文档库 最新最全的文档下载
当前位置:文档库 › Chitosan-based nano

Chitosan-based nano

Chitosan-based nano
Chitosan-based nano

Carbohydrate Polymers 92 (2013) 254–259

Contents lists available at SciVerse ScienceDirect

Carbohydrate

Polymers

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c a r b p o

l

Chitosan-based nano?brous membranes for antibacterial ?lter applications

Ashleigh Cooper a ,Rachael Oldinski b ,Hongyan Ma b ,James D.Bryers b ,Miqin Zhang a ,?

a Department of Materials Science &Engineering,University of Washington,Seattle,WA 98195,USA b

Department of Bioengineering,University of Washington,Seattle,WA 98195,USA

a r t i c l e

i n f o

Article history:

Received 9August 2012

Received in revised form 27August 2012Accepted 31August 2012

Available online 7 September 2012

Keywords:

Micro?ltration Nano?ber Chitosan Antibacterial

Water permeability

a b s t r a c t

Nano?brous membranes have drawn considerable interest for ?ltration applications due to their ability to withstand high ?uid ?ux while removing micro-and nano-sized particulates from solution.The desire to introduce an antibacterial function into water ?lter applications presents a challenge to widespread application of ?brous membranes because the addition of chemicals or biocides may produce harmful byproducts downstream.Here,we report the development of chitosan–polycaprolactone (PCL)nano?-brous membranes to utilize the natural antibacterial property of chitosan for antibacterial water ?ltration.Chitosan–PCL ?bers with diameters of 200–400nm and chitosan contents of 25,50and 75wt%were prepared by electrospinning.In a series of bacterial challenge tests,chitosan–PCL ?brous membranes signi?cantly reduced Staphylococcus aureus adhesion compared to PCL ?brous membranes.In water per-meability and particulate size removal tests,?brous membranes with 25%chitosan supported the greatest water ?ux (~7000L/h/m 2)with 100%removal of 300-nm particulates,while maintaining the membrane integrity.This study demonstrates the potential of chitosan–PCL nano?brous membranes as pre-?lters for water ?ltration systems that demonstrate combinatorial ?ltration and intrinsic antibacterial advantages.

? 2012 Elsevier Ltd. All rights reserved.

1.Introduction

More than 1billion people worldwide lack access to afford-able,potable water resulting in increased health risks associated with waterborne illnesses (Nations,2003).Methods currently used to purify water of pathogens and bacteria rely on direct chemi-cal treatments,which can potentially produce harmful byproducts downstream (Gomez et al.,2006).Consequently,?ltration has emerged as a cost effective and chemical-free approach for the decontamination and puri?cation of water supplies (Li &Chase,2010;Porcelli &Judd,2010;Sato,Wang,Ma,Hsiao,&Chu,2011).Nano?brous membranes have increased porosity and an interconnected pore structure that results in increased perme-ability and thus high-throughput compared to membranes of micro?bers.Nano?brous membranes with pore sizes of 0.45?m selectively remove bacteria (Gomez et al.,2006),as the bac-terium size,i.e.1.6×0.8?m for Pseudomonas aeruginosa ,2×1?m for Escherichia coli and 0.8?m for Staphylococcus aureus ,are larger than the membrane pore size (Lebleu,Roques,Aimar,&Causserand,2009).In combination with nano?brous mem-branes,antibacterial agents are often used to kill or inhibit

?Corresponding author at:302L Roberts Hall,Department of Materials Science and Engineering,University of Washington,Seattle,WA 98195,USA.Tel.:+12066169356;fax:+12065433100.

E-mail address:mzhang@https://www.wendangku.net/doc/7d12443522.html, (M.Zhang).

the growth of bacteria that would otherwise lead to biofoul-ing and decreased ?lter ef?ciencies (Botes &Eugene Cloete,2010).Nano?brous membranes with an exogenic antibacterial agent,such as polyamide/poly(dimethylimino)(2-hydroxy-1,3-propanedily)chloride (Daels et al.,2011),cellulose acetate/silver nanoparticles (Lala et al.,2007),poly(vinylidene ?uoride)/silver nanoparticles (Yuan et al.,2009),chitosan/polyvinyl alcohol/silver nitrate/TiO 2(Son,Yeom,Song,Lee,&Hwang,2009),and inorganic silica/silver nanoparticles (Kyung,Kwark,&Park,2007)have been developed to release their biocidal agents during ?ltration.In this study,we report the development of a chitosan-based nano?brous membrane with inherent antibacterial properties to improve safety and ef?cacy of ?ltration.

Chitosan exhibits antimicrobial properties towards bacteria,viruses,and fungi,for which many strains have been assayed (Muzzarelli et al.,1990,2001;Rabea,Badawy,Stevens,Smagghe,&Steurbaut,2003).The antimicrobial mechanism includes the ini-tial deposition of a chitosan coat on the anionic cell wall,with subsequent alteration of biochemical functions,and damage to internal organelles by internalized chitosan oligomers (Kong,Chen,Xing,&Park,2010;Liu,Du,Wang,&Sun,2004;Muzzarelli et al.,1990).Chitosan (in the solid-state as well)exhibits a cationic sur-face charge at physiological pH values (Hoven,Tangpasuthadol,Angkitpaiboon,Vallapa,&Kiatkamjornwong,2007;Matienzo &Winnacker,2002;Matsumoto,Yako,Minagawa,&Tanioka,2007),but only a few studies have investigated it as a component in antimicrobial ?lters.Desai et al.,illustrated bacteriostatic reduction

0144-8617/$–see front matter ? 2012 Elsevier Ltd. All rights reserved.https://www.wendangku.net/doc/7d12443522.html,/10.1016/j.carbpol.2012.08.114

A.Cooper et al./Carbohydrate Polymers92 (2013) 254–259255

Table1

Solution concentrations used for electrospinning to produce different?ber compositions.

Solution concentrations used(wt%)

Fiber compositions Chitosan PCL

100%PCL10% 25%chitosan,75%PCL7%12% 50%chitosan,50%PCL7%12% 75%chitosan,25%PCL5%12%

on chitosan–polyethylene oxide?bers at pH7.08,however the ?ber membranes lacked structural integrity under a?lter pres-sure of2mm Hg(~2×10?3bar,0.2kPa),resulting in large tears in the membrane(Desai et al.,2009).It is therefore of interest to develop an antibacterial,solid-state chitosan-based nano?brous ?lter that can sustain?ltration pressures,exhibit high permeabil-ity,selectively remove particles based on size and provide a safe antibacterial mode of action for water?ltration applications.

Polycaprolactone(PCL)is commonly found in tissue engineering applications due to its structural and mechanical stability(Gross &Kalra,2002;Hollister,2005).We have previously reported the design and electrospinning fabrication of non-woven nano?brous membranes comprised of chitosan and PCL with good mechan-ical and biological properties favorable for tissue regeneration (Cooper,Jana,Bhattarai,&Zhang,2010).In this study,chitosan–PCL ?brous membranes were prepared with different amounts of chi-tosan to impart an antibacterial property to the membrane.These ?bers were prepared without chemical crosslinking or harmful biocides to demonstrate the intrinsic antibacterial characteristics of chitosan for?ltration application.The morphology,mechanical properties,and permeability of the membranes were characterized with scanning electron microscopy(SEM),transmission electron microscopy(TEM),tensile testing,water?ow permeability tests and particulate removal tests.A bacterial challenge with S.aureus, a Gram-positive bacterium,was performed to evaluate the antibac-terial performance of the membranes.

2.Materials and methods

2.1.Electrospinning solution preparation

Chitosan and PCL solutions were prepared separately,and then mixed to create a solution of chitosan–PCL.Chitosan(85%deacety-lated,Aldrich,St.Louis,MO)was dissolved in7wt%tri?uoroacetic acid(TFA,Aldrich)and re?uxed at70?C for3h,and PCL was dis-solved in2,2,2-tri?uoroethanol(TFE,Aldrich).In preparation of the electrospinning solutions with different polymer concentrations, chitosan(5and7wt%)and PCL(10and12wt%)solutions were prepared.Chitosan–PCL electrospinning solutions were prepared according to Table1.Immediately prior to electrospinning,the chi-tosan and PCL solutions were mixed to produce a chitosan–PCL solution with the desired?nal polymer ratio.A10%PCL solution in TFE was prepared as a PCL electrospinning solution.

2.2.Electrospinning and characterization of?brous mats

To produce electrospun nano?bers,approximately2mL of the solution was placed in a3mL syringe.The syringe tip was placed approximately20cm from a?ber collector,oriented?25?from the horizontal,and a22kV voltage supply was used to charge the solution.The solution was discharged towards a rotating grounded drum(200rpm)to collect randomly oriented?brous mats,with individual?brous mats being~100?m in thickness. The collected mats were allowed to dry overnight under a chemical hood and then were attached to a coverslip using biocompatible poly-l-lactide(Boehringer Ingelheim,Germany)dissolved in hexa?uoroisopropanol(Aldrich)at 3.5wt%.Chitosan–PCL non-porous?lms(as a two-dimensional control)were prepared by spin-coating the dilute chitosan–PCL solution onto a coverslip. All the?bers and?lms were neutralized with14%ammonium hydroxide for5min to remove residual acid,followed by rinsing three times with DI water for5min each.SEM and TEM were used for morphological and phase analysis.For SEM,the samples were coated with gold for30s with18mA current applied to a Pt target. The samples were imaged with a JEOL7000F SEM(JEOL Ltd.,Japan) at an accelerating voltage of5–10kV.For TEM analysis,samples were transferred to a PELCO folding copper grid and imaged with

a Philips CM100transmission electron microscope.

2.3.Static bacterial challenge

For the bacterial challenge experiments,the samples were dis-infected with70%ethanol prior to bacteria seeding.To evaluate bacterial adhesion and bio?lm formation on these?brous samples, S.aureus(ATCC25693)were incubated with?ber-coated glass cov-erslips in24-well tissue culture plates.S.aureus were streaked on agar plates supplemented with10g/L trypticase soy broth(TSB,pH 7.2)and incubated at37?C until growing colonies reached desired sizes.For suspended culture inocula,a single colony sample from the streak plate was collected with a sterile loop,added to25mL of 10g/L TSB,and incubated at37?C overnight.Bacterial cells from the overnight culture were diluted with10g/L fresh TSB to a?nal con-centration of5×104cells/mL,and then seeded into individual wells of24-well plates containing?bers and control?lms(n=3).The plates were incubated at37?C under rotation at125rpm.At each preset time point(8and24h of incubation),samples were removed and washed twice with PBS and placed in a new10mL tube with

1.5mL PBS.Each sample was sonicated for5s three times using

a needle ultrasonicator.The solution was then serial diluted and placed on TSB plates and the colony forming units(CFU)counted after8and24h(Tomasiewicz,1980).Data were represented as CFU per area(colony number on plate×dilution factor×1.5mL total volume)/(0.01mL sample volume×gross surface area of the glass cover plate0.785cm2).After24h of bacterial culture,the membranes were?xed for SEM analysis in3%glutaraldehyde and dehydrated in an ethanol wash series.The membranes were sputter coated with7nm of gold prior to SEM imaging.

2.4.Flow cell apparatus and particulate testing

Square membranes of~2cm in width were cut from the nano?bers mats.These square sample membranes were used for individual water?ux testing and particulate-water separation test-ing with an open-ended?ltration setup.The?brous membrane was sandwiched between two plastic plates with~1cm inner diame-ter holes.The membrane surface was placed horizontally and two tubes(~1cm inner diameter)were coaxially connected to the holes of the top and bottom plastic plates,respectively,to act as an inlet and outlet for water?ow.To create a desired pressure on the mem-brane surface,the inlet was?lled with water to a known head height with respect to the membrane surface.To maintain a con-stant pressure,water was continuously added to keep the head height constant at the inlet.To test the?ow rate through the mem-branes,an inlet pressure between~0.75and3kPa was applied, and the amount of water that passed through the membrane was measured in1min increments over a5-min period.

To test the performance of the membranes for particle sep-aration,polystyrene(PS)particles with100,300and1000nm diameters(Sigma–Aldrich)were used.Individual solutions of the PS beads were prepared at200ppm in DI water and were allowed to pass through the membranes.To characterize the removal

256 A.Cooper et al./Carbohydrate Polymers92 (2013) 254–259

Table2

Colony forming units(CFUs,cell number/cm2)of adhered S.aureus cells on nano?-brous membranes with different chitosan concentrations.

Cell number/cm2

Fiber compositions8h24h

100%PCL 4.64±1.20 6.45±2.14 25%chitosan 2.02±0.60a 3.79±0.84 50%chitosan 2.54±0.30a 3.61±0.28a 75%chitosan 2.59±0.9 2.92±0.48a

a Indicates signi?cant difference to100%PCL?ber.

ef?ciency of the membranes,the?rst2mL of eluent that passed through the membranes at an initial pressure of~1.5kPa were col-lected.The recovered solution was characterized with a UV–vis spectrometer operated at490nm and the concentration of PS nanoparticles was determined from a calibration curve of known PS/DI water concentrations.The membranes were washed brie?y with water to remove excess PS beads and prepared for SEM anal-ysis by drying at37?C.

2.5.Statistical analysis

Results for bacterial analysis were presented as means±standard deviation.Statistical analysis was performed using one-way analysis of variance,followed by post hoc Student’s t-test.Differences were considered signi?cant for values of p<0.05.

3.Results and discussion

Non-woven,randomly oriented?brous chitosan–PCL mem-branes were prepared by electrospinning chitosan–PCL solutions containing0,25,50and75wt%of chitosan using a rotating drum setup.The volume of the chitosan–PCL solutions used for preparing an electrospun membrane were the same for all of the ratios(~2mL)and the electrospinning conditions were controlled to produce similar density membranes composed of nano?bers with approximately the same diameter.As shown in the SEM images of Fig.1a–d,uniform nano?brous membranes were formed from all PCL and chitosan–PCL solutions with?ber diameters of 200–400nm.Pure PCL?bers were electrospun from a10wt% PCL/TFE solution(Fig.1a).Chitosan–PCL?bers with25wt%chitosan (Fig.1b),50wt%chitosan(Fig.1c)and75wt%chitosan(Fig.1d) were electrospun from mixtures prepared from7and12wt%,7 and12wt%,and5and12wt%chitosan and PCL solutions,respec-tively.TEM analysis(Fig.1e–h)indicated the homogeneity of the solid?bers,with no sign of phase separation or structural voids.

All the prepared membranes were then assessed as an antibac-terial surface with S.aureus(SA25693)as a model bacterium to examine the inhibitory effect of increasing chitosan content in the chitosan–PCL membranes.The membranes were incubated with S.aureus over the course of a24-h period.Bacterial cell attach-ment was quanti?ed by counting the colony-forming units and by SEM imaging.As shown in Table2,compared to the synthetic PCL?ber control,the chitosan–PCL samples induced less S.aureus colonization.At the24-h time point,the number of attached S. aureus cells increased compared to the8-h time point except for the75wt%chitosan membranes,which exhibited no increase from 8to24h.PCL control membranes exhibited the largest increase in adherent bacterial numbers.At8h,all chitosan-containing membranes exhibited approximately half of the adherent cell counts versus the PCL control.The cell adhesion increases for the PCL membrane from8to24h while increases in adherent cell concentration from8to24h for chitosan-containing membrane were approximately the same for all four membranes.A previ-ous study of chitosan–PCL?lms cultured with a gram-positive Table3

Flux of PCL and chitosan–PCL membranes at a water pressure of1.5kPa.

Nano?brous membrane Flux(L/h/m2)

PCL2756.8±68.9

25%chitosan6926.8±1143.6

50%chitosan2629.46±97.3

75%chitosan N/A

bacterium,Streptococcus mutans,demonstrated similar results that with increasing chitosan content(i.e.cationic nature)the bacte-ria growth is reduced but not completely eliminated(Sarasam, Krishnaswamy,&Madihally,2006).Although the study by Sarasam et al.demonstrated that the chitosan-based?lms are not bacteri-cidal,a reduced bacterial growth in the culture media was reported, suggesting that those chitosan–PCL polyblends leached a growth inhibitory compound into the liquid phase.

After24h of bacterial culture,the membranes were?xed for SEM analysis to examine S.aureus cell accumulation.As shown in Fig.2a and e,a large bacteria population was observed on the PCL ?brous membrane,indicating that the bacteria proliferated into dense colonies.In contrast,S.aureus cells appeared sporadically on chitosan–PCL membranes.Increasing chitosan weight content in chitosan–PCL membranes did not signi?cantly decrease bacterial adhesion(Fig.2b–d and f–h).The SEM analysis qualitatively agrees with the colony counts shown in Table2.In this study,the density of bacterial challenge was signi?cantly greater than any situation present in natural environmental conditions,suggesting that the reduction observed within the24-h time period may be translated to a dramatically extended?lter lifetime for real-world conditions.

The permeability is particularly important to?ltration applica-tion as it dictates the amount of?uid that can be processed for a given time and dimension at a de?ned applied pressure with-out damaging the mechanical integrity of the?lter(Barhate& Ramakrishna,2007).The advantages of nano?brous membranes as ?lters include small pore sizes that reduce particle size exclusion and have a high surface-area to volume ratio,which can result in high?ux.In this study,a range of?ltration pressures(0.75–3kPa) was applied to the nano?brous membranes,which falls within the range of transmembrane pressures for micro?ltration membranes (Bjorge et al.,2009).Nano?brous membranes as?lters are typi-cally used in conjunction with other supports such as micro?bers (Homaeigohar,Buhr,&Ebert,2010);however the focus of this study was only on the pre-?lter and its standalone properties.The combination of these chitosan–PCL membranes with a mechanical support could increase the ability to withstand greater transmem-brane pressures.In this study,the membranes were exposed to transmembrane pressures of0.75–3kPa.Fibrous samples with50% and75%chitosan ruptured at3kPa.As a result,a pressure of1.5kPa was chosen for all subsequent tests.A vertical column of water was applied to the membrane surface at a constant pressure of1.5kPa and the amount of water that passed through the membrane was measured in1-min increments over a5-min period.Table3lists the evaluated?ux rates for PCL,25wt%and50wt%chitosan?ber mem-branes.The75%chitosan membrane was also subjected to the same ?ux test;however the membrane ruptured at this pressure,which was likely due to chitosan swelling.Thus,we concluded that the75% chitosan?brous membrane was not suitable for?ltration applica-tion under aqueous conditions.The25%chitosan?ber membrane allowed for the highest?uid?ux of~7000L/h/m2.After the?ux test,the membrane morphology was examined with SEM(Fig.3). The PCL membrane showed less uniform pore sizes and some pores collapsed corroborating the relatively low?ux.The25%chitosan membrane exhibited uniform pore dispersion.Alternatively,the 50%chitosan showed a compressed structure similar to that of the PCL membrane,which contributed the relatively low?ux.

A.Cooper et al./Carbohydrate Polymers 92 (2013) 254–259

257

Fig.1.SEM analysis of nano?brous membranes with various chitosan concentrations.SEM images of electrospun nano?brous membranes with (a)PCL only,(b)25%chitosan and 75%PCL,(c)50%chitosan and 50%PCL,and (d)75%chitosan and 25%PCL.The scale bars represent 2?m in (a–d).TEM images of nano?brous membranes with (e)PCL only,(f)25%chitosan,(g)50%chitosan and (h)75%chitosan.The scale bars represent 400nm in

(e–h).

Fig.2.SEM analysis of S.aureus on nano?brous membranes at low (top row)and high (bottom row)magni?cations.(a and e)PCL only,(b and f)25%chitosan,(c and g)50%chitosan and (d and h)75%chitosan.The samples were ?xed after 24h of culture with an initial bacteria density of 5×104cells/mL in tryptic soy broth medium.Scale bars represent 5?m (top row)and 2.5?m (bottom row).Note the excessive ?ber swelling in h.

Particulate removal,in addition to ?ux rate,is another primary measure of ?lter ef?cacy.To assess the ?ltering capabilities of the membranes,a series of particulate suspensions comprising polystyrene (PS)beads of different sizes were passed through these membrane ?lters at a set pressure.The 75wt%chitosan ?ber membrane was not included in this study due to signi?cant mate-rial swelling and membrane rapture as mentioned above.Solutions

containing PS beads of 100,300and 1000nm diameters,respec-tively,were passed through the membranes at 1.5kPa,and the ?rst 2mL of eluent was analyzed by UV–vis spectroscopy.The removal ef?ciency was evaluated by comparing the concentration of the eluent with the concentration of the initial solution (200ppm).As shown in Table 4,all of the membranes completely removed the large 1000-nm diameter PS beads from the solution (100%

removal

Fig.3.SEM images of nano?brous membranes with (a)PCL only,(b)25%chitosan and (c)50%chitosan after subjected to water ?ux for 5min at 1.5kPa.The scale bars represent 5?m.

258 A.Cooper et al./Carbohydrate Polymers 92 (2013) 254–

259

Fig.4.SEM images of nano?brous membranes containing (a)PCL only,(b)25%chitosan and (c)50%chitosan following a particulate ?ow study with 300-nm diameter PS beads.The scale bars represent 2?m.

Table 4

Particulate removal ef?ciency of membranes with different chitosan concentrations.

Particulate removal ef?ciency (%)

Fiber compositions

100nm

300nm

1000nm

50%chitosan 9.2561.4810025%chitosan 14.0899.76100100%PCL

30.63

31.78

100

ef?ciency).With decreasing bead size,the removal ef?ciency decreased and varied depending on the membrane material.For 300-nm PS beads,the PCL and 50%chitosan membranes had removal ef?ciencies of ~31.7%and 61.5%,respectively.Alterna-tively,the 25%chitosan membrane removed 99.6%of the 300nm PS beads from the solution.The addition of chitosan to PCL altered the electrospinning behaviors of the solution and effectively reduced the ?ber diameters and increased the density.As a result,the addi-tion of PCL created a dense,nano?brous mat surface that effectively restricted passage of the 300-nm PS particles.The removal ef?-ciency was signi?cantly reduced when the PS beads decreased to 100nm in size (25%,15%and 10%for the PCL,25%and 50%membranes,respectively).Notably,the 25%chitosan–PCL ?brous membrane size-exclusion behavior approached the requirements for HEPA ?lters (99.7%for 300-nm particulates)(Ahn et al.,2006;Barhate &Ramakrishna,2007),suggesting the membrane could act as an antibacterial pre-?lter for aerosol applications.

SEM was used to analyze the membrane surfaces after 300-nm particulate removal.As shown in Fig.4a,PS beads adhered strongly to the PCL ?bers,wherein the pore size of the membrane was signi?cantly larger than the particle diameter,which could have attributed to its low removal ef?ciency demonstrated in Fig.4.Alternatively,the PS beads fully covered the 25%(Fig.4b)and 50%(Fig.4c)chitosan membrane surfaces.The resulting beaded surface followed the topography of the ?bers,and showed deep penetra-tion into the ?ber layers and pores,indicating that the membranes captured the beads,preventing trans-membrane passage.The 25%chitosan–PCL membrane exhibited the best antibacterial behavior,?ux performance,and size selectivity down to 300-nm particles.Due to the versatility of the electrospinning method,the porosity,inter-?ber spacing and thickness of a membrane can be controlled to alter the ?ux and selectivity of a membrane.As a result,the chitosan–PCL membranes can be tailored to speci?c ?ux values and particulate removals depending on the application.

4.Conclusions

Nano?brous membranes were developed via electrospinning with increasing chitosan content to utilize the antibacterial prop-erties of the natural polymer and size-selectivity of the ?brous membranes.We demonstrated that the incorporation of 25%chi-tosan into the nano?brous membrane reduced S.aureus bacterial colonization by 50%compared to membranes made of pure PCL ?bers.With increasing chitosan content,the ?bers were more

susceptible to swelling,preventing their application as a ?lter.At 25and 50%chitosan content,the highly porous membranes supported high water permeability that did not damage the membrane mor-phology.Furthermore,a chitosan–PCL ?brous membrane was able to remove near 100%of 300-nm diameter particles,demonstrating the ability to selectively remove particles and act as a pre-?lter.The developed membrane combines the antibacterial behavior of natural chitosan polymer with nano?ber advantages to serve as a candidate for micro?ltration applications.

Acknowledgements

This work is supported in part by UW TGIF and the Kyocera Professor Endowment.Rachael Oldinsky and James Bryers were supported by the NIH (Grant number:R01DE018701).Ashleigh Cooper would like to acknowledge the support by the Bank of America Endowed Minority fellowships.

References

Ahn,Y.,Park,S.,Kim,G.,Hwang,Y.,Lee,C.,Shin,H.,et al.(2006).Development

of high ef?ciency nano?lters made of nano?bers.Current Applied Physics ,6(6),1030–1035.

Barhate,R.,&Ramakrishna,S.(2007).Nano?brous ?ltering media:Filtration prob-lems and solutions from tiny materials.Journal of Membrane Science ,296(1–2),1–8.

Bjorge,D.,Daels,N.,De Vrieze,S.,Dejans,P.,Van Camp,T.,&Audenaert,W.(2009).

Performance assessment of electrospun nano?bers for ?lter applications.Desali-nation ,249(3),942–948.

Botes,M.,&Eugene Cloete,T.(2010).The potential of nano?bers and nanobiocides

in water puri?cation.Critical Reviews in Microbiology ,36(1),68–81.

Cooper, A.,Jana,S.,Bhattarai,N.,&Zhang,M.(2010).Aligned chitosan-based

nano?bers for enhanced myogenesis.Journal of Materials Chemistry ,20(1),8904–8911.

Daels,N.,De Vrieze,S.,Sampers,I.,Decostere,B.,Westbroek,P.,Dumoulin,A.,et al.

(2011).Potential of a functionalised nano?bre micro?ltration membrane as an antibacterial water ?lter.Desalination ,275(1–3),285–290.

Desai,K.,Kit,K.,Li,J.,Michael Davidson,P.,Zivanovic,S.,&Meyer,H.(2009).

Nano?brous chitosan non-wovens for ?ltration applications.Polymer ,50(15),3661–3669.

Gomez,M.,De la Rua,A.,Garralon,G.,Plaza,F.,Hontoria,E.,&Gomez,M.(2006).

Urban wastewater disinfection by ?ltration technologies.Desalination ,190(1–3),16–28.

Gross,R.A.,&Kalra,B.(2002).Biodegradable polymers for the environment.Science ,

297(5582),803–807.

Hollister,S.J.(2005).Porous scaffold design for tissue engineering.Nature Materials ,

4(7),518–524.

Homaeigohar,S.S.,Buhr,K.,&Ebert,K.(2010).Polyethersulfone electrospun nano?-brous composite membrane for liquid ?ltration.Journal of Membrane Science ,365(1–2),68–77.

Hoven,V.P.,Tangpasuthadol,V.,Angkitpaiboon,Y.,Vallapa,N.,&Kiatkamjorn-wong,S.(2007).Surface-charged chitosan:Preparation and protein adsorption.Carbohydrate Polymer ,68(1),44–53.

Kong,M.,Chen,X.G.,Xing,K.,&Park,H.J.(2010).Antimicrobial properties of chi-tosan and mode of action:A state of the art review.International Journal of Food Microbiology ,144(1),51–63.

Kyung,M.D.,Kwark,Y.-J.,&Park,W.H.(2007).Preparation of inorganic silica

nano?bers containing silver nanoparticles.Fibers and Polymers ,8(6),591–https://www.wendangku.net/doc/7d12443522.html,la,N.L.,Ramaseshan,R.,Bojun,L.,Sundarrajan,S.,Barhate,R.,Ying-jun,L.,et al.

(2007).Fabrication of nano?bers with antimicrobial functionality used as ?lters:Protection against bacterial contaminants.Biotechnology and Bioengineering ,97(6),1357–1365.

A.Cooper et al./Carbohydrate Polymers92 (2013) 254–259259

Lebleu,N.,Roques,C.,Aimar,P.,&Causserand,C.(2009).Role of the cell-wall structure in the retention of bacteria by micro?ltration membranes.Journal of Membrane Science,326(1),178–185.

Li,J.,&Chase,H.A.(2010).Applications of membrane techniques for puri?cation of natural products.Biotechnology Letters,32(5),601–608.

Liu,H.,Du,Y.,Wang,X.,&Sun,L.(2004).Chitosan kills bacteria through cell mem-brane damage.International Journal of Food Microbiology,95(2),147–155. Matienzo,L.J.,&Winnacker,S.K.(2002).Dry processes for surface modi?cation of a biopolymer:Chitosan.Macromolecular Materials and Engineering,287(12), 871–880.

Matsumoto,H.,Yako,H.,Minagawa,M.,&Tanioka,A.(2007).Characterization of chi-tosan nano?ber fabric by electrospray deposition:Electrokinetic and adsorption behavior.Journal of Colloid and Interface Science,310(2),678–681.

Muzzarelli,R.,Muzzarelli,C.,Tarsi,R.,MIllani,M.,Gabbanelli,F.,&Cartolari,M.

(2001).Fungistatic activity of modi?ed chitosans against Saprolegnia parasitica.

Biomacromolecules,2(1),165–169.

Muzzarelli,R.,Tarsi,R.,Filippini,O.,Giovanetti,E.,Biagini,G.,&Varaldo,P.E.(1990).

Antimicrobial properties of N-carboxybutyl chitosan.Antimicrobial Agents and Chemotherapy,34(10),2019–2023.

Nations,U.(2003).Water for people,water for live:The United Nations World Devel-opment Report.UNESCO Publishing/Berghahan Books.Porcelli,N.,&Judd,S.(2010).Chemical cleaning of potable water membranes:A review.Separation and Puri?cation Technology,71(2),137–143.

Rabea,E.I.,Badawy,M.E.T.,Stevens,C.V.,Smagghe,G.,&Steurbaut,W.(2003).

Chitosan as antimicrobial agent:Applications and mode of action.Biomacro-molecules,4(6),1457–1465.

Sarasam,A.R.,Krishnaswamy,R.K.,&Madihally,S.V.(2006).Blending chitosan with polycaprolactone:Effects on physicochemical and antibacterial properties.

Biomacromolecules,7(4),1131–1138.

Sato,A.,Wang,R.,Ma,H.,Hsiao,B.S.,&Chu,B.(2011).Novel nano?brous scaffolds for water?ltration with bacteria and virus removal capability.Journal of Electron Microscopy,60(3),201.

Son,B.,Yeom,B.-Y.,Song,S.H.,Lee,C.-S.,&Hwang,T.S.(2009).Antibacterial elec-trospun chitosan/poly(vinyl alcohol)nano?bers containing silver nitrate and titanium dioxide.Journal of Applied Polymer Science,111(6),2892–2899. Tomasiewicz,D.(1980).The most suitable number of colonies on plates for counting.

Journal of Food Protection,43(4),282–286.

Yuan,J.,Geng,J.,Xing,Z.,Shen,J.,Kang,I.-K.,&Byun,H.(2009).Electrospinning of antibacterial poly(vinylidene?uoride)nano?bers containing silver nanoparti-cles.Journal of Applied Polymer Science,116(2),668–672.

计算机类部分核心期刊投稿经验

计算机类部分核心期刊投稿经验 (2010-05-31 19:05:39) 转载▼ 分类:计算机与 Internet 标签: 杂谈 1、计算机工程与应用:审稿费100元,审稿周期60-70天左右,版面费930-1100元不等。该刊是旬刊,从录用到出刊大概需要12个月,有时看运气,如果运气好点四个月左右。最大特点是该刊的承载的论文数量较大,相对来说比较好中,但大家都看中的这一特点,所以从论文的数量上来说,须有点创新点较好,比较看重博士论文。可以加急出刊,但费用较高。总结:容易。 2、计算机工程与设计:审稿费100元,(加急审稿200元,一个月审回),审稿周期60 天左右,版面费900-1100元左右。该刊是半月刊。从录用到出刊大概10个月左右。论文的质量一般,比较好中。该刊比较注重项目的基金号或是重大科研课题,如果有比较牛基金号录用率一般在90%以上。可以加急出刊,费用较高,一般是版面费的一半左右。总结:容易。 3、计算机工程:审稿费100元,(加急审稿200元,20天审回),审稿周期是45天左右,版面费950-1100不等。该刊是半月刊,该刊曾是EI收入源(2007年以前)现在不是。该刊对论文质量把关比较严格,对创新性论文比较感兴趣,注重基金号和重大科研课题。录用率基本保持在30%左右,比较难中,对博士论文比较依赖,有严格的字数和参考文献限制(一般是7000字和5篇参考文献),个人觉得没有必要。出刊时间一般情况下是10-12个月左右可以加急出刊,费用较高。总结:较难。 4、计算机应用研究:不需要审稿费,但版面费比较费1600元左右。审稿周期30天左右,比较快。该刊为月刊。从录用到出刊需要10个月。该刊非常注重基金号(特别是国家级基金号),如果没有国家级基金号(至少是省部级基金号)一般情况下都是增刊。论文质量还算可以,可以加急出刊,费用超高,没有必要。总结:较难。 5、计算机科学:审稿费150元,不可以加急审稿,审稿周期是60天,基本上不会超过65天。版面费1000-1100元不等。该刊为月刊。曾被一些重点院校定为重点核心期刊。审稿非常严格,对理论数据验证和推导十分看重同时也非常注重仿真结果,比较喜欢录用基金号的论文。对作者的工作单位和学历也是比较看重。博士学历的论文录用较高。出刊时间一般情况10个月左右。总结:较难。 6、计算机应用:审稿费50元,版面费1000元左右。该刊为月刊。审稿周期50天左右,论文质量还算可以,对论文格式和论文创新性要求比较严格,比较注重作者工作和作者的学历,但一般高校研究生只要挂一个博导也是比较好中,对基金号并不十分看重,是研友们不错的选择。出刊时间6-7个月左右。总结:一般。 7、计算机仿真:审稿费100元(可以加急审稿200元,30天左右),版面费1300-1500不等。审稿周期70天左右,该刊给本人感觉并不像研友们说的那样,给钱就发。该刊审稿比较严格,对论文的创新性和仿真要求比较高,对论文的格式需求非常高,如有一点没有按照要求排版,它都会退给作者重新排版。出刊时间特别慢,一般来说要13-14个月才能出刊。总结:一般。 8、计算机测量与控制:审稿费待录用后一起收。版面费+审稿费:1300-1500不等。审稿周期40-50天左右。该刊为月刊。 该刊主要录用计算机控制方面的论文,如写计算机理论方面和图像方面的论文录用率基本为零。论文质量一般,不过现在有所提升,比较注重基金号的论文和作者出身。出刊时间10个月左右。总结:容易。

计算机核心期刊排名及投稿经验

计算机核心期刊排名及投稿经验 计算机核心期刊新排名:2004部分核心期刊名单(自动化、计算机部分与无线电、电信部分) 自动化、计算机部分 1 计算机学报北京中国计算机学会等 2 软件学报北京中国科学院软件研究所 3 计算机研究与发展北京中国科学院计算技术研究所等 4 自动化学报北京中国科学院等 5 计算机科学重庆国家科技部西南信息中心 6 控制理论与应用广州中国科学院系统科学研究所等 7 计算机辅助设计与图形学学报北京中国计算机学会等 8 计算机工程与应用北京华北计算技术研究所 9 模式识别与人工智能北京中国自动化学会等 10 控制与决策沈阳东北大学 11 小型微型计算机系统沈阳中国科学院沈阳计算机技术研究所 12 计算机工程上海上海市计算机协会 13 计算机应用北京中国科学院计算机应用研究所等 14 信息与控制沈阳中国科学院沈阳自动化研究所 15 机器人沈阳中国科学院沈阳自动化研究所 16 中国图象图形学报 A版北京中国图象图形学会 17 计算机应用研究成都四川省计算机应用研究中心 18 系统仿真学报北京航天机电集团北京长峰计算机技术有限公司 19 计算机集成制造系统—CIMS 北京国家863计划CIMS主题办公室等 20 遥感学报 .北京中国地理学会环境遥感分会,中国科学院遥感应用研究所 21 中文信息学报北京中国中文信息学会 22 微计算机信息北京中国计算机用户协会,山西协会 23 数据采集与处理南京中国电子学会等 24 微型机与应用北京信息产业部电子第6研究所 25 传感器技术哈尔滨信息产业部电子第49研究所 26 传感技术学报南京国家教委全国高校传感技术研究会,东南大学 27 计算机工程与设计北京航天工业总公司706所 28 计算机应用与软件上海上海计算技术研究所等 29 微型计算机重庆科技部西南信息中心 30 微电子学与计算机西安中国航天工业总公等 计算机类部分期刊杂志投稿信息 1、《计算机工程与设计》和《计算机应用与软件》核心,相对来讲比较好中。 2、《计算机应用研究》国家一级期刊,核心,录用率60%, 通知得较快。

核心期刊发表周期

核心期刊发表论文的周期是多少 在发表论文的时候,每个人都会关心期刊的出版周期,及什么时候能录用,什么时候能见刊等。从出版周期来算,有半月刊,月刊,双月刊,更长的还有季刊等。但是选择了周期短的刊物又不一定能赶上当月的出版,另外录用与否也是很重要的问题。那么核心期刊发表论文周期一般都是多少呢?核心期刊有哪些分类呢? 核心期刊的类别: 目前,与医生朋友们职称晋升关系最为密切的核心期刊包括两种:统计源核心期刊和中文生物核心期刊。 统计源期刊,全称为中国科技论文统计源期刊,每2年评定一次,各项指标达到标准的,则入选最新的中国科技论文统计源期刊目录,反之,则被排除在外; 中文核心期刊是北京大学图书馆联合众多学术界权威专家鉴定,全称是中文生物核心期刊,或称“北图”核心期刊。中文核心期刊是在统计源期刊的基础上,每4年筛选、评定、刷新一次。 也就是说,中文核心期刊一定是统计源期刊,统计源期刊却并不一定是中文核心期刊。 友情提示:作者朋友们在投稿时一定要根据晋升政策选择相应种类的核心期刊,切勿发错!核心期刊发表周期: 核心期刊有其严格的审稿流程与标准,发表难一直是作者投核心期刊的一大难题。核心期刊的正常审稿周期1——3个月,发表周期是6——12个月,还需得在论文质量较高的基础上;若论文本身先天不足,便极有可能面临退稿,或多次返修,致使周期更长。所以,作者要求的“近一两个月发表”基本上是不可能实现的。 核心期刊发表现状: 对于作者来说,核心期刊本身就写作难、审稿难、发表难,周期已经很长;加之今年两会以来,机构合并、体制改革,新闻出版总署对出版行业的出版流程进行干涉,审核更为严格,各杂志社基于自身发展需要,纷纷以提高杂志质量为前提,控制版面,更为严格审稿标准,值就直接导致版面更紧张,刊期一延再延,发刊时间一变再变,周期越拉越长! 综上所述,我们不难得出结论:想让论文在核心期刊上顺利发表同时不影响晋升时间,我们唯一能做的,就是趁早投稿、早作准备,留出充足的时间应对可能出现的时间、版面等方面出现的变故

核心期刊的大概审稿流程

核心期刊的大概审稿流程 核心期刊的定义这里不做介绍(我们最熟悉的就是南核和北核),核心期刊评选的单位不同,称呼也不同,但是总体来说,核心期刊是指刊发文章质量高,被引用多,所以核心期刊遴选刊发的论文要求是很高、很严格的,所以,文章质量很重要,核心期刊的审稿流程也必要规范严。 1.投稿 核心期刊目前主要有三种投稿方式,投稿联系天天论文职编辑扣2014148452一是邮寄打印稿纸质版邮寄给杂志社,二是在线投稿,通过期刊官网或者知网合作投稿,三是邮箱投稿,将稿件文档通过电子邮件方式投稿。当然,如果是大牛,编辑主动约稿也是有的。关键在于找到期刊投稿的正确方式,这里建议通过“中国知网”(https://www.wendangku.net/doc/7d12443522.html,)查询期刊版权页信息。也可以联系杂志社咨询正确的投稿方式。 提示: 1.期刊的格式要求、风格、投稿注意事项一定要了解 2.一定要找到官方投稿方式,否则浪费时间和钱 2.编辑初审 通过官方渠道投稿的稿件,编辑部一般会进行登记处理,并安排相关栏目编辑初审,编辑对论文的格式、内容是否适合杂志刊发等审核,并通过相应的方式反馈给作者,编辑初审的时间各个刊社情况略有不同,(核心期刊的初审时间,大都在10-30天左右),初审后,编辑部会召开会议,讨论初审通过的每篇文章的审稿理由。 3.专家外审 通过编辑部初审的稿件,为了确定研究的最新情况及成果的正确性,杂志社有自己的专家审稿团队,即了解相关领取的最新研究成果及进展的学者,初审通过的稿件会以“匿名”方式发送给专家进行审稿,审稿专家在一定时间内给予审稿回复,编辑部综合多位(2-3名)专家的意见确定外审的结果,外审是核心期刊必经的过程,时间较长一般为1-2个月。 提示: 1.审稿专家意见向来具有一定争议性,作者自行把握; 2.对待外审修改的意见,积极沟通与对待修改。 4.主编终审 外审给予刊发意见的稿件,会送主编终审。大部分核心期刊会有编审会,时间上不好定性这一阶段的时间,因为可快可慢,部分核心期刊会保持一定的退稿率。终审是文章审稿经历的最后一个环节。 5.安排刊期 经过以上流程,审稿通过的论文,期刊会给文章安排刊期,这个就得看具体时间了,有些核心的刊期都排到半年甚至一年以后了。 6.见刊 这步包括了清样定版、印刷出刊、邮寄刊物几个步骤,各需要半个月左右,甚至更长一些。

SCI期刊投稿各种状态详解及实例综合

SCI期刊投稿各种状态详解及实例综合(学习各种投稿状态+投稿经历总结) 1.SubmittedtoJournal?刚提交的状态——新手请看这里!!! 一般的步骤是这样的:网上投稿-Submitamanuscript:先到每个杂志的首页,打开submitpaper 一栏,先以通讯作者的身份register一个账号,然后以authorlogin身份登录,按照提示依次完成:SelectArticleType、EnterTitle、Add/Edit/RemoveAuthors、SubmitAbstract、EnterKeywords、SelectClassifications、EnterComments、RequestEditor、AttachFiles,最后下载pdf,查看无误后,即可到投稿主页approvesubmission或直接submitit。? 总结提示语:对于投稿之前和提交确认投稿过程,这里还需要对投稿新手强调以下几点。因为这些小问题被编辑评个低印象分不划算,被打回也浪费了时间和精力。一条条说来: 1)大多数系统是要求word投稿正文内容的,pdf多不为接受格式。但也有很少数要求用pdf格式的,务必注意细看稿约。 2)文献格式是否按拟投杂志标准要求核准?有的投稿系统是可以直接检查的。 3)引用文献条数是否符合该杂志要求?有的杂志不特别要求,有的还是非常重视的。如我之前投shock杂志,编辑和一位审稿人都提到参考文献不要超过35条。如果你文章写完后,能够适当精简文献条数,那么,请删减几条吧。 4)很多系统要求勾选同意一些如伦理道德的声明文件 5)提交后可能会有一个小栏目提示对提交图片的质量做了初步审查(不合格的最好重新作图再上传) 6)绝大多数投稿完成后需要viewsubmission和最后确认(approvesubmission)。viewsubmission 就是要求你再整体看看投稿填写的这些资料信息+coverletter+正文+图片表格,所生成的pdf全文是否满意、合格,也是你投稿完成前最后一次检查的机会了。 PS:有的新手可能不注意这点,提交后就不管了,还开开心心以为自己投稿成功,殊不知结果邮箱里一直没有收到投稿后的邮件回执和稿号,直到最后纳闷几天了才回去看系统状态。 2.ManuscriptreceivedbyEditorialOffice文章到了编辑手里了,证明投稿成功 3.Witheditor?若投稿时未要求选择编辑,则先到主编处,主编会分派给副主编或者其他编辑。这当中就会有另两个状态:? I)AwaitingEditorAssignment指派责任编辑? II)Editorassigned是把你的文章分给一个编辑处理了。? III)EditorDeclinedInvitation如果编辑接手处理了就会邀请审稿人了。? 总结提示语:一般情况下,投稿(submit)状态后一个星期内会出现编辑处理稿件(witheditor)这个状态。很多老外编辑很不能理解中国人喜欢催稿,绝大多数情况下,他们不会像国内某些期刊一样能拖上一年半载再给屁大点修回意见。要适当给编辑一点时间处理,他们也很忙的。不要轻易催稿,也有人因为催稿而立马收到杯具消息——不知是编辑不耐烦了,还是一种巧合。当然,如果submit四个星期后网上投稿系统还没出现witheditor状态信息,就要询问主编了,要注意委婉用语。不过要注意,也有期刊没有witheditor状态。

期刊论文发表周期

期刊论文发表需要经历啥过过程,周期是多长?论文发表周期太长了怎么办,论文发表周期可以协商吗?对于很多作者来说,现在的论文发表周期太长了,普通CN期刊,也就是普通的省级,国家级期刊,从投稿到发表,自然投稿,审核1-2个月,发表6-9个月,这还不是学报,核心期刊。就是找论文发表网站发表,这种算是快速通道来发表,那么发表周期也是一般在3-6个月左右,也就是现在是5月份,9月份发表出来,已经算是快的了,如果是教育类期刊,那么年底发表出来就算不错了。为什么论文发表周期这么长了,这个论文发表周期可以协商吗? 论文发表周期确实是长,可以协商吗,不可以。为什么不可以呢,就仿佛你春节期间购买火车票,你说怎么这么难买,怎么票一会儿就没了,这个可以协商吗?你觉得能协商吗?论文发表也是这个问题,刊物数量有限,每个刊物的版面数有限,之前投稿审核通过的文章,就给安排定稿了,也就是说,人家很多人排队排了好几个月了,终于好几个月之后发表了,这时候你说论文发表周期太长了,我能不能加在你们前面,你们那几个月白排队了,我非常着急发表,所以先迁就我,当然不行的。有部分可加急发表论文的情况也是少数,大部分情况下,是加急不了的,为什么呢,一个是人家杂志社的版面都定死了,一动都得动,太麻烦,所以如果能够有空余出来的版面可以加急的,你就烧高香吧,什么,几百块的加急费嫌贵?好吧,你这不知道加急这件事有多难吧,顶多2天后,你花2倍的费用也加急不上了,因为加急是特殊情况,一会就被抢光,有的是着急想发表论文的,几百块的加急费真不贵,为了这几百块,杂志社需要重新调整目录,页码,你觉得只花几百块,就能提前3-4个月发表论文,不够划算吗?划算大了啊。 总体来说呢,建议作者尽早准备论文,早安排早录用。

期刊论文审稿流程

一、编辑部初审 编辑部收到稿件后,先进行初审,内容包括: (1) 技术检查。主要是检查手稿是否包含了应该有的基本内容,论文重复率是否符合期刊要求,以及论文是否属于重复性投稿等。 (2) 论文的英文语言水平是否基本过关。 (3) 论文的内容是否符合该期刊要求。 二、编辑部审查结果: 1.上述条件均已符合。编辑将联系同行审稿人进行进一步送审,也就是同行评议。 2. 有地方需要完善。 例如手稿字数超出期刊规定,或编辑有些内容描述不够完整,再例如文章重复率或语言不过关,此时作者会暂时被拒稿,作者会收到编辑部的来信,明确告之稿件需要进行修改或补充 的地方。文件修改完毕后作者可根据指示将修改稿发回编辑部,或重投。 3. 直接被拒绝。 例如编辑判断文章创新性不足,或内容与期刊主旨不符合等。 三、同行评议 同行评审(peer review 也称为refereeing),是指一种学术成果审查程序。其主要目的是提高 投稿论文的质量,确保论文水平符合一般学术与该学科领域的标准。 (1)同行评议的主要形式: ?单盲评审。审稿人知道作者是谁,但作者不知道审稿人身份;一般来说这种形式居多。 ?双盲评审,作者与审稿人互相不知道对方身份。采取双盲评审能够限制审稿人的感情倾向。 ?公开评审,即作者姓名和审稿人互相公开,如British Medical。 (2)审稿人的选择 SCI期刊的审稿人大多是各领域专家,由期刊编委选择并邀请其成为审稿人。 有时候,期刊编辑可能更希望由作者推荐论文的审稿人,一般是填写自己比较熟知的同领域 专家,大多数作者选择自己文章所引用的参考文献的作者中有影响力的人物,推荐其作为论 文的审稿人,这种方法能够快速确认对方研究领域,也方便获取联系方式,对方或许还会看 在你引用他文献的情况下对你印象加分。 (3)论文评审标准 第一印象 ?研究是否具有原创性、新颖性,是否对该领域有重要意义? ?文章的组织结构和语言使用是否得当? 摘要 ?是否是概括性的? ?是否包含主要研究成果? ?长度是否合适? 引言 ?是否有效、清晰、条理分明? ?是否确实从下文角度入手,介绍内容?

计算机核心期刊排名及投稿经验

计算机核心期刊排名及 投稿经验 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

计算机核心期刊新排名:2004部分核心期刊名单(自动化、计算机部分与无线电、电信部分) 自动化、计算机部分 1 计算机学报北京中国计算机学会等 2 软件学报北京中国科学院软件研究所 3 计算机研究与发展北京中国科学院计算技术研究所等 4 自动化学报北京中国科学院等 5 计算机科学重庆国家科技部西南信息中心 6 控制理论与应用广州中国科学院系统科学研究所等 7 计算机辅助设计与图形学学报北京中国计算机学会等 8 计算机工程与应用北京华北计算技术研究所 9 模式识别与人工智能北京中国自动化学会等 10 控制与决策沈阳东北大学 11 小型微型计算机系统沈阳中国科学院沈阳计算机技术研究所 12 计算机工程上海上海市计算机协会 13 计算机应用北京中国科学院计算机应用研究所等 14 信息与控制沈阳中国科学院沈阳自动化研究所 15 机器人沈阳中国科学院沈阳自动化研究所

16 中国图象图形学报 A版北京中国图象图形学会 17 计算机应用研究成都四川省计算机应用研究中心 18 系统仿真学报北京航天机电集团北京长峰计算机技术有限公司 19 计算机集成制造系统—CIMS 北京国家863计划CIMS主题办公室等 20 遥感学报 .北京中国地理学会环境遥感分会,中国科学院遥感应用研究所 21 中文信息学报北京中国中文信息学会 22 微计算机信息北京中国计算机用户协会,山西协会 23 数据采集与处理南京中国电子学会等 24 微型机与应用北京信息产业部电子第6研究所 25 传感器技术哈尔滨信息产业部电子第49研究所 26 传感技术学报南京国家教委全国高校传感技术研究会,东南大学 27 计算机工程与设计北京航天工业总公司706所 28 计算机应用与软件上海上海计算技术研究所等 29 微型计算机重庆科技部西南信息中心 30 微电子学与计算机西安中国航天工业总公等 计算机类部分期刊杂志投稿信息 1、《计算机工程与设计》和《计算机应用与软件》核

期刊论文投稿之后的流程

网上投稿完成后,作者会即时收到稿件通知。如果论文题材不适合所投刊物,编辑会比较快 地回信退稿。如果格式有问题,编辑部也会及时要求重投。否则,作者就进入等待期。稿件 的命运一般有三种:录用、退稿、退改。 (一)录用 如果是一次性就收到录用通知,那作者是应该高兴庆贺的。但是,绝大多数是属于退改或者 退稿,而一次性就被录用的可能性小。 (二)退稿 如果收到的是退稿信,难过是难免的,但是不要一蹶不振。因为大多数的期刊的拒稿率还是 比较高的。国内杂志社的拒稿率高低不等,影响因子5分以上的杂志拒稿率可高达80%,一 般杂志(专业对口的普刊)拒稿率在10% 以上。 你应该做的是好好研究退稿信。有的退稿信中包含了一些有用的信息,比如说建议你重 新修改撰写后再行投稿,可能具有被录用的可能性;或者说建议改投他刊,如果是建议另投 他刊,那么你就没有再回投的必要了。这种是常见到的退稿信。 有的退稿信可能会说到你的研究中存在哪些缺陷。这样你应该按照意见修改后再投回该刊。 有的会说你的稿件分量不够。这样你就没有必要再投向该刊了,而应该改投他刊,或者 对稿件重新组织撰写后再投稿。 (三)退改 出现退改的情况无疑就两个原因:其一:格式不符合发刊标准,修改后可再次投稿;其二: 学术课题在实验性、理论性上没有新的科学研究成果或是没有提供新的科技信息,而是重复、模仿、抄袭前人的工作,此类情况就比较麻烦,得要推到重来,重新写作后再投。 遇到退改,作者不要沮丧,这非常正常,按照退改意见认真修改后,被录用的可能性就增大了。一般来说,如果收到的是退改决定,你应该感到庆贺,因为这提示你,你的稿件具有被 录用发表的可能。 但是,需要提醒的是,你如收到了退改信,并不一定就表示你的稿件就一定会被录用,其前 提是你必须按照退改要求上的修改建议来全部地认真地修改。你的稿件按照修改意见更新修 改稿件后,也不一定就表示一定会被录用的。不过,如果你完全遵照退改意见去修改你的稿 件了,一般被录用的可能性是非常大的。 退改的稿子应及时修改后反馈回编辑部,这样会加快你稿件的处理进度。如果收到的退 改意见很棘手,这时你得考虑更新进行大修改,这就费时间、精力和财力了;对于棘手的退 改意见,如果你无法办到,那就要考虑改投他刊了。因为,有时有的审稿人会给你出一两个 既刁难而又是客观的问题让你无法问答修改。如果在退改意见中,存在错误或者不合理的评 审意见,一定要认真澄清和解释。你认真澄清和解释后,编辑和审稿人还是不能认可理解的话,那你要么改投他刊,不必再浪费时间了,要么继续申辩,但要注意在继续申辩的过程中 绝对不能存在敌意,要心平气和。

材料类杂志审稿速度

材料类杂志审稿速度 全名影响因子* 投稿难易一审周期 materials science and engineering a-structural materials properties microstructure and processing 1.806 容易超快,一般1-3周(二区,近几年无光催化) materials letters 1.748 容易超快,一般1-3周(二区) journal of materials science 1.181 容易超快,一般1-3周(二区) journal of materials processing technology 1.143 容易超快,一般1-3周(二区,近几年无光催化) nuclear instruments & methods in physics research section b-beam interactions with materials and atoms 0.999 容易超快,一般1-3周(三区) journal of magnetism and magnetic materials 1.283 容易超快,一般1-3周(三区)rare metal materials and engineering 0.162 容易很快,2-3周(四区) journal of optoelectronics and advanced materials 0.577 容易很快,2-3周(四区) materials chemistry and physics 1.799 容易很快,2-3周(二区,八个月)applied physics a-materials science & processing 1.884 容易很快,2-3周(三区) journal of nuclear materials 1.501 容易很快,2-3周(二区,无光催化)materials transactions 0.753 容易较快,3-4周(四区) materials research bulletin 1.812 容易较快,3-4周(三区) journal of materials science-materials in medicine 1.508 容易较快,3-4周二区,两篇光催化) journal of materials research 1.743 容易较快,3-4周(三区)computational materials science 1.549 容易较快,3-4周(三区) metallurgical and materials transactions a-physical metallurgy and materials science 1.389 容易较快,3-4周(二区,投稿录用比例90%,平均4.89474个月的审稿周期)不建议 optical materials 1.714 容易较快,3-4周(三区) journal of materials science-materials in electronics 1.054 容易一般,4-6周(三区) inorganic materials 0.455 容易一般,4-6周(四区) construction and building materials 0.947 容易一般,4-6周 materials characterization 1.225 容易一般,4-6周(一区) journal of electronic materials 1.283 容易一般,4-6周(三区) journal of inorganic materials 0.37 容易一般,4-6周(四区) materials & design 1.107 容易一般,4-6周(二区,近几年无光催化)materials science & engineering c-biomimetic and supramolecular systems 1.812 容易一般,4-6周二区,无光催化) smart materials & structures 1.743 容易一般,4-6周(二区,近几年无光催化) journal of wuhan university of technology-materials science edition 0.424 容易一般,4-6周 materials science and technology 0.894 容易一般,4-6周三区

审稿较快的期刊(合集)

1最容易的,市场周刊,有刊号,非核心。非核心期刊之最佳选择,求投稿必中,版面费可商议,约为300~500不等,第二个月必出版,适合临近毕业又急需发论文的朋友~希望对你有帮助 2 经济研究导刊》审稿3到5天300元一个版面 《经济管理》,八月投稿,九月刊出,不要版面费,无稿酬。 《技术经济》,十月投稿,十一月刊出,版面费700(七版?),无稿酬 .《价值工程>>也还好发,一篇文章大约800左右,也还不贵,属于一般刊物。 3《金融与经济》,北大核心,江西人民银行办,要稿费,一般一个版面三百。采稿周期为一个月左右。编辑很好,不过他们开的版面费的发票是写的杂志社名称,而不是版面费发票,所以在报账的时候会有些麻烦。 4 《统计与决策》审稿速度比较快,文章要求也不是太长,但是通常分析经济问题是要用到一定的统计和计量经济方法,对于学习统计和计量经济学的学生不是太难,但是对有些这方面欠缺的学生来说有点难度。这个杂志倾向于方法的实际运用,理论探讨有点少。不过呢有时候版面费是比较高的。我硕士毕业的时候我们班有好几个在上面发了文章,平均版面费要到1600元。 5 市场周刊-财经论坛。原名叫管理现代化。在南京。主办单位:江苏省物流与采购信息中心。看到这个主办单位就知道不怎么地。月刊。每发必中。一两个星期就通知录用。版面费几百元,可以商量。如果硕士生毕业,学校要求发表论文而又没有发表足够的话,可以考虑该刊应急。 6.《统计与决策》全国中文核心期刊,全国优秀经济期刊,半月刊。无审稿费,审稿周期2个月左右,易发,刊出时间较快,版面费150元/页。编辑负责人态度非常好。 7《新疆农业大学学报》中文核心期刊,双月刊。审稿快,一般1个月左右,无审稿费、版面费。主要刊农业类、经济类等论文。编辑非常负责,态度也好。 8《江苏商论》月刊,属于北大核心,不过不属于南大核心,要求投递文本稿,不收电子邮件,一般一个月内会发邮件告诉你是否被录用以及大概的发表时间,版面费商贸流通类400元一版,其他600元一版,然后汇款过去,修改电子文稿,然后就可以发了,杂志质量属于一般,发表也相对容易,就看你毕业或评职称的要求了。 9《现代商贸工业》不错!!!审稿挺快的,版面费不是太高!!!! 10《沈阳大学学报》,编辑审稿很严格,参考文献都要亲自上网查,包括文献的时间都核查。对文章中的语句措辞也给修改,总之编辑很认真。我发了一篇,4版,500块版面费,对学历职称没有特别要求,但文章要规范。 11《科技信息》他们自称2天内完成初审,3天内完成复审,5天内完成终审;5天后就会有结果。不过我发的时候2天就直接知道结果了,版面费500元每版,应该是交钱就能发吧。 12 《商场现代化》是04年中文核心期刊,在08年中文核心期刊被删除了,现在发表要容易多了。 13 经济学类,在中国当下可以算得上是学术刊物的东西,归纳一下,大体如下。不足部分大家补充。 一区 经济研究:大部分论文质量不是太差,对于没有名气的作者会找多个审稿人审,如果你陆续收到4-6个审稿意见,千万别担心,这说明编辑在担心。有名气的作者稿件审过一次就可以发。还有一些人的稿件是不匿名审稿的(特约,呵呵)。所以只能说是半匿名审稿。学生单独发表不是没有可能,但是很难,而且越来越难。说明编辑看名气和地位,对学生独发不放

审稿周期较短的杂志

审稿周期较短的经济类杂志: 《中国工业经济》,外国经济与管理、科学学与科学技术管理、公共管理学报、国际贸易问题 当代财经、软科学、中国科技论坛、商业经济与管理、财经科学、南方经济、科技进步与对策、现代经济探讨、经济经纬、南开经济研究、华东经济管理、经济地理、统计与决策、科技与经济、 学报类 贵州财经学院学报(双月刊,北大核心期刊) 广东商学院学报(双月刊,北大核心期刊) 山西财经大学学报(月刊,四次入选北大核心期刊,注意不包括高等教育版) 期刊类 刊物周期:双月刊 经济科学(双月刊,连续五次入选北大核心期刊) 世界经济文汇(双月刊,连续五次入选北大核心期刊) 理论与改革(双月刊,连续五次入选北大核心期刊) 刊物周期:月刊 经济纵横(月刊,连续五次入选北大核心期刊) 世界经济(月刊,连续五次入选北大核心期刊) 特区经济(月刊,连续五次入选北大核心期刊) 理论导刊(月刊,连续五次入选北大核心期刊) 证券市场导报(月刊,三次入选北大核心期刊)

技术经济与管理研究(月刊,三次入选北大核心期刊) 刊物周期:半月刊与旬刊 科技进步与对策(半月刊,连续五次入选北大核心期刊) 商业时代(旬刊,连续五次入选北大核心期刊) 财会月刊(旬刊,三次入选北大核心期刊,注意不包括综合版和理论版) 财会通讯(旬刊,连续五次入选北大核心期刊,注意只有综合版是核心期刊) 安徽农业科学(旬刊,两次入选北大核心期刊) 贵州财经学院学报 山西财经大学学报(cssci08核心,注意不包括高等教育版) 财会月刊(注意不包括综合版和理论版) 财会通讯(注意只有综合版是核心期刊) 商业时代(旬刊) 安徽农业科学(旬刊) 科技进步与对策(半月刊) 现代教育管理(月刊) 特区经济(月刊) 理论与改革(双月刊,国内二级,国内B类,cssci08核心,中共四川省委党校) 技术经济与管理研究(双月刊,国内B类,山西省人民政府改革与发展研究中心) 经济科学(双月刊,国内二级,国内B类,北京大学) 世界经济文汇(双月刊,国内二级,国内B类,复旦大学经济学院) 世界经济(月刊,国内A类,中国世界经济学会)

外文期刊投稿状态

以下是英文投稿过程中的十种状态。 1. Submitted to Journal 当上传结束后,显示的状态是Submitted to Journal,这个状态是自然形成的无需处理。 2. With editor 如果在投稿的时候没有要求选择编辑,就先到主编那里,主编会分派给别的编辑。这当中就会有另两个状态: ①Editor assigned编辑分派 ②Editor Declined Invitation编辑拒绝邀请,这时主编不得不将投稿文章重新分派给其它编辑。 3. Reviewer(s) invited 说明编辑已接手处理,正在邀请审稿人中。有时该过程会持续很长时间,如果其中原因是编辑一直没有找到合适的审稿人,这时投稿者可以向编辑推荐审稿人。 4. Under review 审稿人的意见已上传,说明审稿人已接受审稿,正在审稿中,这应该是一个漫长的等待(期刊通常会限定审稿人审稿时间,一般为一个月左右)。当然前面各步骤也可能很慢的,要看编辑的处理情况。如果被邀请审稿人不想审,就会decline,编辑会重新邀请别的审稿人。 5. required review completed 审稿结束,等编辑处理,该过程短则几天,长则无期,科学堂有一篇文章出现required review completed状态已近一个月了,还是没有消息。 6. Decision in Process 到了这一步就快要有结果了,编辑开始考虑是给修改还是直接拒,当然也有可能直接接受的,但可能性很小,呵呵。 7. Minor revision/Major revision 小修/大修,这个时候可以稍微庆祝一下了,因为有修改就有可能。具体怎么改就不多说了,谦虚谨慎是不可少的(因为修改后一般会再发给审稿人看,所以一定要细心的回答每一个审稿人的每一个问题,态度要谦逊,要让审稿人觉得他提的每个问题都很有水准的,然后针对他的问题,一个一个的做出答复,能修改的就修改,不能修改的给出理由,而且都要列出来,文章的哪一段哪一行修改了最好都说出来,记住:给审稿人减少麻烦就是给你自己减少麻烦!另注:有时,审稿人会在修改意见里隐讳里说出要你仔细阅读某几篇文献,这时可要注意了,其中某些文章可能就是评审者自己发表的,这时你最好在你的修改稿中加以引用),修改后被拒绝的例子也多不胜数的。8. Revision Submitted to Journal 修改后重新提交,等待编辑审理。 9. Accepted 如果不要再审,只是小修改,编辑看后会马上显示这个状态,但如果要再审也会有上面的部分状态。一步会比较快,但也有慢的。看杂志的。 10. Rejected 相信大家见了Rejected,都会很郁闷。但也不要太灰心,耐心将评审意见看

【期刊投稿建议】期刊审稿流程、”三审“流程大“揭秘”!提升稿件录用率!

【期刊投稿建议】期刊审稿流程、”三审“流程大“揭秘”!提升稿件录用率! 为了使大家在论文写作及投稿过程中更加有针对性,提高稿件的审理通过率,特详细解读《化学教育》的审稿流程。主要包括如下几个环节:第一,收稿。作者在官方网站投稿,编辑收稿后才能进入审理程序。在收稿过程中,会检查论文的基本格式规范,主要依据是期刊“投稿指南”中可以查到,比如说《中国德育》、《中国教育学刊》、《化学教育》(中英文)、《化学教学》等,请作者在论文写作时按照论文模板将文章编排好。或者参考最新出版的期刊,按照相应栏目的文章格式撰写和编排文章。 友情提醒:请让自己的文章看起来规范漂亮,好像从已经出版的期刊中抽出来的一样,这是打动审稿人的第一步。 第二,初审。首先是数据库查重,如果重复率超过50%,将会直接退稿;如果重复率达到30%,则会再具体看“是否是合理引用,是否为核心内容”,如果重复的内容不是合理引用而且是文章的核心部分,则也会做退稿处理。其次,会看论文的参考文献,如果论文没有参考文献,一般也会做退稿处理。再次,会进一步阅读文章,主要考察文章的创新性和参考价值,即:论文的主题、针对的问题、研究的内容是否有新意;是否有利于解决化学教育领域的某个具体问题,是否具有理论层面、教学实践层面或教师专业发展层面的意义;是否有可以供同行参考的、复

制的、借鉴的“干货”。另外还要考察,是否有明显的科学性、常识性、政治性问题。 友情提醒:(1)无论写哪个主题的文章,都需要查阅相关的文献,并给出客观的评述,从而突出自己论文的价值和意义,这个非常关键!(2)不要求大、求全、求高,而是要针对自己的同行面临的实际问题来做研究和写文章,时时想着为自己的同行提供实实在在的启示、借鉴和帮助,这样就不愁没有参考价值。 第三,外审。稿件通过初审后,会被送外审,即编委或者相关的专家来审理,主要会考察:论文主题的创新性,即是否重要、必要而又少有人讨论;论文内容的质量,即文献查阅是否全面,文献评述是否客观,在文献已有研究的基础上是否具有增值意义,论文的语言表达是否严谨、通顺、准确,论文的结构是否合理,论文要解决的问题和观点是否明确,提供的研究方法是否科学严谨,给出的证据、数据、案例等是否准确充分、能否支持论文的观点,图表的准确性和规范性,结论是否建立在证据和数据分析的基础上等。外审通过则进入三审,不通过则会退稿。 友情提醒:如何组织自己的观点、素材、证据、数据、案例,从而让自己的文章看起来更可信、更有用、更重要,能够牵着审稿人的鼻子,是作者需要重点考虑的! 第四,三审。外审通过的稿件,会提请主编或副主编三审,会根据论文内容考察外审专家审理意见的合理性,必要时会再给出具体的审理意见。

一般期刊邮箱投稿大全

●中文核心/人文社科学报核心期刊:上海社会科学院学术季刊shsfxbjb@https://www.wendangku.net/doc/7d12443522.html, 云梦学刊YMXK@https://www.wendangku.net/doc/7d12443522.html, 贵州大学学报 @https://www.wendangku.net/doc/7d12443522.html, 河北学刊hbxk282@https://www.wendangku.net/doc/7d12443522.html, 电子科技大学学报 b@https://www.wendangku.net/doc/7d12443522.html, 发展研究fzyjzzs@https://www.wendangku.net/doc/7d12443522.html, 华北电力大学学报 https://www.wendangku.net/doc/7d12443522.html, 探索与争鸣tsyzm@https://www.wendangku.net/doc/7d12443522.html, 哈尔滨工业大学报 ban@https://www.wendangku.net/doc/7d12443522.html, 吉林师范大学学报SLXS@https://www.wendangku.net/doc/7d12443522.html, (惊人的收费) hitskb@https://www.wendangku.net/doc/7d12443522.html, 天津师范大学学报tjsdxb@https://www.wendangku.net/doc/7d12443522.html, 湖南人文科技学院学报 nal@https://www.wendangku.net/doc/7d12443522.html, 西南师范大学学报wkxb@https://www.wendangku.net/doc/7d12443522.html, fanda9515@https://www.wendangku.net/doc/7d12443522.html, i2101@https://www.wendangku.net/doc/7d12443522.html, 江西师范大学学报Jxsdxb8031-cn@https://www.wendangku.net/doc/7d12443522.html, 西华师范大学学报 @https://www.wendangku.net/doc/7d12443522.html, Jxsasb@https://www.wendangku.net/doc/7d12443522.html, xb8506185@https://www.wendangku.net/doc/7d12443522.html,(准确)广西大学学报 ueb@https://www.wendangku.net/doc/7d12443522.html, 浙江师范大学学报xbskb@https://www.wendangku.net/doc/7d12443522.html, 许昌学院学报 b@https://www.wendangku.net/doc/7d12443522.html, 信阳师范学院学报xbwk1@https://www.wendangku.net/doc/7d12443522.html, 合肥工业大学学报 @https://www.wendangku.net/doc/7d12443522.html, xyxb2006@https://www.wendangku.net/doc/7d12443522.html, 华侨大学学报 sb@https://www.wendangku.net/doc/7d12443522.html, 安徽教育学院学报ahjy-xb@https://www.wendangku.net/doc/7d12443522.html, 湖湘论坛 @https://www.wendangku.net/doc/7d12443522.html, 安徽教育学院学报AFJY@https://www.wendangku.net/doc/7d12443522.html, 当代世界 ddsjcn@https://www.wendangku.net/doc/7d12443522.html, 商丘师范学院学报sqsyxbbjb@https://www.wendangku.net/doc/7d12443522.html, 国际展望 https://www.wendangku.net/doc/7d12443522.html, 已投: 理论导刊lldk@https://www.wendangku.net/doc/7d12443522.html, hanqiang@https://www.wendangku.net/doc/7d12443522.html, 贵州民族学院学报GZMZ@https://www.wendangku.net/doc/7d12443522.html, 理论学刊 songxiena@https://www.wendangku.net/doc/7d12443522.html, 开放时代opentimes@https://www.wendangku.net/doc/7d12443522.html, 瞭望 LWZZ@https://www.wendangku.net/doc/7d12443522.html, 南京财经大学学报xuebao@https://www.wendangku.net/doc/7d12443522.html, 政治与法律 xu19972001@https://www.wendangku.net/doc/7d12443522.html, 未来与发展WLYF@https://www.wendangku.net/doc/7d12443522.html, 南昌大学学报 NCDS@https://www.wendangku.net/doc/7d12443522.html, 云南财贸学院学报yncmxyxb@https://www.wendangku.net/doc/7d12443522.html,

国内期刊投稿心得

国内期刊投稿心得 1、【杂志名称】计算机应用研究 【杂志文章包含专业】建模,仿真,网络,人工智能,比较杂。 【投稿联系方式】https://www.wendangku.net/doc/7d12443522.html,/ 注册在线投稿审稿 【投稿费用】250元/页 【杂志级别】国家一级期刊,全国中文核心期刊 【稿酬回报】无 【投稿感受】增刊录用率始终保持在100%,想上增刊,交钱就行(250元/页),正刊录用与否与文章质量关系不太密切,有基金可能好点。无审稿费,1~2月就知道结果了!不过该刊物许多高校不认可,不承认它是核心期刊。 2、【杂志名称】火力与指挥控制 【杂志文章包含专业】武器装备方面建模,仿真,评估等。主要针对军工方面文章。 【投稿联系方式】hlyz@https://www.wendangku.net/doc/7d12443522.html, 【投稿费用】版面费600元,审稿费50元。如果稿件质量高,免版面费。 【杂志级别】中文核心期刊,科技论文统计源期刊。 【稿酬回报】有,但不多,百十来元吧。 【投稿感受】录用率较高,70%左右,审稿周期2个月,发表周期1年左右。编辑态度较好。 【其他】如果忙着毕业,或评职称,可以投。 3、【杂志名称】系统仿真学报 【杂志文章包含专业】建模,仿真,计算机技术,网络,评估等。内容较杂。 【投稿联系绞健?/font >https://www.wendangku.net/doc/7d12443522.html, 【投稿费用】版面费1200元左右,审稿费150元(中文)。 【杂志级别】中文核心期刊,EI统计源期刊。 【稿酬回报】有,但不多,百十来元吧。 【投稿感受】录用率不高20%左右,审稿周期2个月,发表周期1.3年左右。编辑态度较好。论文要求仿真结果。【其他】2005年,论文被EI检索率90%以上。 4、【杂志名称】《宇航学报》 【杂志文章包含专业】飞行理论、航天飞行器系统、导弹系统、空气动力学、测量与信息传输、制导与控制、飞行器能源、遥感飞行器设计与制造、惯性技术、推进技术、计算机应用、材料与工艺、发射工程、结构强度、目标与环境、计量与测试、质量与可靠性等。 【投稿联系方式】yhxbbjb@https://www.wendangku.net/doc/7d12443522.html, 【投稿费用】审稿费80元,版面费1100左右 【杂志级别】核心期刊,06年为EI 检索期刊 【稿酬回报】较少 【投稿感受】要求电子稿和打印稿投送,审稿2~3个月,录用率为10%左右、感觉投稿有难度。 5、【杂志名称】《导弹与航天运载技术》 【杂志文章包含专业】主要报道中国导弹与火箭系统及分系统技术及与其相关的学术研究论文与报告,并适当报道国际航天领域的热点、最新成果及新动态。设有综述与述评、专家论坛、运载器总体及分系统技术、论文与报告、研究简报、高科技窗口、国外进展、热点漫谈、简讯等栏目。 【投稿联系方式】edit@https://www.wendangku.net/doc/7d12443522.html, 【投稿费用】无审稿费80元,版面费500左右,优秀的文章免收版面费。 【杂志级别】核心期刊 【稿酬回报】有,约150 【投稿感受】可电子投稿,审稿2个月,录用率为50%左右。总的感觉难度不大。 【其他】编辑部态度不错。 6、【杂志名称】《小型微型计算机系统》 【杂志文章包含专业】发表我国计算机领域的科学研究、工程设计及应用、高等教育等方面的学术论文,并介绍国外先进计算机理论和技术。主要栏目有计算机硬件、软件、网络、多媒体等技术的研究、开发、应用。【投稿联系方式】xwjxt@https://www.wendangku.net/doc/7d12443522.html, 【投稿费用】审稿费100元,版面费1000左右 【杂志级别】核心期刊,EI检索。 【稿酬回报】有 【投稿感受】先投打印稿投送,初审通过再投电子稿。审稿2~3个月,录用率为20%左右,难度中。 【其他】编辑部态度不错。 7、【杂志名称】《计算机仿真》

相关文档
相关文档 最新文档