文档库 最新最全的文档下载
当前位置:文档库 › 应力矩阵在不同坐标系下的转换

应力矩阵在不同坐标系下的转换

应力矩阵在不同坐标系下的转换
应力矩阵在不同坐标系下的转换

应力矩阵在坐标系下的表示及转换

1、在直角坐标系下的表示

x yx zx d xy y zy xz yz z σττστστττσ????=??

????

下标d 表示笛卡尔

2、在圆柱坐标系下的表示

r r zr c r z rz

z z θθθθθσττστστττσ??

??=??????

下标c 表示圆柱

3、在球坐标系下的表示

r

r r s r r θ?θ

θ?θ?θ??σττστστττσ??

??

=??

???

?

下标s 表示球

应力矩阵在不同坐标系下的转换:

从笛卡尔坐标系转换到圆柱坐标系

圆柱坐标系下三个坐标的方向在笛卡尔坐标系下可以分别表示为

[]

[][]

cos sin 0-sin cos 0001r z θ

θ

θθθ方向:方向:方向:

组成方向矩阵:

cos sin 0=-sin cos 00

1θθβθθ

??????????

那么圆柱坐标系下的应力矩阵可由笛卡尔坐标系下矩阵和方向矩阵β表示

即:

T c d σβσβ=

β称为圆柱坐标系在笛卡尔坐标系下表示的方向余弦矩阵,其中1T ββ=

同理,球坐标系在笛卡尔坐标系下的方向余弦矩阵为

sin cos sin sin cos =-sin cos 0cos cos sin sin cos ?θ

?θ?βθθ

?????????-??

球坐标系下的应力矩阵可以表示为

T s d σβσβ=

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

空间直角坐标系与大地坐标系转换程序

空间直角坐标系与大地坐标系转换程序 #include #include #include using namespace std; #define PI (2.0*asin(1.0)) void main() { double a,b,c,d1,d2,f1,f2,m1,m2,B,L,H,X,Y,Z,W,N,e; //cout<<"请分别输入椭球的长半轴、短半轴(国际单位)"<>a>>b; a=6378137; //以WGS84为例 b=6356752.3142; e=sqrt(a*a-b*b)/a; c=a*a/b; int x; cout<<"请输入0或1,0:大地坐标系到空间直角坐标系;1:空间直角坐标系到大地坐标系"<>x; switch(x) { case 0: { cout<<"请分别输入该点大地纬度、经度、大地高(国际单位,纬度经度请按度分秒,分别输入)"<>d1>>f1>>m1>>d2>>f2>>m2>>H; B=PI*(d1+f1/60+m1/3600)/180; L=PI*(d2+f2/60+m2/3600)/180; W=sqrt(1-e*e*sin(B)*sin(B)); N=a/W; X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-e*e)+H)*sin(B); cout<<"空间直角坐标系中X,Y,Z,坐标值(国际单位)分别为"<>X>>Y>>Z; double t,m,n, P,k,B0; m=Z/sqrt(X*X+Y*Y); //t0 B0=atan(m); //初值 n=Z/sqrt(X*X+Y*Y);

坐标系转换问题

坐标系转换问题--WGS84坐标 BJ54 BJ80 2012-10-18 14:37 对于坐标系的转换,给很多GPS的使用者造成一些迷惑,尤其是对于刚刚接触的人,搞不明白到底是怎么一回事。我对坐标系的转换问题,也是一知半解,对于没学过测量专业的人来说,各种参数的搞来搞去实在让人迷糊。在我有限的理解范围内,我想在这里简单介绍一下,主要是抛砖引玉,希望能引出更多的高手来指点迷津。 我们常见的坐标转换问题,多数为WGS84转换成北京54或西安80坐标系。其中WGS84坐标系属于大地坐标,就是我们常说的经纬度坐标,而北京54或者西安80属于平面直角坐标。对于什么是大地坐标,什么是平面直角坐标,以及他们如何建立,我们可以另外讨论。这里不多啰嗦。 那么,为什么要做这样的坐标转换呢? 因为GPS卫星星历是以WGS84坐标系为根据而建立的,我国目前应用的地形图却属于1954年北京坐标系或1980年国家大地坐标系;因为不同坐标系之间存在着平移和旋转关系(WGS84坐标系与我国应用的坐标系之间的误差约为80),所以在我国应用GPS进行绝对定位必须进行坐标转换,转换后的绝对定位精度可由80提高到5-10米。简单的来说,就一句话,减小误差,提高精度。 下面要说到的,才是我们要讨论的根本问题:如何在WGS84坐标系和北京54坐标系之间进行转换。 说到坐标系转换,还要罗嗦两句,就是上面提到过的椭球模型。我们都知道,地球是一个近似的椭球体。因此为了研究方便,科学家们根据各自的理论建立了不同的椭球模型来模拟地球的形状。而且我们刚才讨论了半天的各种坐标系也是建立在这些椭球基准之上的。比如北京54坐标系采用的就是克拉索夫斯基椭球模型。而对应于WGS84坐标系有一个WGS84椭球,其常数采用IUGG第17届大会大地测量常数的推荐值。WGS84椭球两个最常用的几何常数:长半轴:6378137±2(m);扁率:1:298.257223563 之所以说到半长轴和扁率倒数是因为要在不同的坐标系之间转换,就需要转换不同的椭球基准。这就需要两个很重要的转换参数dA、dF。 dA的含义是两个椭球基准之间半长轴的差;dF的含义是两个椭球基准之间扁率倒数的差。在进行坐标转换时,这两个转换参数是固定的,这里,我们给出在进行84—〉54,84—〉80坐标转换时候的这两个参数如下: WGS84>北京54:DA:-108;DF:0.0000005 WGS84>西安80:DA: -3 ;DF: 0 椭球的基准转换过来了,那么由于建立椭球的原点还是不一致的,还需要在dXdYdZ这三个空间平移参量,来将两个不同的椭球原点重合,这样一来才能使两个坐标系的椭球完全转换过来。而由于各地的地理位置不同,所以在各个地方的这三个坐标轴平移参量也是不同的,因此需要用当地的已知点来计算这三个参数。具体的计算方法是: 第一步:搜集应用区域内GPS“B”级网三个以上网点WGS84坐标系B、L、H值及我国坐标系(BJ54或西安80)B、L、h、x值。(注:B、L、H分别为大地坐标系中的大地纬度、大地经度及大地高,h、x分别为大地坐标系中的高程及高程异常。各参数可以通过各省级测绘局或测绘院具有“A”级、“B”级网的单位获得。) 第二步:计算不同坐标系三维直角坐标值。计算公式如下: X=(N+H)cosBcosL Y=(N+H)cosBsinL Z=[N(1-e2)+H]sinB

GPS坐标和国家大地坐标之间的转换

GPS坐标和国家大地坐标之间的转换 一、前言 WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统-WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,轴指向BIH1984.0定义的协议地球极方向,轴指向BIH1984.0的启始子午面和赤道的交点。 采用椭球参数为:a=6 378 137m,f= 1/298.257 223 563。 北京54 坐标系、西安80 坐标系—属于参心坐标系, 北京54 坐标系采用克拉索夫斯基椭球参数,长轴a= 6 3 78 2 4 5 米, 扁率f=l : 2 98.3 ;西安80 大地系坐标系椭球参数采用国际大=地测量和地球物理联合19 7 5 后推荐的地球椭球参数, 长轴a= 6 3 7 8 140 米, 扁率f1 : 298.257,大地原点在我西安市径阳县永乐镇。西安80 坐标系的建立是在54 年北京坐标系的基础上完成的。 在实际的工作中,对于GPS的测量数据。我们需要将其转换成所需要的54或80坐标系,才能够使用。或是将其转换成相应的地方坐标系。在转换的过程中需要进行一系列的变换。本文将对其过程做详细的说明。 二、转换过程 (1)数据测量:在实际操作中,首先进行的是数据的观测。根据实际工作需要,采用相应的观测方法进行观测,得到合格的测量成果。本文主要是针对GPS控制网的转换来说明的。 (2)平差:在GPS控制网的测量工程中,在进行完基线测量(地面坐标和高程)后,需要对测量结果进行平差,得到相应的平差结果。下面对相应的条件平差①做具体说明: AV-W=0 [1] L#=L+V [2] 基础方程和它的解: 设有r个平差线性条件方程: [3]

三相坐标系和二相坐标系转换

交流电动机矢量控制变压变频调速系统(三)第三讲坐标 变换的原理和实现方法 收藏此信息打印该信息添加:李华德来源:未知 由第二讲的内容可知,在三相静止坐标系中,异步电动机数学模型是一个多输入、多输出、非线性、强耦合的控制对象,为了实现转矩和磁链之间的解耦控制,以提高调速系统的动静态性能,必须对异步电动机的数学模型进行坐标变换。 3.1 变换矩阵的确定原则 坐标变换的数学表达式可以用矩阵方程表示为 y=ax (3-1) 式(3-1)表示利用矩阵a将一组变量x变换为另一组变量y,其中系数矩阵a称为变换矩阵,例如,设x是交流电机三相轴系上的电流,经过矩阵a的变换得到y,可以认为y是另一轴系上的电流。这时,a称为电流变换矩阵,类似的还有电压变换矩阵、阻抗变换矩阵等,进行坐标变换的原则如下: (1)确定电流变换矩时,应遵守变换前后所产生的旋转磁场等效的原则; (2)为了矩阵运算的简单、方便,要求电流变换矩阵应为正交矩阵; (3)确定电压变换矩阵和阻抗变换矩阵时,应遵守变换前后电机功率不变的原则,即变换前后功率不变。 假设电流坐标变换方程为: i=ci′ (3-2) 式中,i′为新变量,i称为原变量,c为电流变换矩阵。 电压坐标变换方程为: u′=bu (3-3) 式中,u′为新变量,u为原变量,b为电压变换矩阵。 根据功率不变原则,可以证明: b=ct (3-4)

式中,ct为矩阵c的转置矩阵。 以上表明,当按照功率不变约束条件进行变换时,若已知电流变换矩阵就可以确定电压变换矩阵。 3.2 定子绕组轴系的变换(a-b-c<=>α-β) 所谓相变换就是三相轴系到二相轴系或二相轴系到三相轴系的变换,简称3/2变换或2/3变换。 三相轴系和二相轴系之间的关系如图3-1所示,为了方便起见,令三相的a轴与两相的α轴重合。假设磁势波形是按正弦分布,或只计其基波分量,当二者的旋转磁场完全等效时,合成磁势沿相同轴向的分量必定相等,即三相绕组和二相组绕的瞬时磁势沿α、β轴的投影应该相等,即: (3-5) 式中,n3、n2分别为三相电机和两相电机每相定子绕组的有效匝数。 经计算并整理之后可得: (3-6) (3-7) 图3-1 三相定子绕组和二相定子绕组中磁势的空间矢量位置关系

ARCGIS中坐标转换

ArcGIS 坐标转换 1.坐标分析 问题:对于某地A中心点坐标为455299.845,3223622.525的CAD矩形,CAD施工图。将其转换为WGS-84坐标,如何转换? 分析:分析455299.845为6位,则为东向Y坐标,省去了带号,加上了5000000加常数,其最大为为4,说名在中央子午线的左侧(左侧为负值,加上500万后肯定小于500万,首位为4。若在中央子午线右侧,则最大位数为5);3223622.525为7位,为北向X坐标。 查看“某地A”的经度为92.5度,因为为CAD施工图,比例尺肯定大于1:5万,所以为3度带,所以此点的中央子午线为93E,带号为Beijing_54_Zone_31。 2.CAD转为shp格式并设定坐标系: ArcTool box-Convesion Tools->To Geodatabse->CAD to Geodatabase: 其中空间参考坐标系选择Beijing_1954_3_Degree_GK_CM_93E。 具体原因:选择投影坐标系-Gauss Kruger-Bei Jing54,此时3度带有两种:Beijing_1954_3_Degree_GK_CM_93E和Beijing_54_Zone_31,前者表示中央子午线为93E的3度带,后者表示北京54 31度带,二者意义一样,但选择哪种呢?因为点坐标东向为455299.845为6位,不带带号,因此选择Beijing_1954_3_Degree_GK_CM_93E(若东向坐标

为31455299.845,则选择Beijing_54_Zone_31), 3.北京54到WGS84坐标的转换 1.1加载图层: 打开ArcTool box-Data Management Tools->Project and transformation->feature->Project,加载shp图层,弹出下列窗口: 出现红色“X”号,说明原始图层坐标系没有识别出,则需要首先设定其坐标系后再转换。具体设坐标系参考“9 设置或改变Shp文件坐标系” 1.2选择输出图层地址和名称: 在Out Put Dataset or Feature处输入输出图层名:

坐标转换源代码--GPS定位程序(C--)

坐标转换源代码--GPS定位程序(C++) GPS数据处理中为了满足不同的需要,处理的数据要进行坐标转换,得到在不同坐标系统下的结果,下面是笛卡尔坐标系,大地坐标系,站心地平坐标系(线型和极坐标形式)之间的转换源代码: 头文件: #ifndef _COORDCOVERT_H #define _COORDCOVERT_H #include "stdlib.h" //WGS-84椭球体参数 const double a=6378137.0;//长半轴 const double flattening=1/298.257223563;//扁率 const double delta=0.0000001; typedef struct tagCRDCARTESIAN{ double x; double y; double z; }CRDCARTESIAN; typedef CRDCARTESIAN *PCRDCARTESIAN;

//笛卡尔坐标系 typedef struct tagCRDGEODETIC{ double longitude; double latitude; double height; }CRDGEODETIC; typedef CRDGEODETIC *PCRDGEODETIC; //大地坐标系 typedef struct tagCRDTOPOCENTRIC{ double northing; double easting; double upping; }CRDTOPOCENTRIC; typedef CRDTOPOCENTRIC *PCRDTOPOCENTRIC; //站心地平坐标系(线坐标形式) typedef struct tagCRDTOPOCENTRICPOLAR{ double range;

54坐标系、80坐标系、84坐标系之间的转换关系

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。 3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中:V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差 解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。但是要想GPS观测成果用于工程或者测绘,还需要将地方直

高斯平面直角坐标系与大地坐标系相互转化

高斯平面直角坐标系与大地坐标系相互转化 高斯平面直角坐标系与大地坐标系转换 1. 高斯投影坐标正算公式(1) 高斯投影正算:已知椭球面上某点的大地坐标(L,B),求该点在高斯投影平面上的直角坐标(x,y),即(L,B)->(x,y)的坐标变换。(2) 投影变换必须满足的条件中央子午线投影后为直线; 中央子午线投影后长度不变; 投影具有正形性质,即正形投影条件。(3) 投影过程在椭球面上有对称于中央子午线的两点P 1 和P 2 ,它们的大地坐标分别为(L,B)及(l,B),式中l 为椭球面上P 点的经度与中央子午线(L 0 )的经度差:l=L-L 0 ,P 点在中央子午线之东,l 为正,在西则为负,则投影后的平面坐标一定为P 1 ’(x,y)和P 2 ’(x,-y)。(4) 计算公式 4 ' ' 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 9 5 ( cos sin 2 sin 2 l t B B N Bl N X x 5 ' ' 4 2 5 5 ' ' 3 ' ' 2 2 3 ' ' ' ' ' ' ) 18 5 ( cos 120 ) 1 ( 6 cos l t t B N l t B N Bl N y 当要求转换精度精确至0.001m时,用下式计算: 6 ' ' 4 2 5 6 ' ' 4 ' ' 4 2 2 3 4 ' ' 2 ' ' 2 ' ' ) 58 61 ( cos sin 720 ) 4 9 5 ( cos sin 24 sin 2 l t t B B N l t B B N Bl N X x 5 ' ' 2 2 2 4 2 5 5 ' ' 3 ' ' 2 2 3 3 ' ' ' ' ' ' ) 58 14 18 5 ( cos 720 ) 1

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

bigemap 如何转 2000坐标系

同步视频教程:投影转换(转CGCS2000) 视频教程:如何选择中央子午线或者分度带 注意:投影转换成cgcs2000坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图: 选择上图的更多,如下图所示:

1:选择 -CGCS2000 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图:

6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图: 此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

不同坐标系之间的变换

不同坐标系之间的变换 SANY GROUP system office room 【SANYUA16H-

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10)

????? ?????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11) ???? ? ?????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10- 13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简

利用矩阵进行坐标转换

利用矩阵进行坐标转换 之前做拓扑图,本来打算整一套坐标系统在里面的,后来因为时间原因暂时用了最原始的方法实现。现在稍稍得闲,重新开始思考这个问题。不过在搜索的时候,意外发现.Net Framework类库中自带的有实现坐标系转换功能的类。Reflector了一把,发现代码看不懂了——都是利用矩阵操作的。矩阵这玩意儿,几年没用早忘完了。于是认真学习了一把,顺便把如何用矩阵进行坐标转换的过程记录和注解一下。文中部分内容摘取自MSDN,搜索“变换的矩阵表示形式” 即可找到。 首先review一下矩阵的基础知识: m×n 矩阵是排列在m 行和n 列中的一系列数。下图显示几个 矩阵。 可以通过将单个元素相加来加合两个尺寸相同的矩阵。下图显示 了两个矩阵相加的示例。

m×n 矩阵可与一个n×p 矩阵相乘,结果为一个m×p 矩阵。第一个矩阵的列数必须与第二个矩阵的行数相同。例如,一个4×2 矩阵与一个2×3 矩阵相乘,产生一个4×3 矩阵。 矩阵的行列的平面点可视为矢量。例如,(2, 5) 是具有两个组件的矢量,(3, 7, 1) 是具有三个组件的矢量。两个矢量的点积定义如下: (a, b) ? (c, d) = ac + bd (a, b, c) ? (d, e, f) = ad + be + cf 例如,(2, 3) 和(5, 4) 的点积是(2)(5) + (3)(4) = 22。(2, 5, 1) 和(4, 3, 1) 的点积是(2)(4) + (5)(3) + (1)(1) = 24。请注意,两个矢量的点积是数字,而不是另一个矢量。另外请注意,只有当两个矢量的 组件数相同时,才能计算点积。 将A(i, j) 作为矩阵 A 中第i 行、第j 列的项。例如,A(3, 2)是矩阵 A 中第 3 行、第 2 列的项。假定A、B 和 C 是矩阵,且 AB = C,则C 的项计算如下: C(i, j) =(A 的第i 行)?(B 的第j 列)

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

常用坐标系之间的关系与转换

7.5 常用坐标系之间的关系与转换 一、大地坐标系和空间大地直角坐标系及其关系 大地坐标系用大地纬度企丈地经度L 和丈地髙H 来表示点的位置°这种坐标系是经 典大地 测量甬:両用座标紊7屜据地图投影的理论,大地坐标系可以通过一定的投影转 化为投影平面上的直角坐标系,为地形测图和工程测量提供控制基础。同时,这种坐标系 还是研究地球形状和大小的 种有用坐标系°所以大地坐标系在大地测量中始终有着重要 的作用. 空间大地直角坐标系是-种以地球质心为原点购亘墮?坐标系,一般用X 、化Z 表 示点 BSSTSTT 逐碇SS 範菇飞両H 绕禎扭转冻其轨道平面随时通过 地球质心。对它们的跟踪观测也以地球质心为坐标原点,所以空间大地直角坐标系是卫星 大地测量中一种常用的基本坐标系。现今,利用卫星大地测量的手段*可以迅速地测定点 的空间大地直角坐拯,广泛应用于导航定位等空间技术。同时经过数学变换,还可求岀点 的大地坐标I 用以加强和扩展地面大地网,进行岛屿和洲际联测,使传统的大地测量方法 发生了深刻的变化,所以空间大地宜角坐标系对现今大地测量的发展’具有重要的意义。 、大地坐标系和空间大地直角坐标系的转换 如图7- 23所示’尸点的位置用空间 大地 直角坐标〔X, Y, Z)表示,其相应 的大地坐 标为(E, L)a 将该图与图?一5 上式表明了 2种基本坐标系之间的关系。 加以比较可见,图7-5中的子午椭圆平面 相 当于图7-23中的OJVP 平面.其中 PPz=Z.相 当于图7-5中的j7;OP 3相当 丫于图7-5中的 仏两平面的经度乙可视为 相同,等于"叽 于是可以直接写岀 X=jrcQsi f Y=jrsinL, Z=y 将式(7-21).式(7-20)分别代入上式, 井考虑 式(7-26)得 X=Ncos^cosZr ” Y =NcQsBsinL > (7—78) Z=N (1—护〉sin^ ; BB 7-23

不同坐标系之间的变换

§10.6不同坐标系之间的变换 10.6.1欧勒角与旋转矩阵 对于二维直角坐标,如图所示,有: ?? ? ?????????-=??????1122cos sin sin cos y x y x θθθθ(10-8) 在三维空间直角坐标系中,具有相同原点的两坐标系间的变换一般需要在三个坐标平面上,通过三次旋转才能完成。如图所示,设旋转次序为: ①绕1OZ 旋转Z ε角,11,OY OX 旋 转至0 0,OY OX ; ②绕0 OY 旋转Y ε角 10 ,OZ OX 旋转至0 2 ,OZ OX ; ③绕2OX 旋转X ε角, 0,OZ OY 旋转至22,OZ OY 。 Z Y X εεε,,为三维空间直角坐标变换的三个旋转角,也称欧勒角,与 它相对应的旋转矩阵分别为: ???? ? ?????-=X X X X X R εεεεεcos sin 0sin cos 00 01 )(1 (10-10) ???? ??????-=Y Y Y Y Y R εεεεεcos 0sin 010sin 0cos )(2 (10-11)

???? ??????-=10 0cos sin 0sin cos )(3Z Z Z Z Z R εεεεε (10-12) 令 )()()(3210Z Y X R R R R εεε= (10-13) 则有: ???? ? ?????=??????????=??????????1110111321222)()()(Z Y X R Z Y X R R R Z Y X Z Y X εεε (10-14) 代入: ???? ??? ??? +-+++--=Y X Z Y X Z X Z Y X Z X Y X Z Y X Z X Z Y X Z X Y Z Y Z Y R εεεεεεεεεεεεεεεεεεεεεεεεεεεεεcos cos sin sin cos cos sin cos sin cos sin sin cos sin sin sin sin cos cos cos sin sin sin cos sin sin cos cos cos 0一般Z Y X εεε,,为微小转角,可取: sin sin sin sin sin sin sin ,sin ,sin 1cos cos cos =========Z Y Z X Y X Z Z Y Y X X Z Y X εεεεεεεεεεεεεεε 于是可化简 ???? ? ?????---=111 0X Y X Z Y Z R εεεεεε (10-16) 上式称微分旋转矩阵。

坐标系转换c语言作业

《程序设计语言(C)》大作业报告 题目:坐标系的转换 完成人: 小组构成及分工: *******独自完成程序的书写及调试. 问题定义: 大地坐标和空间直角坐标系以及其他坐标系之间转换在卫星大地测量中经常用到的坐标系有,空间直角坐标系和大地直角坐标。为了实现测量数据的快速高效的在不同的坐标系的转换,方便在学习及应用的中。需要编写一程序实现数据的转换,实现空间直角坐标系与大地直角坐标之间在同一个系统中转换。 开发工具:Visual C++ 6.0 数据结构描述: 用不同的变量表示不同的坐标,变量选择时根据使用的习惯方便使用者的识别。 X:表示大地直角坐标的纵坐标; Y:表示大地直角坐标的横坐标; Z表示大地直角坐标的竖坐标 L:表示空间直角坐标的经度; B:表示空间直角坐标的纬度; H:表示空间直角坐标的高度; 算法描述: 通过编写一个主函数描述出整个程序的主体不分,然后通过调用函数实现坐标的转换。 程序调试情况: 坐标由大地直角坐标系中的转换为空间直角坐标系的坐标: 大地直角坐标转换后空间直角坐标: B=60; X=2055059.130122; L=50; Y=2449123.986892; H=100; Z=5500477.615329;

坐标由空间直角坐标系中的坐标转换为大地直角坐标系中的坐标; 空间直角坐标转换后大地直角坐标; X=100; B=-127.103127844; Y=100; L=45.000000000; Z=10000; H=-6391994.685276; 参考文献或网站: 1.《控制测量学》(下册)第三版孔祥元郭际明主编武汉大学出版社; 2. 《数字测图原理与方法》第二版潘正风程效军成枢王腾军宋伟东 邹进贵编著武汉大学出版社; 3.《C 程序设计语言》魏东平朱连章于广斌编著;电子工业出版社 心得体会: 写这个大作业确实让我收获了许多! 1.写这次计算机大作业,让我经历了一个难忘的过程。自己的是必须得自己独立自主的想办法去解决,没人会为与自己没多大关系的事分很多神的! 2.经历了过程,让我学到了些东西也在解决困难的过程中认识了些学长,他们也教会了我许多学习经验。 3.在自己调试程序的过程中也知道了点以前写程序时不知道的细节问题,如:数据的类型在计算时会起到一定的限制,计算三角函数时数值向角度的转换.....;这就是知识! 4.这次写的作业题目是出自本专业的题,这次写计算机作业的所有收获都是以后学习的经验、财富.....! 5.在本次作业的调试中真的是考验了我的耐性。因为一个函数中的数据类型的错误,导致调了近两天。 6.知识水平的有限,所以让我学会了怎样以更好的方式去向别人请教学问!

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间坐标系 空间坐标系是采用经、纬度和高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间坐标系可用图2-4来表示:

图2-4空间坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)围的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

相关文档
相关文档 最新文档