=+++=+++?++1=+

并使目标函数x C x C x C m n m n S +++=...12121111的值最小。 二、生产组织与计划问题

例2 设某用A A A m ,...,,21种原料,生产B B B m ,...,21 种产品,其中B j 种产品每单位需要A A A m ,...,21原粉分别为;而该厂现有原料a a a mj ,...,,21;的数量分别为

B B B b b b n

m

,...,,,,...,,2

1

2

1

各种产品每单位可是利润分别为C

C C n

,...,2,1 。在该厂产

品全部能销售情况下,应如何组织生产,才能使该企业获得最大? 解 设生产产B j 中数量为),...,2,1(n j x j =,则此问题的数学模型为: 求一组变量 的值,使满足

结束条件 ),...

,1(0..................................................

...

...

2

2

1

12

22

22

1

21

1

12

12

1

11

n j x b x a x a x a b x a x a x a b x a x a x a j

m

n

mn

m m n

n

n

n

=≥≤+++≤+++≤+++ 并使目标函数x C x C x C n n S +++=...2211的值最大。 三、配料问题

例 设有A A m ,...,1种原料,配制含有几种成分B B B n ,...,,21的产品,要求产品中各

种成分的含量不低于a a a n ,...,21;不高于b b b n ,...,,21;B j 种成分在A i 种原料中的单位含量为,各种原料的单位价格依次为.,...,21d d d m 问如何调配原料,才能使产品符合要求,又使成本最低?

解 设x i 表示每单位产品中原料A i 的使用量(即决策变量),,,...,2,1m i =则数学模型为:

求一组变量的值,使其满足

约束条件

)

,...,1(,01............

(2)

12

21

12

2

2

22

1

12

2

1

1

2

21

1

11

1

m i x x x x b x C x C x C a b

x C x C x C a b x C x C x C a i

m

n

n mn n

n

n

m

m m

m =≥=+++≤+++≤≤++≤≤+++≤

并使目标函数x d x d m m S ++=...11 最小。

二、线性规划问题数学模型的一般形式和标准形式

上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,但是它们的数学模型却具有相同的特征:要确定某些变量(决策变量)的一组值,使得在确定的确定的约束条件下,目标函数是取得最大值或最小值。其中,约束条件是决策变量的线性方程或线性不等式。目标函数是决策变量的线性函数。因此,我们把这种规划问题称为线性规划问题。同时,我们可以得到对于一个线性规划问题,其数学模型应具有如下形式:

求x C x C x C n n S ++=2211min)max(或

)

,...,2,1(0)

,(.............

..............................)

(...)(...x i

2

2

2

2

1

12

2

2

22

22

1

21

1

1

1

12

12

1

11

n i b b b x a x a x a b b b x a x a x a b b b x a x a x a m

n

mn

m m n

n

n

n

=≥=≥≤+++=≥≤+++=≥≤+++或或,或或,或或

我们称这种形式的线性规划模型为一般形式。其中,C j 为目标函数系数约束方程系数;b i 为约束方程常数项;(i=1,……,m;j=1,……,n).

由此可见,一个线性规划问题问题的数学模型,必须含有三个要素:决策变量、约束条件和目标函数。

由上面的例子可知,线性规划问题的数学模型的一般形式很多。目标函数有求最大值和最小值;约束条件有“≤”,“≤”,“=”三种情况。这种多样性给问题的讨论带来很大的不便。为此,我们介绍线性规划问题的一种统一形式—标准形式。规定线性规划问题的数学模型的标准形式为:

x C x C x C n n S +++=...min 2211

S.t )

,...,2,1(0..................................

(2)

2

1

1

2

22

22

2

21

1

12

12

1

11

n j b x a x a x a b

x a x a x a b

x a x a x a i

m

n

mn

m m n n

n

n

=≥=+++=+++=+++

线性规划问题的标准(13.1)也可写成矩阵形式

CX S =min

s.t

≥=X b AX

其中)......,,(,21c c c n C =,

X =??????????????x x x 321... ,A =??????????????a a a a a a a a a mn m m n n ...212222111212 ,B =????

?

?

????????b b b m 21

对于线性规划问题的一般形式,可以按如下方法化成标准形:

(1)如果线性规划问题是求目标函数的最大值,即求x c x c n n S ++= 11max ,只要令S S -=',即可化为求目标函数的最小值,即求

x c x c x c n n S ---=' 2211m i n

(2)如果某个约束条件为线性不等式,则可将其化为线性议程式的形式。 设第k 个约束条件为b x a x a x a k n km k k ≤+++ 2211: 则加入一个新变量,将其约束条件改为:

b x

x a x a x a k k

n n

kn

k k =++++ 2

2

1

1

这个所加的变量称为松弛变量。

若第l 个约束条件为:b x a x a x a l n l l ≥++ln 2211 则加入一个新变量,将上述约束条件变为:

b x

x a x a x a l l

n n

l l =-++++ln

2

2

1

1

(3)若对某变量没有非负限制,则引进两个非负变量0,0≥≥'''x x j j

令x x x j j j '''-= 代入约束条件和目标函数,可化为全部变量都有非负限制。 例4 将下列线性规划模型化为标准形 x x S 2132m a x +-=

????

???≥≤-≥+为非负限制

x x x x x x t S 212122,0235

.

解 引入松驰变量0,043≥≥x x ,令x x x S S '''-=-='222,且0,022≥≥'''x x 即可得标准形式如下 x x x S '''+-='221332m i n

S.t ??

??

???=≥≥≥=++-=--+'''''''')4,3,1(,0,02352222

42213221j x x x x x x x x x x x j

§3 线性规划问题解的性质及图解法 一、线性规划问题的解的性质 对于线性规划问题(13.2): CX S =min

???≥=0.X b AX t S

1. 几个概念

(1)可行解...

:满足线性规划问题所有约束条件的向量T

n x x X ),,()

0()

0(1 =称为可行解,所有可行解构成的集合称为可行域,记为R ,则R ={0,|≥=x b Ax x } (2)基础可行解.....:若可行解X =0,或X 的非零分量所对应的系数列向量线性无关,则称X 为基础可行解。

(3)最优解...

:使目标函数取最小值的可行解称为最优解。 (4)基础最优解.....

:使目标函数取最小值的基础可行解称为基础最优解。 (5)凸集..:若连接n 维点集S 中任意两点x x 21,的线段仍要S 内,则称S 为凸集。换言之,若

()}{n

E

S S S x x x x x x ??∈≤≤-+=,,,10,1|2

1

2

1

ααα

则称S 为凸集。

(6)极点..:若凸集S 中的点x ,不能成为S 中任何线段的内点,则称x 为S 的极点。换言之,若对任意不同两点S x x ∈21,,不存在)10(αα<,使

S x x x ∈-+=21)1(αα

则称x 为S 的极点。例如,圆周上的点都是极点。 (7)凸集合...

:设n

i E x ?,实数,,,2,1,0s i i

=≥λ且∑==s

i i

1

,则称

λ

λλλs

s

x x x +++=

2

1

1

为点x x x s ,,,21 的一个凸组合。 2.

线性规划问题的解

由线性代数求解议程组的方法及上述概念可知,线性规划问题(LP )的解有如下几种情况:

有唯一最优解

有可行解 有无穷多最优解 无最优解

无可行解

3.

线性规划问题解的性质

性质1 线性规划问题(LP )的可行域}{0,|≥==X b AX X R 是凸集。 性质2 可行域R 中的点x 是极点的充要条件是x 是基础可行解。

性质3 若(LP )问题的可行域R ≠Φ,则R 至少有一极点,且极点的个数有限。 性质4 最优值可以在极点上达到。

这几条性质实际上给我们指出了线性规划问题求解的思路和方向:由于线性规划问题的最优解一定能在可行解集的极点达到,而极点的数目中有限的。所以,总可以想办法在有限的极点中经过有限次寻找,得到最优解。因而,就有了求解线性规划问题的图解法和单纯形法。由于篇幅所限,下面仅介绍图解法的应用。有兴趣的读者可以学习一下单纯形法。 二、图解法(又称几何法)

图解法是对于只是两个决策变量的线性规划问题,在平面内建立直角坐标系,使每个决策变量的取值在一个数轴上表示出来,可行解就成为平面上的点,可

行域就是平面上的一个共域,从而最优解必定是在这个平面区域内(包括边界上)的点。根据目标函数在这个平面区域内的取值找出使目标函数取得最优值的点(即最优解)。

图解法便于我们理解和了解线性规划问题的一些概念、理论及解的一些特性,也为我们进一步学习单纯方法提供一个直观图形。 例5 求解线性问题 x x S 2157m i n +=

????

???≥≤+≤+0

,4228

.21212142x x x x x x t S 解 第一步,在平面直角坐标系x x O 21上绘出约束条件图(图13-2) ①画出这条直线28221=+x x ,再定出28221≤+x x 区域。

把(0,0)代入不等式得0+2·0<28,所以,原点所在半平面及直线本身就是

2822

1

≤+x

x 代表的区域。

②画出42421=+x x 这条直线,定出42421≤+x x 代表的区域,有(0,0)代入不等式得0·4+0<42所以,42421≤+x x 代表的区域是包括原点的下半平面与直线本身。

③定出0,021≥≥x x 的区域,它就是第一象限。从图

13-2看出,满足全部约束条件的点所构成的区域(即 可行域),就是凸多边形OABC 。

第二步,绘制目标函数图形。对于目标函数x x S 2157+= 将S 看作参数,即得到一簇平行直线(图13-2中虚线所 示),直线上每一点的目标函数值为S 。由图可见,直线离 原点越远,S 值越大,我们寻找的是在可行域内使S 值最大 点。可见,B 点即为可行域内使目标函数最大的点,即为最

571

+x 571+x

优解。

第三步,确定最优解。B 点是直线4242822121x =+与x x x =+ 交点,所以

解方程组?????=+=+42

42822121x x x x 得到10,821==x x 这就是最优解。将其代入目标函数,得最优解10610587max =?+?=S 例5有可行解且有唯一最优解将目标函数改为

x x x x S S 212142+=+=或仍求其最大值,

则BC 或AB 上每一点的坐标均为最优解,最优解有无穷多个,而它们对应的目标函数数值是28或42。读者可以证明习题中第4题的(1)小题有可行解但无最优解(2)小题没有可行解。这就说明了线性规划问题解的情况。

习题十三 1.

写出下列问题的数学模型:

(1) 某工厂生产甲、乙两种产品,每件纯利为5元和4元,生产这两种产品每件

需机器工作时间2小时和3小时,需人力工时4小时和2小时。已知该工厂每天能提供300小时的机器工作和320小时的人力工时,问应如何安排生产,才能使工厂获利最多?

(2) 某产品需经两道工序加工才能完成,共有工人30名,按照过去的经验,第一

道工序每个工人每天能加工产品100件,第二道工序每个工人每天能加工产品200件,问应如何安排生产才能使连续生产过程中出成品最多? 2.

将下列线性规划问题的数学模型化为标准形式

(1)x x S 2132max += (2)x x S 212min +=

5721=+x x

???????≥≥≤+-≥-0,0221.212121x x x x x x t S ??

??

???≥≥≥-≤+0

,054.212121x x x x x x t S 3.

用图解法解第1题。

4.用图解法解第2题。

线性规划模型及其举例

线性规划模型及其举例 摘要:在日常生活中,我们常常对一个问题有诸多解决办法,如何寻找最优方案,成为关键,本文提出了线性规划数学模型及其举例,在一定约束条件下寻求最优解的过程,目的是想说明线性规划模型在生产中的巨大应用。 关键词:资源规划;约束条件;优化模型;最优解 在工农业生产与经营过程中,人们总想用有限的资源投入,获得尽可能多的使用价值或经济利益。如:当任务或目标确定后,如何统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成确定的任务或目标;企业在一定的资源条件限制下,如何组织安排生产获得最好的经济效益(如产品量最多,利润最大)。 一.背景介绍 如果产出量与投入量存在(或近似存在)比例关系,则可以写出投入产品的线性函数式: 1()n i ij j j f x a x ==∑,1,2,,,1i m m =+ (1) 若将(1)式中第(1m +)个线性方程作为待求的目标函数,其余m 个线性方程作为资源投入的限制条件(或约束条件),则(1)式变为: OPT. 1()n j j j f x c x ==∑ ST. 1 n ij j j a x =∑> ( =, < )i b , 1,2,,i m = (2) 0,j x ≥ 1,2,,j n =… (2)式特点是有n 个待求的变量j x (1,2,,j n =…);有1个待求的线性目标函数()f x ,有m 个线性约束等式或不等式,其中i b (1,2,,i m =…)为有限的资源投入常量。将客观实际问题经过系统分析后,构建线性规划模型,有决策变量,目标函数和约束条件等构成。 1.决策变量(Decision Variable,DV )在约束条件范围内变化且能影响(或限定)目标函数大小的变量。决策变量表示一种活动,变量的一组数据代表一个解决方案,通常这些变量取非负值。 2.约束条件(Subject To,ST )在资源有限与竞争激烈的环境中进行有目的性的一切活动,都

线性规划模型的应用分析

第3章线性规划模型的应用 1.某企业制造三种仪器,甲种仪器需要17小时加工装配,8小时检测,售价300元。乙种仪器需要10小时加工装配,4小时检测,售价200元。丙种仪器需要2小时加工装配,2小时检测,售价100元。三种仪器所用的元件和材料基本一样,可供利用的加工装配时间为1000小时,检测时间为500小时。又根据市场预测表明,对上述三种仪器的要求不超过50台、80台、150台。试求企业的最优生产计划。 解:首先将问题中的数据表示到如下表格: i maxZ=300x1+200x2+100x3 17x1+10x2+2x3≤1000 8x1+4x2+2x3≤500 x1≤50 x2≤80 x3≤150 x1,x2,x3≥0 2. 某铸造厂要生产某种铸件共10吨,其成分要求:锰的含量至少达到0.45%,硅的允许范围是 3.25%~5.5%。目前工厂有数量充足的锰和三种生铁可作为炉料使用。这些炉料的价格是:锰为15元/公斤,生铁A为340元/吨,生铁B为380元/吨,生铁C为280元/吨。这三种生铁含锰和含硅量(%)如表3.22所示,问工厂怎样选择炉料使成本最低。 表3.22 成分锰有部分是纯锰,部分是从生铁中提炼出来的,所以改进表格如下:

设铸件中含有三种生铁和锰的量分别为xi(i=1,2,3,4)吨,则数学模型如下: maxZ=340x1+380x2+280x3+15000x4 x1+x2+x3+x4=10 0.45%x1+0.5%x2+0.35%x3+x4≥0.45%*10 4%x1+1%x2+0. 5%x3≥3.25%*10 4%x1+1%x2+0. 5%x3≤5.5%*10 xi≥0(i=1,2,3,4) 3. 某工厂要做100套钢架,每套用长为2.9m,2.1m和1.5m的圆钢各一根。已知原料每根长7.4m,问应如何下料,可使所用原料最省。 解: 4. 绿色饲料公司生产雏鸡、蛋鸡、肉鸡三种饲料。这三种饲料是由A、B、C三种原料混合而成。产品的规格要求、产品单价、日销售量、原料单价见表3.23、表3.24。受资金和生产能力的限制,每天只能生产30吨,问如何安排生产计划才能获利最大? 表3.23 产品名称规格要求销售量(吨)售价(百元) 雏鸡饲料原料A不少于50% 5 9 原料B不超过20% 蛋鸡饲料原料A不少于30% 18 7 原料C不超过30% 肉鸡饲料原料C不少于50% 10 8 表3.24

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

线性规划模型在生活中的实际应用

线性规划模型在生活中的实际应用 一、线性规划的基本概念 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素. 二、线性规划模型在实际问题中的应用 (1)线性规划在企业管理中的应用范围 线性规划在企业管理中的应用广泛,主要有以下八种形式: 1.产品生产计划:合理利用人力、物力、财力等,是获利最大. 2.劳动力安排:用最少的劳动力来满足工作的需要. 3.运输问题:如何制定运输方案,使总运费最少. 4.合理利用线材问题:如何下料,使用料最少. 5.配料问题:在原料供应的限制下如何获得最大利润. 6.投资问题:从投资项目中选取方案,是投资回报最大. 7.库存问题:在市场需求和生产实际之间,如何控制库存量从而获得更高利益. 8.最有经济计划问题:在投资和生产计划中如何是风险最小 . (2)如何实现线性规划在企业管理中的应用 在线性规划应用前要建立经济与金融体系的评价标准及企业的计量体系,摸清企业的资

源.首先通过建网、建库、查询、数据采集、文件转换等,把整个系统的各有关部分的特征进行量化,建立数学模型,即把组成系统的有关因素与系统目标的关系,用数学关系和逻辑关系描述出来,然后白较好的数学模型编制成计算机语言,输入数据,进行计算,不同参数获取的不同结果与实际进行分析对比,进行定量,定性分析,最终作出决策.

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模 线性规划模型

数学建模线性规划模型 数学建模教案,线性规划模型 一、问题的提出 在生产管理和经营活动中经常提出一类问题,即如何合理地利用有限的人力、物力、财力等资源,以便得到最好的经济效果。 例1 若需在长为4000mm的圆钢上,截出长为698mm和518mm两种毛坯,问怎样截取才能使残料最少, 初步分析可以先考虑两种“极端”的情况: (1)全部截出长为698mm的甲件,一共可截出 EQ F(4000,698) ?5件,残料长为510mm。 (2)全部截出长为518mm的乙件,一共可截出 EQ F(4000,518) ?7件,残料长为374mm。由此可以想到,若将 x个甲件和y 个乙件搭配起来下料,是否可能使残料减少,把截取条件数学化地表示出来就是: 698 x + 518y ? 4000 x ,y都是非负整数 目标是使:z = EQ F(698x + 518y,4000) (材料利用率)尽可能地接近或等于1。(尽可能地大) 该问题可用数学模型表示为: 目标函数 : max z = EQ F(698x + 518y,4000) 满足约束条件: 698 x + 518y ? 4000 , (1) x ,y都是非负整数 . (2) 例2 某工厂在计划期内要安排生产I 、II两种产品,已知生产单位产品所需的设备台数及A、B两种原料的消耗,如下表所示。

I II 设备 1 2 8台数 原材料A 4 0 16kg 原材料B 0 4 12kg 该工厂每生产一件产品I可获利 2 元,每生产一件产品II可获利 3 元,问应如何安排生产计划使工厂获利最多, 这问题可以用以下的数学模型来描述:设 x, x分别表示在计划期内产品I、II 的产量。 1 2 因为设备的有效台数为8 ,这是一个限制产量的条件,所以在确定I 、II的产量时,要考虑不超过设备的有效台数,即可用不等式表示为: x + 2x ? 8 . 1 2同理,因原材料A 、B的限量,可以得到以下不等式: 4 x ? 16 1 4 x ? 12. 2 该工厂的目标是在不超过所有资源限量的条件下,如何确定产量x、x以得到最大 1 2的利润。若用 z 表示利润,这时z = 2x + 3 x。综上所述,该计划问题可用数学模型表 1 2 示为: 目标函数 : max z = 2x + 3 x 1 2 满足约束条件: x + 2x ? 8 1 2 4 x ? 16 1 4 x ? 12. 2

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

线性规划的数学模型

线性规划的数学模型及其标准形式 线性规划问题是工作和生活中最常见的问题,也是运筹学中最简单和最基础的问题。因此,研究现线性规划在经济中的应用问题必须对线性规划的概念和数学模型的掌握和了解是十分必要的。下面让我们对线性规划的数学模型加以介绍。 线性规划的数学模型 在许多实际问题中总是存在着已知量和未知量,若将这些量之间的依赖关系用数学式子表示出来,那么就称这些式子为实际问题的数学模型,或者说数学模型就是描述实际问题共性的抽象的数学形式,线性规划的数学模型包含两个组成部分,一是目标函数,二是约束条件,目标函数是一个由欲达到最优目的的有关量所构成的关系式,根据研究的目标是最大还是最小,在目标函数前面冠以“max ”或“min ”;约束条件是欲达到预期目的所受到的现实客观环境的制约,将这种制约用不等式或不等式表示,即为约束条件,以后减记..s t ;是“subject to “的缩写。 研究数学模型有助于认识这类问题的性质和寻求它的一般解法,但线性规划问题涉及到的实际问题是非常广泛的,我们只能先从其中某些典型的实际问题开始,不能面面俱到,但这些问题的做法都是类似的,下面我们通过例题研究线性规划的数学模型。 例 1 某工厂有生产甲,乙两种产品的能力,且生产一吨甲产品需要3个工日和0.35吨小麦,生产一吨乙产品需要4个工日和0.25吨小麦,该厂仅有工人12人一个月只能出300个工日,小麦一个月只能进12吨,并且还知道生产一吨甲产品可盈利80(百元),生产一吨乙产品可盈利90(百元)。那么,这个工厂在一个月中应如何根据现有条件安排这两种产品的生产,使之获得最大盈利?建立数学模型。 解:设1x ,2x 分别表示一个月生产甲,乙两种产品的数量,则最大盈利为: 1280S x x =+ 工日的约束为1234300x x +≤,原料小麦的约束为120.350.2521x x +≤,那么该问题的数学模型即为:

数学建模习题——线性规划

某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示.按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税.此 表四 问:(1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作? (3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变? 解:设利润函数为M(x),投资A、B、C、D、E五种类型的证券资金分别为

12345,,,,x x x x x 万元,则由题设条件可知 12345123452341234512345123451234512345()0.0430.0270.0250.0220.0451000400 225 1.4()9154325(),,,,0 M x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x =++++++++≤++≥++++≤++++++++≤++++≥ 利用MATLAB 求解最优解,代码如下: c=[-0.043 -0.027 -0.025 -0.022 -0.045]; A=[1 1 1 1 1;0 -1 -1 -1 0;0.6 0.6 -0.4 -0.4 3.6;4 10 -1 -2 -3]; b=[1000;-400;0;0]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 运行结果如下:

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

运筹学-线性规划模型在实际生活中的应用

线性规划模型在实际生活中的应用 【摘要】线性规划在实际生活中扮演着很重要的角色,研究对象是计划管理工作中有关安排和估值的问题,其广泛应用于经济等领域,是实际生活中进行管理决策的最有效的方法之一。解决的主要问题是在给定条件下,按某一衡量指标来寻找安排的最优方案。本文通过对例题利用线性规划分析,如何合理的分配利用,最终找到最优解使企业利润最大,说明了线性规划在实际生活中的应用,而且对线性规划问题模型的建立,模型的解进行了分析,运用图解法和单纯形法解决问题。 【关键词】线性规划、建模、实际生活、图解法、单纯形法 前言:线性规划(Linear programming,简称LP)是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。研究线性约束条件下线性目标函数的极值问题的数学理论和方法。英文缩写LP。它是运筹学的一个重要分支,广泛应用于军事作战、经济分析、经营管理和工程技术等方面。为合理地利用有限的人力、物力、财力等资源作出的最优决策,提供科学的依据。 在实际生活中,经常会遇到一定的人力、物力、财力等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益的问题,而这正是线性规划研究的基本容,它在实际生活中有着非常广泛的应用.任何一个组织的管理者都必须对如何向不同的活动分配资源的问题做出决策,即如何有效地利用人力、物力完成更多的任务,或在预定的任务目标下如何耗用最少的人力、物力去实现目标。在许多情况下,大量不同的资源必须同时进行分配,需要这些资源的活动可以是不同的生产活动,营销活动,金融活动或者其他一些活动。随着计算技术的不断发展,使成千上万个约束条件和决策变量的线性规划问题能迅速地求解,更为线性规划在经济等各领域的广泛应用创造了极其有利的条件。线性规划已经成为现代化管理的一种重要的手段。本文运用常用的图解法和单纯形法解决利润最大化决策问题,贴近生活,很好的吧线性规划应用到生活实践中。 1、简单线性问题步骤简单介绍 建模是解决线性规划问题极为重要的环节,一个正确的数学模型的建立要求建模者熟悉线性规划的具体实际容,要明确目标函数和约束条件,通过表格的形式把问题中的已知

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念 模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学 式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的

线性规划模型的应用与灵敏度分析

摘要 线性规划是解决稀缺资源最优分配的有效方法,使付出的费用最少或获得的利益最大。它的研究对象是有一定的人力、财力、资源条件下,如何合理安排使用,效益最高;某项任务确定后,如何安排人、财、物,使之最省。它要解决的问题的目标可以用数值指标反映,对于要实现的目标有多种方案可以选择,有影响决策的若干约束条件。本文主要介绍了线性规划模型在实际生活中的应用,其中包括解线性方程组的各种方法,如图解法、单纯形法、以及对偶单纯形法等等,以及简单介绍了有关灵敏度分析的方法。由于许多问题仅仅利用线性规划的方法还不足以解决,因此用到了对偶理论,也因此引出了对偶单纯形法。对偶规划是线性规划问题从另一个角度进行研究,是线性规划理论的进一步深化,也是线性规划理论整体的一个不可分割的组成部分。灵敏度分析是对线性规划结果的再发掘,是对线性规划理论的充要应用,本文以实例验证灵敏度分析的实际应用。 关键词:线性规划;单纯形法;对偶单纯形法

ABSTRCT Linear programming is an effective method to solve the optimal allocation of scarce resources, make the cost of pay or receive at least the interests of the largest. Its object of study is the human and financial resources, resource conditions, how to reasonably arrange to use, benefit is supreme; A task is determined, how to arrange people, goods, and make it the most provinces. It to the target can be used to solve the problem of the numerical indicators, to achieve a variety of solutions to choose from, have an impact on the decision of some constraint conditions. Through the subject design, can deepen the operations research, optimization method, linear programming, nonlinear programming, to improve the integrated use of knowledge, improve the ability of using the sensitivity analysis to solve various practical problems. This article mainly introduces the application of linear programming model in real life, including the various methods of solving linear equations, as shown in figure method, simplex method and dual simplex method, etc., and simply introduces the method of sensitivity analysis. Due to many problems just by using the method of linear programming is not enough to solve, so use the duality theory, thus raises the dual simplex method. The dual programming is linear programming problem from another Angle, is the further deepening of linear programming theory, linear planning theory as a whole is also an integral part of. Sensitivity analysis is to discover, the result of the linear programming is the charge to application of linear programming theory. Keywords: linear programming;Simplex method;The dual simplex method

数学建模线性规划论文1

红十字会善款投资优化设计 摘要 作为慈善机构,某省红十字会为救助四川灾区患病儿童,打算将救灾的剩余善款存入银行或购买国库券,为了充分利用这笔善款,必须要做出合理的分配方案来提高每年的救助金额,并且保证在n年末仍保留原有善款数额,才能最大限度使用剩余善款。 为了给红十字会提供一种最优方案,本文本着为红十字会设计一种能最大限度使用善款存款本息且n年末仍保留原有善款数额的原则,以n年内用于存款或购买国库券的利息额之和的最大值为目标函数,运用线性规划的相关知识,并通过LINGO软件对模型进行求解,递出了一种符合题目要求的最优分配方案。 关键词:线性规划,LINGO软件

某省红十字会打算将四川特大地震后全国人民捐款救灾的剩余善款存入银行或购买国库券。 红十字会计划在n年内用此剩余善款的部分本息救助患病儿童,并使每年的救助金额大致相同,且在n年内仍保留原有善款数额。 通过设计最佳的使用方案,提高每年的救助金额,帮助红十字会在如下情况下,设计这笔剩余善款的使用方案,并对5000 n=年给出具体结果。 M=万元,10 (1)只在银行存款而不购买国库券; (2)既可存款也可以购买国库券; (3)红十字会在剩余的善款到位后的第三年要举行成立30周年庆典,红十字会希望这一年的救助金额比其他年度多20%。 二、模型的假设 1、假设存款期间不出现紧急用钱的情况,只有在每年的最后一天,才从银行中取出钱用于捐款,且在整个存款周期中银行利率不变; 2、假设存款的银行采用单利的形式进行利息的结算; 3、假设每次使用于救助的金额都为投资所获得的利息,即用于各种投资类型的本金金额不变,然后再次将用于原投资类型的本金金额继续该种投资方式; 4、假设每年的救助金额大致相同; 5、红十字会在n年内的各种开支忽略不记; 6、假设投资不出现亏损状况。 三、符号的说明

线性规划的实际应用模型

目录 摘要 ---------------------------------------------------1 引言 ---------------------------------------------------2 一线性规划的概念 -------------------------------------3 二线性规划的实际应用 ----------------------------------4 ( (四)体育上的应用 1.合理安排比赛问题 -------------13 2.选拔选手问题 -----------------14 (五)旅行上的问题:旅行背包问题 ------------------------15 (六)航空上的问题:航空时间安排问题 --------------------16 (七)城市规划的应用:设施布点问题 ----------------------18 (八)日常生活上的应用 1.食用油的结构优化问题 ---------19 2.饮食问题 ---------------------21 (九)农业上的应用:农业种植问题 ------------------------23 三总结及参考文献 --------------------------------------25 线性规划的实际应用模型 王丽娜 (渤海大学数学系辽宁锦州 121000 中国)

摘要:本文从运筹学的角度分析线性规划的实际应用模型,随着人类社会的进步,科学 技术的发展,经济全球化进程的日益加快,线性规划在实际中的应用越来越广泛,主要应用 于经济与管理,军事,金融,体育,旅行,航空,城市规划,日常生活,农业九大方面,因此,线性 规划作为一门科学已被人们广泛接受,并已日益成为人类社会和经济生活中一种不可或缺的 工具。 关键词:运筹学线性规划分析模型 Zhe model in practical application of linear programming Wang lina (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:This article analyse the practical application of linear programming from the sight of operational research,with the advancement of human society,the development of science and technology and the faster grogramming has wider application in the practical,has been applied to nine aspects,in econemy,management,military,finance,physical education,travelling,airline,city planning,daily life, agriculture.The examples will be given to show the application in the nine aspects given abo。 Key word:operational research ,linaear programming, analy ,model 引言 线性规划是运筹学的一个重要分支。也是研究较早的,发展较快 的,应用较广而比较成熟的一个分支。

线性规划问题及其数学模型

第二章 线性规划的对偶理论与灵敏度分析习题 1. 写出下列线性规划问题的对偶问题。 (1)????? ? ?≥=++≤++≥++++=无约束 3213213213213 21,0,5343 32243422min x x x x x x x x x x x x x x x z (2) ????? ? ?≤≥≤++≥-+-=++++=0 ,0,8374355 22365max 3213213213213 21x x x x x x x x x x x x x x x z 无约束 (3)?? ??? ??? ???==≥=====∑∑∑∑====) ,,1;,,1(0) ,,1(),,1(min 1 111n j m i x n j b x m i a x x c z ij m i j ij n j i ij m i ij n j ij (4)???????????=≥++==<=<=∑∑∑===),,,,1(0),,2,1() ,,1(min 1 211111n n j x m m m i b x a m m i b x a x c z j n j i j ij n j i j ij n j j j 无约束 2. 判断下列说法是否正确,为什么? (1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; (4)任何线性规划问题具有唯一的对偶问题。 3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

数学建模线性规划

实验名称:规划论-建模与求解 题目一自来水供应问题 题目:某市有甲乙丙丁四个居住区,自来水由ABC三个水库供应,四个区每天必须得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个水库每天最多只能分别供应50,60,50千吨自来水。由于地理位置不同,自来水公司从各水库向各区送水所付出的饮水管理费不同(见下表,其中丁与C只见无输水管道),其他管理费用都是450元/千吨。根据公司规定,各区用户按照统一标准900元/千吨收费。此外,四个区都向公司申请了额外用水量,分别为50,70,20,40千吨。该公司应如何分配供水量,才能获利最多? 为了增加供水量,自来水公司正在考虑进行水库改造,使三个水库每天最大供水量都提高一倍,问那时供水方案应如何改变?公司利润可增加多少? 建模:所建模型: min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+ 200*x33; 约束条件:x11+x12+x13+x14<=50; x21+x22+x23+x24<=60; x31+x32+x33<=50; x11+x21+x31>30; x11+x21+x31<=80; x12+x22+x32>=70; x12+x22+x32<=140; x13+x23+x33>=10; x13+x23+x33<=30; x14+x24>=10; x14+x24<=50; 求解:LINGO model: min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+ 200*x33; x11+x12+x13+x14<=50; x21+x22+x23+x24<=60; x31+x32+x33<=50; x11+x21+x31>30; x11+x21+x31<=80; x12+x22+x32>=70; x12+x22+x32<=140; x13+x23+x33>=10;

线性规划模型在企业生产计划中的应用

诚信声明 我声明,所呈交的毕业论文是本人在老师指导下进行的研究工作及取得的研究成果。据我查证,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,我承诺,论文中的所有内容均真实、可信。 毕业论文作者签名:签名日期:年月日

摘要:在企业生产过程中,生产资源的分配直接影响到企业的经济效益。因此,企业在制定生产计划时,人力物力和时间等资源的优化配制是首要面对的关键问题,而建立线性规划模型则是目前解决该问题的有效方法之一。本文旨在针对上述有限资源条件的约束下,通过建立相应的线性规划模型来制定生产计划以实现企业资源最优化、利益最大化,同时利用LINGO 11.0软件求解线性规划模型并分析在某些资源变动时对该模型所产生的影响并寻求最优生产方案。 关键词:企业生产计划;线性规划;数学模型;LINGO 11.0

Abstract:In the enterprise production process, the allocation of production resources directly affects the economic efficiency of enterprises. Therefore, enterprises in the development of production plan, formulated to optimize the resources of manpower and time is the key problem of face. And to establish the linear programming model is one of the effective ways to solve the problem. This paper aimed at the limited resource constraints, by establishing linear programming model corresponding to make production plan in order to realize the maximization of enterprise resource optimization, interest, and using LINGO11.0 software to solve the linear programming model and analysis the influence on the model in some resource changes and seek the optimal production plan. Key words:Production plan;Linear programming;Mathematical model; LINGO 11.0 目录

相关文档
相关文档 最新文档